B.
Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
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Trapping in Local Minimum
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Escape from Local Minimum

o
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Escape from Local Minimum

o
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Motivation

e Idea: with low probability, go against the local
field

— move up the energy surface
11 7 . o o
— make the wrong microdecision

e Potential value for optimization: escape from local
optima
e Potential value for associative memory: escape

from spurious states
— because they have higher energy than imprinted states

3/13/20 5



The Stochastic Neuron

Deterministic neuron: s, = sgn(/,)
o(h)

Pr{s,=+1} =0 (hll)
Pr{s/=-1}=1-0(h,) - f

Stochastic neuron : |

Pr(s = +1} = o(h,)
Pr{s/ = -1} =1-0(h,) J

0

1
1+exp(-2h/T)

Logistic sigmoid: o(h) =
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Properties of Logistic Sigmoid

/& o(h) = —
/

0

e Ash — +o,c(h) > 1
e Ash— —xo,c(h)—>0
e 5(0)=1/2
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Logistic Sigmoid
With Varying T

T varying from 0.05too (1/T==0,1,2, ..., 20)
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Logistic Sigmoid
b =105

Slope at origin =1 /2T
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Logistic Sigmoid
7'=0.01

0.5
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Logistic Sigmoid
L =10l
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Logistic Sigmoid
=l

3/13/20 12



Logistic Sigmoid
L=
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Logistic Sigmoid
T'=100
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Pseudo-Temperature

 Temperature = measure of thermal energy (heat)
e Thermal energy = vibrational energy of molecules
e A source of random motion

e Pseudo-temperature = a measure of nondirected
(random) change

e Logistic sigmoid gives same equilibrium
probabilities as Boltzmann-Gibbs distribution
e Thermodynamic perk or coldness: f = 1/T
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Transition Probability

Recall, change in energy AE =—-As, h,
=2s.h,

Pr{s,'C = il‘Sk = 11} =o(xh,)=o(-s,.h,)

1
1+ exp(2s,.h, /T)
" 1
1+ exp(AE/T)

Pr{sk T —sk} =
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Stability

* Are stochastic Hopfield nets stable?
 Thermal noise prevents absolute stability

e But with symmetric weights:
average values (s;) become time-invariant
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Does “Thermal Noise” Improve
Memory Performance?

 Experiments by Bar-Yam (pp. 316-20):
= n =100
n p= 8

e Random 1nitial state

* To allow convergence, after 20 cycles
set T=0

 How often does 1t converge to an imprinted
pattern’

3/13/20 18



Probability of Random State Converging
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on Imprinted State (n=100, p=8)
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Probability of Random State Converging
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on Imprinted State (n=100, p=8)

D8 -
g L ~ .
0.6 4 .— / =
i ./
04 4
03 +
02 }
o g
0 , : —
0 > g 6

(fig. from Bar-Yam)

20



Analysis of Stochastic Hoptield
Network

 Complete analysis by Daniel J. Amit &
colleagues 1n mid-80s

e See D.J. Amit, Modeling Brain Function:
The World of Attractor Neural Networks,
Cambridge Univ. Press, 1989.

* The analysis 1s beyond the scope of this
course
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Phase Diagram

(D) all states melt T,

1.0
(C) spin-glass states

e
(B) imprinted,

but s.g. = min.

(A) imprinted
= minima

I 1 | 1 1
00000 0.05 0.10 T 0.15
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Conceptual Diagrams
of Energy Landscape

VaVaV AWV,
AN N
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Phase Diagram Detail
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Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)
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Dilemma

* In the early stages of search, we want a high
temperature, so that we will explore the
space and find the basins of the global
minimum

* In the later stages we want a low
temperature, so that we will relax into the
global minimum and not wander away from
it

* Solution: decrease the temperature
gradually during search
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Quenching vs. Annealing

* Quenching:

— rapid cooling of a hot material

— may result in defects & brittleness

— local order but global disorder

— locally low-energy, globally frustrated
 Annealing:

— slow cooling (or alternate heating & cooling)

— reaches equilibrium at each temperature

— allows global order to emerge
— achieves global low-energy state
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Multiple Domains

locﬁl
f:oher nce
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Moving Domain Boundaries
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Effect of Moderate Temperature

Energy
A+

1
1+exp(AE/T)

Pr{flip} =
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Effect of High Temperature
(Low Perk)

(fig. from Anderson Intr. Neur. Comp.)
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Effect of Low Temperature
(High Perk)

AE/T high

(fig. from Anderson Intr. Neur. Comp.)
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Annealing Schedule

* Controlled decrease of temperature

e Should be sufticiently slow to allow
equilibrium to be reached at each
temperature

* With sufficiently slow annealing, the global
minimum will be found with probability 1

* Design of schedules 1s a topic of research
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Typical Practical
Annealing Schedule

e Initial temperature 7|, sufficiently high so all
transitions allowed
 Exponential cooling: T, = a7,
= typical 0.8 < a <0.99
* fixed number of trials at each temp.
= expect at least 10 accepted transitions

* Final temperature: three successive
temperatures without required number of
accepted transitions
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Summary

* Non-directed change (random motion)
permits escape from local optima and
spurious states

* Pseudo-temperature can be controlled to
adjust relative degree of exploration and
exploitation
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Quantum Annealing

e See for example D-wave
Systems
<www.dwavesys.com>

Configuration
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http://www.dwavesys.com

Hopftield Network for
Task Assignment Problem

e Six tasks to be done (I, 11, ..., VI)
e Six agents to do tasks (A, B, ..., F)

* They can do tasks at various rates
_ A(10,5,4,6,5,1)
=4 D (63439,73372)

— etc

* What 1s the optimal assignment of tasks to
agents’’
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Continuous Hoptield Net

U 2TV+I——

g ' J
V. = O’(Ul.) & (0,1)

Energy function:

n n n
1
s PO i I
=il
J#i

3/13/20 38



Derivation of k-out-of-n Rule
e Suppose we want exactly k of n neurons = 1

— Thatis, Y, j=, V; = k
* Therefore, minimize E, = [k — X 1-, V;]*
 Want values of V; to be integral O or 1
» Therefore, minimize E, = )i, V;(1 = V)
. Minimize total energy function:

= [k =X VilP+ XL V(1 = W)

. Rearrange to get

Z( 2V, — ZV(Zk— 1)

l1]

J#i
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k-out-of-n Rule

2k—1

2k—1

Competitive
Network
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k-out-of-n Competitive Network

With equal bias, it 1s essentially random
which k will win

With unequal bias, the £ with strongest
Input win

To bias neurons, make sure the inputs
average to 2k—1

For k=1 1t 1s a winner-takes-all network

Macrocolumns 1n cortex seem to be k-out-
of-n competitive feature detectors
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Task Assignment Problem

e Six different tasks (I to VI)
e Six different agents (A to F)
e Agents can perform tasks at different rates

 What 1s the optimal assignment of tasks to
agents (maximum rate)?
(one task per agent, one agent per task)
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Network tor Task Assignment

111

O

O / 2 biased by rate
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O
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O
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NetLogo Implementation of
Task Assignment Problem

Run TaskAssignment.nlogo

Part IV >
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../NetLogo%20Simulations/TaskAssignment.nlogo

