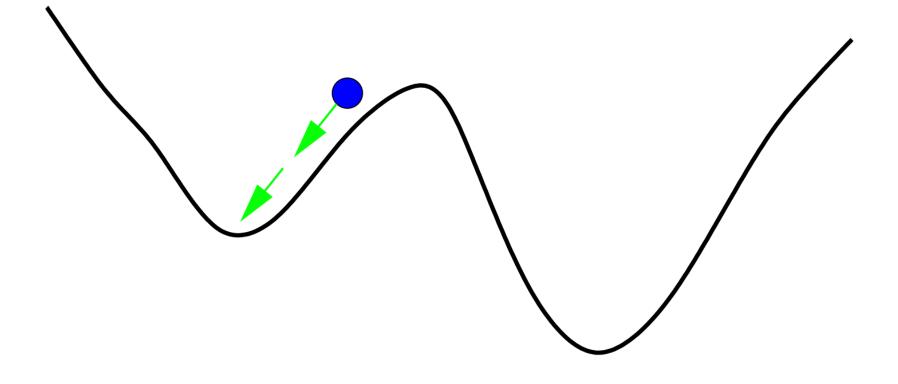
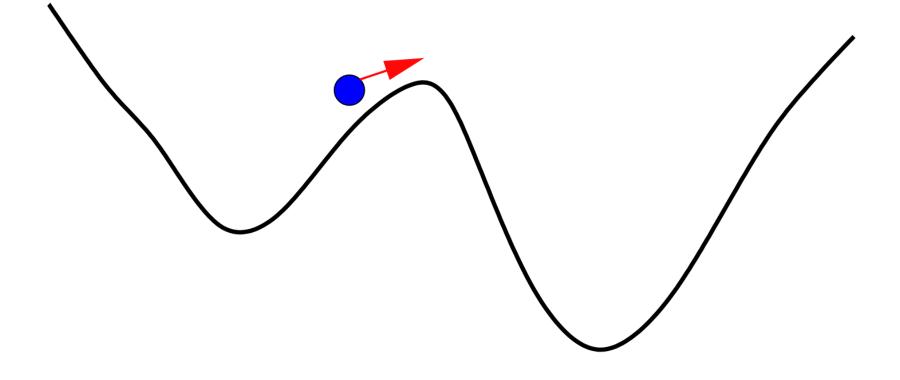
B. Stochastic Neural Networks

(in particular, the stochastic Hopfield network)

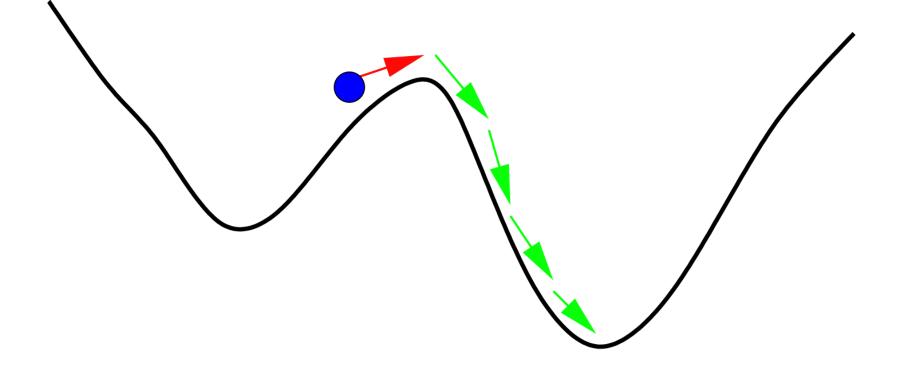
Trapping in Local Minimum



Escape from Local Minimum



Escape from Local Minimum



Motivation

- Idea: with low probability, go against the local field
 - move up the energy surface
 - make the "wrong" microdecision
- Potential value for optimization: escape from local optima
- Potential value for associative memory: escape from spurious states
 - because they have higher energy than imprinted states

The Stochastic Neuron

Deterministic neuron: $s'_i = \text{sgn}(h_i)$

$$\Pr\{s'_{i} = +1\} = \Theta(h_{i})$$

$$\Pr\{s'_{i} = -1\} = 1 - \Theta(h_{i})$$

Stochastic neuron:

$$\Pr\{s'_{i} = +1\} = \sigma(h_{i})$$

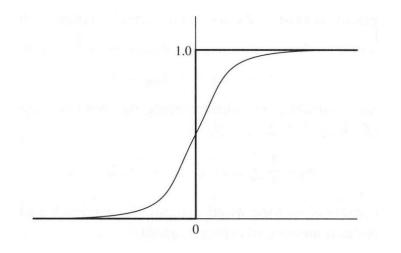
$$\Pr\{s'_{i} = -1\} = 1 - \sigma(h_{i})$$
h

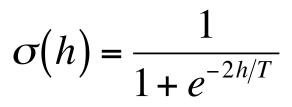
 $\sigma(h)$

1.0

Logistic sigmoid:
$$\sigma(h) = \frac{1}{1 + \exp(-2h/T)}$$

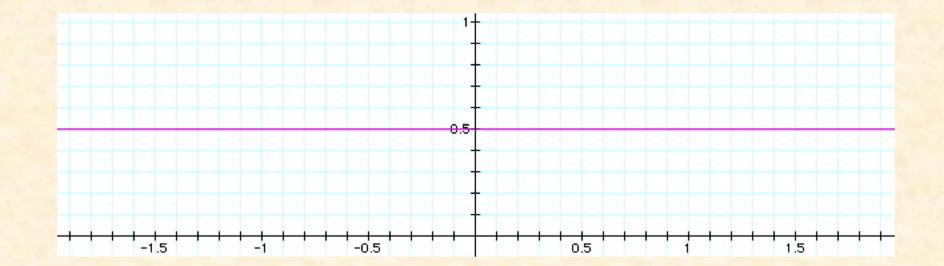
Properties of Logistic Sigmoid





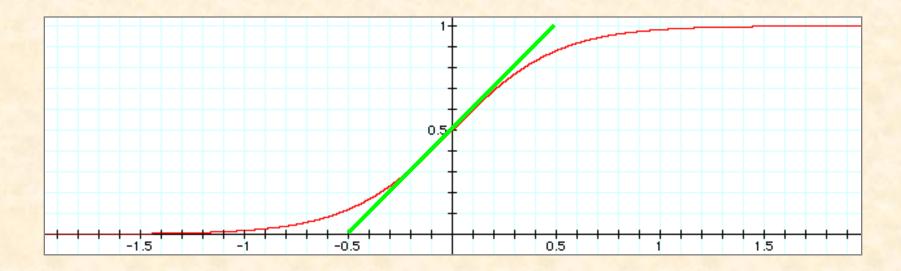
- As $h \to +\infty$, $\sigma(h) \to 1$
- As $h \to -\infty$, $\sigma(h) \to 0$
- $\sigma(0) = 1/2$

Logistic Sigmoid With Varying T



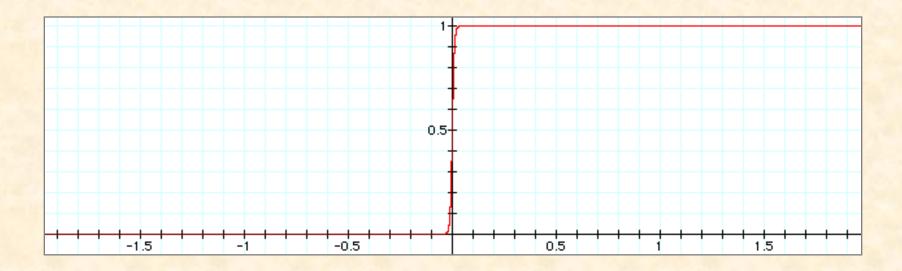
T varying from 0.05 to ∞ (1/*T* = β = 0, 1, 2, ..., 20)

Logistic Sigmoid T = 0.5

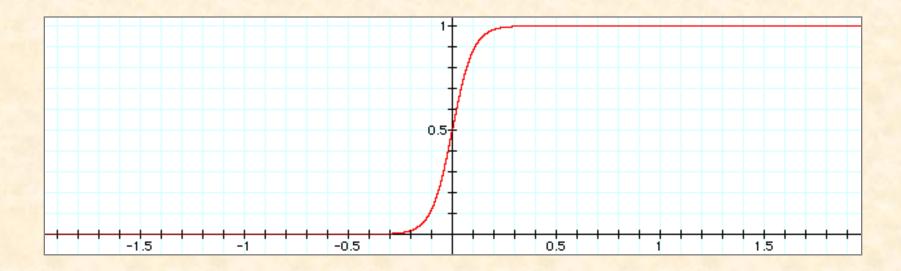


Slope at origin = 1 / 2T

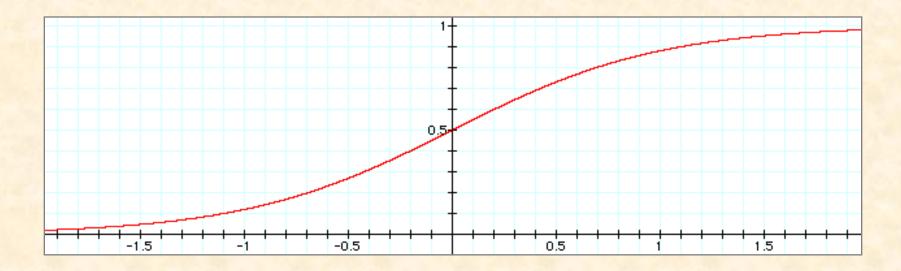
Logistic Sigmoid T = 0.01



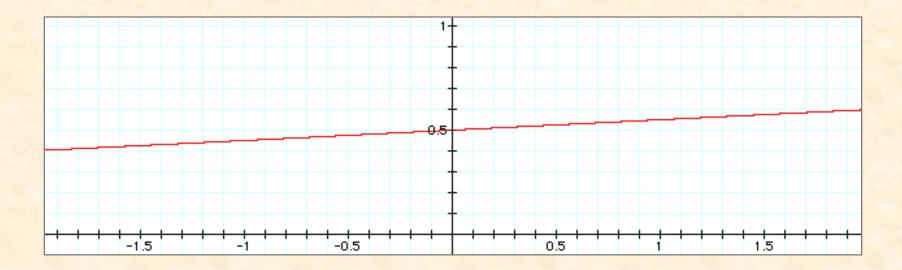
Logistic Sigmoid T = 0.1



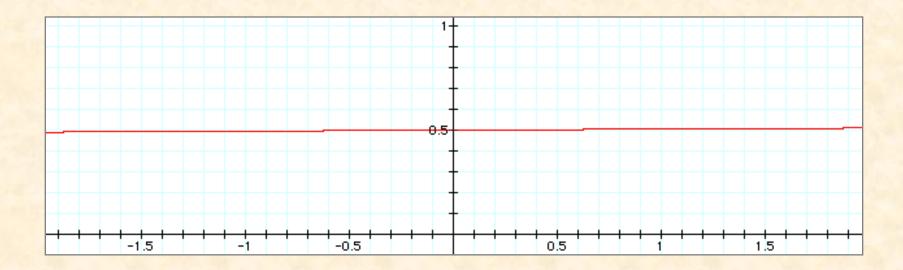
Logistic Sigmoid T = 1



Logistic Sigmoid T = 10



Logistic Sigmoid T = 100



Pseudo-Temperature

- Temperature = measure of thermal energy (heat)
- Thermal energy = vibrational energy of molecules
- A source of random motion
- Pseudo-temperature = a measure of nondirected (random) change
- Logistic sigmoid gives same equilibrium probabilities as Boltzmann-Gibbs distribution
- Thermodynamic perk or coldness: $\beta = 1/T$

Transition Probability

Recall, change in energy $\Delta E = -\Delta s_k h_k$ = $2s_k h_k$

$$\Pr\{s'_k = \pm 1 | s_k = \mp 1\} = \sigma(\pm h_k) = \sigma(-s_k h_k)$$

$$\Pr\{s_k \rightarrow -s_k\} = \frac{1}{1 + \exp(2s_k h_k/T)}$$
$$= \frac{1}{1 + \exp(\Delta E/T)}$$

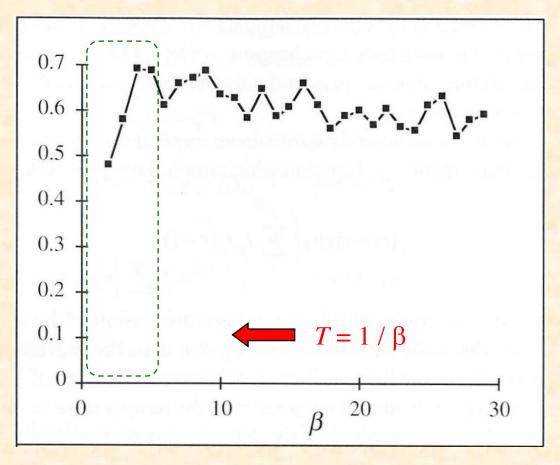
Stability

- Are stochastic Hopfield nets stable?
- Thermal noise prevents absolute stability
- But with symmetric weights: average values (s_i) become time-invariant

Does "Thermal Noise" Improve Memory Performance?

- Experiments by Bar-Yam (pp. 316–20):
 - *n* = 100
 - *p* = 8
- Random initial state
- To allow convergence, after 20 cycles set T = 0
- How often does it converge to an imprinted pattern?

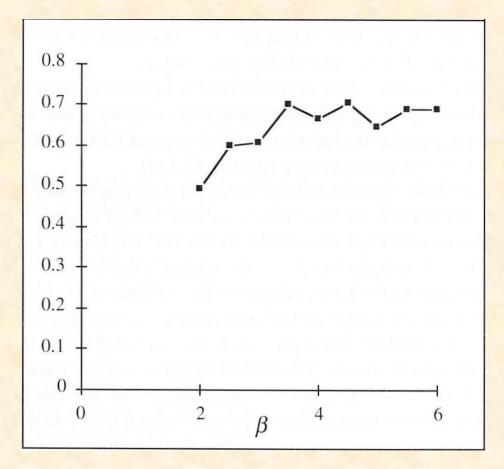
Probability of Random State Converging on Imprinted State (*n*=100, *p*=8)



3/13/20

(fig. from Bar-Yam)

Probability of Random State Converging on Imprinted State (*n*=100, *p*=8)

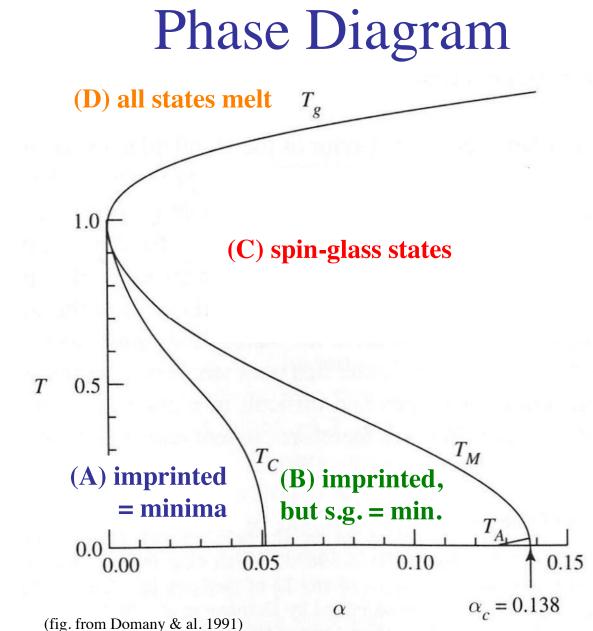


3/13/20

(fig. from Bar-Yam)

Analysis of Stochastic Hopfield Network

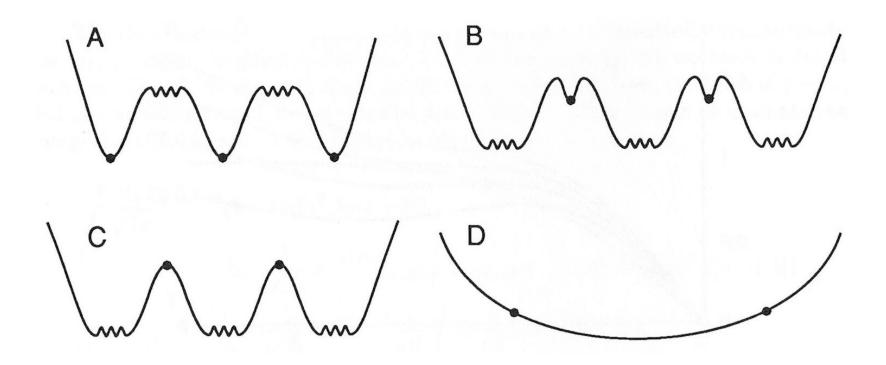
- Complete analysis by Daniel J. Amit & colleagues in mid-80s
- See D. J. Amit, *Modeling Brain Function: The World of Attractor Neural Networks*, Cambridge Univ. Press, 1989.
- The analysis is beyond the scope of this course



3/13/20

22

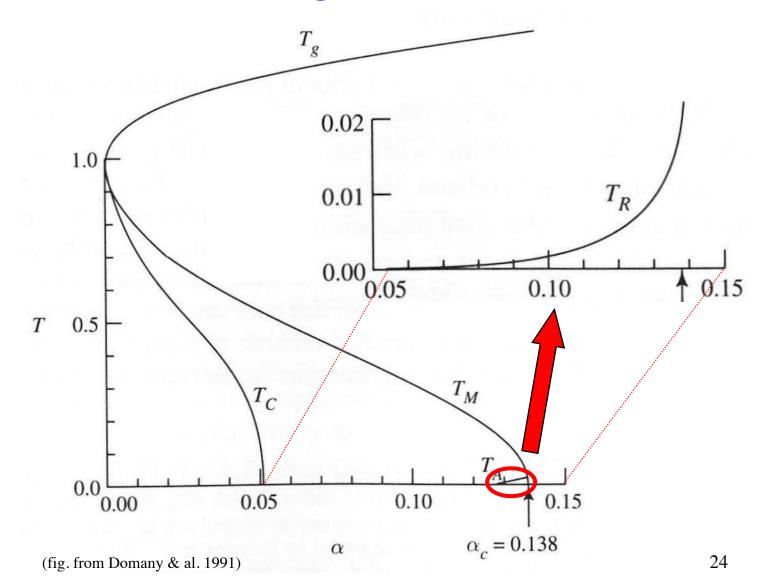
Conceptual Diagrams of Energy Landscape



> 3/13/20

(fig. from Hertz & al. Intr. Theory Neur. Comp.)

Phase Diagram Detail



Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)

Dilemma

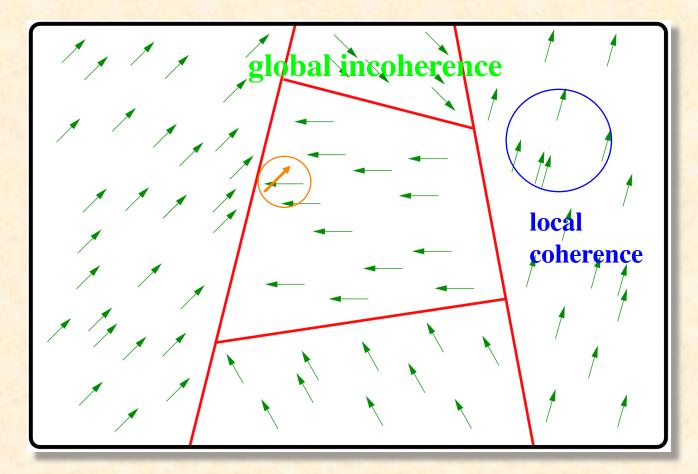
- In the early stages of search, we want a high temperature, so that we will explore the space and find the basins of the global minimum
- In the later stages we want a low temperature, so that we will relax into the global minimum and not wander away from it
- Solution: decrease the temperature gradually during search

Quenching vs. Annealing

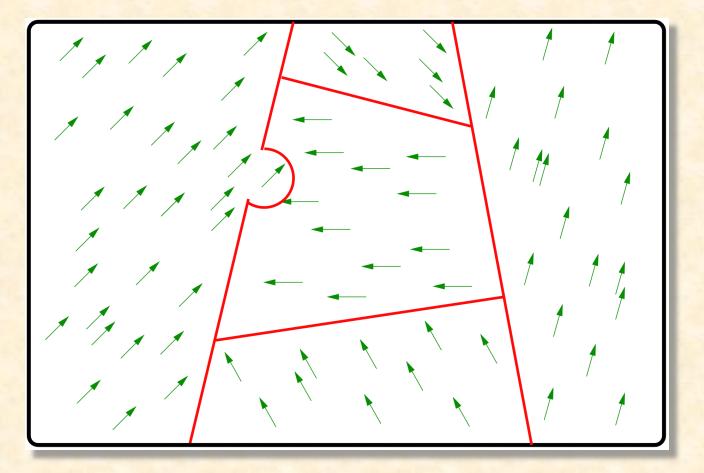
• Quenching:

- rapid cooling of a hot material
- may result in defects & brittleness
- local order but global disorder
- locally low-energy, globally frustrated
- Annealing:
 - slow cooling (or alternate heating & cooling)
 - reaches equilibrium at each temperature
 - allows global order to emerge
 - achieves global low-energy state

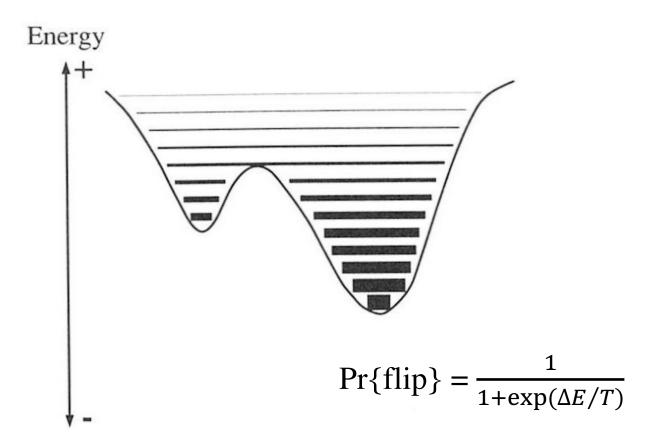
Multiple Domains



Moving Domain Boundaries

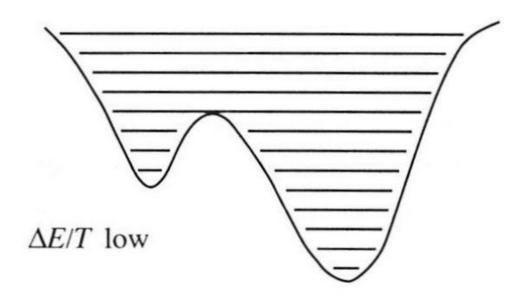


Effect of Moderate Temperature

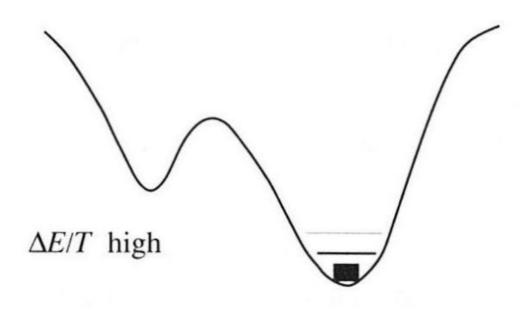


(fig. from Anderson Intr. Neur. Comp.)

Effect of High Temperature (Low Perk)



Effect of Low Temperature (High Perk)



Annealing Schedule

- Controlled decrease of temperature
- Should be sufficiently slow to allow equilibrium to be reached at each temperature
- With sufficiently slow annealing, the global minimum will be found with probability 1
- Design of schedules is a topic of research

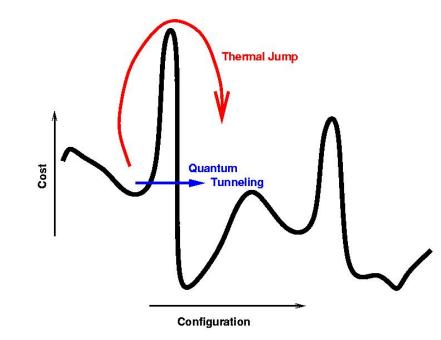
Typical Practical Annealing Schedule

- Initial temperature T_0 sufficiently high so all transitions allowed
- Exponential cooling: $T_{k+1} = \alpha T_k$
 - typical 0.8 < α < 0.99
 - fixed number of trials at each temp.
 - expect at least 10 accepted transitions
- Final temperature: three successive temperatures without required number of accepted transitions

Summary

- Non-directed change (random motion) permits escape from local optima and spurious states
- Pseudo-temperature can be controlled to adjust relative degree of exploration and exploitation

Quantum Annealing



 See for example D-wave Systems
 <www.dwavesys.com>

Hopfield Network for Task Assignment Problem

- Six tasks to be done (I, II, ..., VI)
- Six agents to do tasks (A, B, ..., F)
- They can do tasks at various rates
 - A(10, 5, 4, 6, 5, 1)
 - B (6, 4, 9, 7, 3, 2)
 - etc
- What is the optimal assignment of tasks to agents?

Continuous Hopfield Net

$$\dot{U}_i = \sum_{j=1}^n T_{ij} V_j + I_i - \frac{U_i}{\tau}$$
$$V_i = \sigma(U_i) \in (0,1)$$

Energy function:

$$E = -\frac{1}{2} \sum_{\substack{i=1 \ j \neq i}}^{n} \sum_{\substack{j=1 \ j \neq i}}^{n} T_{ij} V_i V_j - \sum_{\substack{i=1 \ j \neq i}}^{n} V_i I_i$$

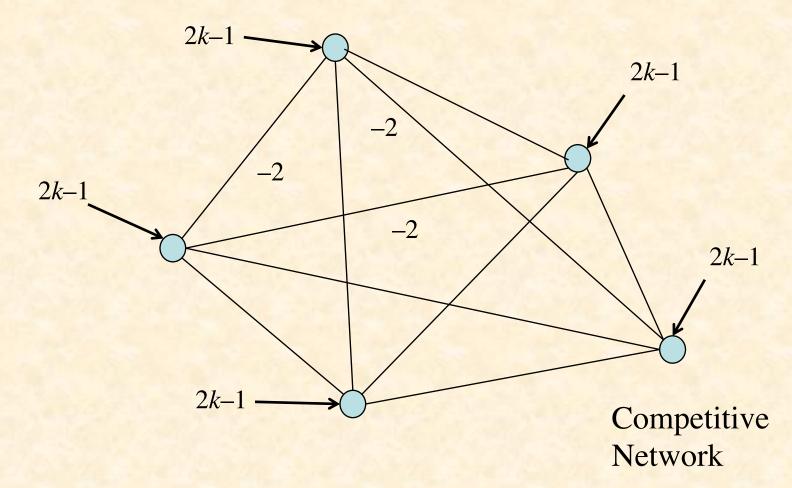
3/13/20

Derivation of k-out-of-n Rule

- Suppose we want exactly k of n neurons = 1 – That is, $\sum_{i=1}^{n} V_i = k$
- Therefore, minimize $E_o = [k \sum_{i=1}^{n} V_i]^2$
- Want values of V_i to be integral 0 or 1
- Therefore, minimize $E_c = \sum_{i=1}^n V_i (1 V_i)$
- Minimize total energy function: $E = [k - \sum_{i=1}^{n} V_i]^2 + \sum_{i=1}^{n} V_i (1 - V_i)$
- Rearrange to get:

$$E = -\frac{1}{2} \sum_{\substack{i=1\\j\neq i}}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} (-2) V_i V_j - \sum_{\substack{i=1\\i=1}}^{n} V_i (2k-1)$$

k-out-of-n Rule



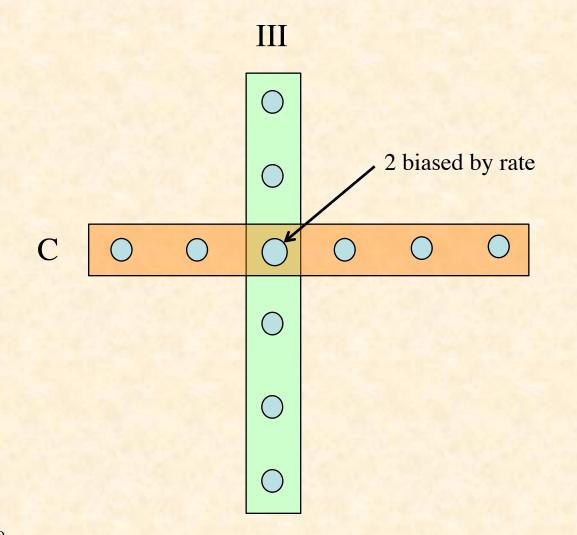
k-out-of-n Competitive Network

- With equal bias, it is essentially random which k will win
- With unequal bias, the k with strongest input win
- To bias neurons, make sure the inputs average to 2*k*-1
- For *k*=1 it is a *winner-takes-all* network
- Macrocolumns in cortex seem to be *k*-outof-*n* competitive feature detectors

Task Assignment Problem

- Six different tasks (I to VI)
- Six different agents (A to F)
- Agents can perform tasks at different rates
- What is the optimal assignment of tasks to agents (maximum rate)?
 (one task per agent, one agent per task)

Network for Task Assignment



NetLogo Implementation of Task Assignment Problem

Run TaskAssignment.nlogo

