IV. Evolutionary Computing

A. Genetic Algorithms
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Read Flake, ch. 20
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Genetic Algorithms

* Developed by John Holland 1n ‘60s
* Did not become popular until late *80s

e A simplified model of genetics and
evolution by natural selection

 Most widely applied to optimization
problems (maximize “‘fitness”)
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Assumptions

e Existence of fitness function to quantify
merit of potential solutions

— This “fitness” 1s what the GA will maximize
* A mapping from bit-strings to potential
solutions

— best 1f each possible string generates a legal
potential solution

— choice of mapping 1s important
— can use strings over other finite alphabets
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Outline of Simplified GA

1. Random initial population P(0)

2. Repeatfort=0,...,¢_,, oruntil
CoONnverges:
a) create empty population P(¢z + 1)
b) repeat until P(r + 1) 1s full:

1) select two individuals from P(¢) based on fitness
2) optionally mate & replace with offspring

3) optionally mutate offspring

4) add two individuals to P(r + 1)
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Fitness-Biased Selection

 Want the more “fit” to be more likely to
reproduce

— always selecting the best
= premature convergence

— probabilistic selection = better exploration

* Roulette-wheel selection: probability o«
relative fitness:

Pr{i mates} = nf i

j=1"
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Crossover: Biological Inspiration

chromatids of homologous
chromosomes which will

Cross over e (Occurs during
e N mei1osis, when haploid
// \ gametes are formed
‘\\ | /"' ucleus  Randomly mixes
) " eytoplasm genes from two
chiasma Qy parents

/_\ e Creates genetic
( g Y 3 variation in gametes
\ ?! 9 /'
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GASs: One-point Crossover

HEEEE
/
\ I | [
parents offspring

3/31/20



GAs: Two-point Crossover
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GAs: N-point Crossover
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Mutation: Biological Inspiration
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The Red Queen Hypothesis

e Observation: a species
probability of extinc-
tion 1s independent of
time it has existed

 Hypothesis: species

continually adapt to
“Now, here, you see, it takes each other

all the running you can do, o .
to keep in the same place.” e Extinction occurs with

— Through the Looking-Glass insufficient Variability
and What Alice Found There for further adaptation
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Demonstration of NetlLogo
Simple Genetic Algorithm

Run NetLogo Simple Genetic Algorithm
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Demonstration of GA:
Finding Maximum of
Fitness Landscape

Run Genetic Algorithms — An Intuitive

Introduction
by Pascal Glauser
<www.glauserweb.ch/gentore .htm>
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http://www.glauserweb.ch/gentore.htm

Demonstration of GA:

Evolving to Generate

a Pre-specified Shape
(Phenotype)

Run Genetic Algorithm Viewer
<www rennard.org/alife/english/gavgb .html>
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http://../../../../../../Users/maclennan/Dropbox%2520(UTK)/COSC%2520420-527%2520BIC/GavEn.jar

Eaters Seeking Food

e Eaters are FSMs
 Have internal state (memory): 0..15

e (Can sense one square ahead

e It can see one of four different things: an Eater, a plant, a
blank space, or a wall

* On basis of the above, can change state and:
— 1. Move forward one square
— 2. Move backwards one square
— 3. Turn in place 90 degrees to the left
— 4. Turn in place 90 degrees to the right

e If lands on a square with food, it eats it
e Genetic strings: 16 X 4 X (2 + 4) = 384 bits
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Demonstration of GA:
Eaters Seeking Food

http://math.hws.edu/eck/js/genetic-algorithm/GA .html
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http://math.hws.edu/eck/js/genetic-algorithm/GA.html

Morphology Project
by Michael “Flux” Chang

e Senior Independent Study project at UCLA

— users.design.ucla.edu/~mflux/morphology

e Researched and programmed 1n 10 weeks

 Programmed in Processing language

— WWW.pProcessing.org
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http://users.design.ucla.edu/~mflux/morphology
http://www.processing.org

Genotype = Phenotype

e Cells are “grown,” not specified individually

e Each gene specifies information such as:
— angle
— distance
— type of cell
— how many times to replicate

— following gene
e Cells connected by “springs™

 Run phenome:

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/phenome>
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http://users.design.ucla.edu/~mflux/morphology/gallery/sketches/phenome

Complete Creature

Neural nets for control (blue)

— Integrate-and-fire neurons

Muscles (red)

— Decrease “spring length” when fire

Sensors (green)

— fire when exposed to “light”

Structural elements (grey)

— anchor other cells together

Creature embedded in a fluid

Run <users.design.ucla.edu/~mflux/morphology/gallery/sketches/creature>
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http://users.design.ucla.edu/~mflux/morphology/gallery/sketches/creature

Effects of Mutation

e Neural nets for control (blue)
e Muscles (red)

e Sensors (green)

e Structural elements (grey)

e Creature embedded 1n a fluid

e Run

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturepack>
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http://users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturepack

Evolution

e Population: 150-200

e Nonviable & nonre-
sponsive creatures
eliminated

* Fitness based on speed
or light-following

* 30% of new pop. are
mutated copies of best

* 70% are random

e No crossover
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Gallery of Evolved Creatures

e Selected for speed of movement

e Run

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturegallery>
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http://users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturegallery
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Example: Circle Swimmer
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Example: Slug
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Karl Sims’ Evolved Creatures

3/31/20

26



3/31/20

Why Does the GA Work?

The Schema Theorem
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Schemata

A schema 1s a description of certain patterns
of bits 1n a genetic string

110000 o S|
**"“*k
111010 > 11 %0 %= :/110010
110*10 .
gk a string
a sc belongs to
110001 describes 110010 many schemata

many strings
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The Fitness of Schemata

* The schemata are the building blocks of
solutions

* We would like to know the average fitness
of all possible strings belonging to a schema

* We cannot, but the strings 1n a population
that belong to a schema give an estimate of
the fitness of that schema

e Each string in a population 1s giving
information about all the schemata to which
it belongs (implicit parallelism)
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Effect of Selection

Let n = size of population

Let m(S,t) = number of instances of schema S at time ¢

String i gets picked with probability E f

Let f (S ) = avg fitness of instances of S at time ¢

J(S)

2,/

So expected m(S,z +1) = m(S,7)- n F
Ejfj . m(S,t + 1) = m(S,t)M
n e,
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Exponential Growth

e We have discovered:
m(S, t+1) =m(S, 1) - AS) / fo

* Suppose f(S) = f,, (1 +¢)
e Then m(S, 1) = m(S, 0) (1 + ¢

e That 1s, exponential growth in above-

average schemata
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Effect of Crossover wrl L QR

Rorelird

e Let A = length of genetic strings

e Let 0(S) = defining length of schema §

e Probability {crossover destroys S}:
pa=0(S)/(A-1)

e Let p. = probability of crossover

* Probability schema survives:

4(S)
>]l-p —=
pS pC)L_l
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Selection & Crossover Together
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1-p.

5($)

Aeils
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Effect of Mutation

e Let p,, = probability of mutation
e So 1 — p,, = probability an allele survives
e Let o(S) = number of fixed positions in S

* The probability they all survive 1s

P gD
e Ifp. K 1,(1-p)D=1-0(S)p,,

3/31/20
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Schema Theorem:
“Fundamental Theorem of GAS™

m(S,t+ 1) > m(S,t)@ 1-p,

o(S S
Note: (1= pc52) (1= 0(S)pm) = 1 = pe5n — 0(S)pm
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The Bandit Problem

e Two-armed bandit:

— random payoffs with (unknown) means m,, m,
and variances ¢,°, 0,2

— optimal strategy: allocate exponentially greater
number of trials to apparently better lever

e k-armed bandit: similar analysis applies

e Analogous to allocation of population to
schemata

 Suggests GA may allocate trials optimally
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Goldberg’s Analysis of
Competent & Efficient GAs
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Paradox of GAs

e Individually uninteresting operators:

— selection, recombination, mutation

e Selection + mutation = continual °§
improvement '§

e Selection + recombination = 1nnovation §
— fundamental to invention: 5
generation vs. evaluation S

e Fundamental intuition of GAs: the three
work well together
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Race Between Selection &
Innovation: Takeover Time

o Takeover time ¢ = average time for most fit
to take over population

e Transaction selection: population replaced
by s copies of top 1/s

e s quantifies selective pressure

e Estimater =<Inn/Ins
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Innovation Time

e Innovation time ¢, = average time to get a
better individual through crossover &
mutation

e Let p, = probability a single crossover
produces a better individual

 Number of individuals undergoing
Crossover = p. n

 Number of probable improvements = p, p. n
 Estimate: .= 1/ (p. p, n)
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Steady State Innovation

e Bad: " < ¢,

— because once you have takeover, crossover
does no good

e Good: . <t

— because each time a better individual is
produced, the " clock resets

— Steady state innovation

e Innovation number:

*

t ninn

Iv=_=pcpi
v

1

> ]

Ins
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Feasible Region
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Other Algorithms Inspired by
Genetics and Evolution

e Evolutionary Programming

— natural representation, no crossover, time-varying
continuous mutation

e Evolutionary Strategies
— similar, but with a kind of recombination
e Genetic Programming
— like GA, but program trees instead of strings

e (Classifier Systems
— GA + rules + bids/payments

e and many variants & combinations...
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