Computer Science 420/594
Complex Systems and Self-Organization
Fall semester, 2002

Genetic Algorithms*

Motivation

The Genetic Algorithm (GA) is a search algorithm that is similar to depth-first
search or to hill climbing, but it differs from the traditional search methods in that
it is probabilistic and context insensitive. Only small changes are needed when
using GA on different problems. For example, only the fitness function is modified
when using a GA to solve a Traveling Salesman Problem (TSP) and to find a
tic-tac-toe playing strategy.

Let s be a string. An important part of a GA is the fitness function F'(s). The
input to the function is a binary string and the output is a number. F(s) gives the
GA feedback about its performance. For example, if the GA is asked to search for a
date, F'(s) may pass back the difference between the actual date and the answer
returned by the GA. The GA’s answer is expected to improve as this process
repeats.

Imagine the GA as a box and you are looking for a solution to some problem
requiring search. As the box outputs an answer, you (acting as the fitness function)
evaluate the merit of the solution by writing the merit value on paper and pass it
back into the box. For many problems, even though the box does not have any
contextual information about the problem it is working on, the box will produce
solutions that are close to the optimal solution. One constraint when using GA is
that you need to code possible answers as binary strings. For example, with a
16-city TSP problem, you could encode the solution as a string with 64 bits, with
every 4 bits representing a city. Let C; be city number j. A tour such as

[C7,C19,Cs, ..., Cs]

can be represented by
(011111000011 ...1000]

The fitness function should decode the binary string and return the cost of the tour.
For the date problem, you could encode the date as a 20-bit string where the first 4
bits are the month, the next 5 bits are the date, and the rest of bits are the year.
There are many ways to encode GA solutions, and choice of coding is a factor that
affects a GA’s performance.

Description of Simple Genetic Algorithm (SGA)

Every genetic algorithm has a population of strings where each is a potential
solution to the problem. There are 3 probabilistic operators on these strings:
selection, crossover, and mutation. Let P; be the population at ith generation, S(P)
be the selection operator, C(s;, s;) be the crossover operator, M(s;) be the mutation
operator, and V(P) be the convergence operator. The algorithm for the SGA is

! Adapted by B. MacLennan from a handout prepared by D. Mutchler.

Py < random population
For generation =0 do
Compute the next generation P;;; from P;
For every s € P;, calculate F\(s)
While P;;; is not full
sj < S(Py)
Sk S()
s;, Sk C(sj, sk)
s <= M(s;)
Sk M(Sk)
Add s; and si to Pis1
Until V(Piy1) is true

W WwwwwwihdNh e ==

Below is an explanation of the pseudo code. Let ¢ be the string length, m be the
mutation rate, and ¢ be the crossover rate (the rates are real numbers in [0, 1]).

e Py: Form the initial population randomly. For example, if £ is 30 and |P| is
20, one can generate Py by using 20 x 30 = 600 random binary values
(perhaps from flipping a coin 600 times) and group the values into strings.

e ['(s): This is the fitness function.

e S(P): The selection operator randomly picks a string from P; with the
probability of selecting s; as
F(s:)
P
E‘]:u F (Sj)

where the denominator is the total population fitness of P.

e M(s): For each bit of s, the mutation operator flips that bit with probability
m.

e C(si,s;): With probability ¢, the crossover operator will select a random
crossover point in [1...¢ — 1] and exchange the tail portions of s; and s;. For
example, if s, =11111111 and s; =00000000 are crossed at position 3, the
result is s; =11100000 and s; =00011111.

e Convergence: Let s® be the ith bit of s (it can be either a 0 or a 1), 7 be the

convergence rate and
P

i — s"
%= mz

be the sum of the ith bits of all the strings in the population. The population
has converged if the convergence operator

¢
VP = A (n=rVrn<-n)
i=1
is true. The A and V are logical AND and logical OR operators. In words, the
population has converged when the ith-bit of all strings are either mostly 1s or
mostly 0s, for all bit positions.

