CS 420/594: Complex Systems & Self-Organization
Project 1: “Edge of Chaos” in 1D Cellular Automata
Due: Sept. 15

Introduction

In this project you will explore “Edge of Chaos” phenomena (Wolfram class IV
behavior) in 1D cellular automata. You will do this by systematically modifying
randomly generated transition tables and observing the lambda and entropy values
associated with phase changes in the behavior of the automata.

Experimental Setup

Simulators

You will be using the ca simulator provided with Flake’s Computational Beauty of
Nature. There are several different versions that you can use; it’s up to you.

e Java version. You can execute this directly from the CBN website
<http://mitpress.mit.edu/books/FLLAOH/cbnhtml/java.html>. There is also a
local copy of the jar file (~mclennan/pub/420-594/CBN/cbn-java.jar or
<http://www.cs.utk.edu/~mclennan/Classes/420/experiments/CBN/cbn-java.jar>),
which you can copy to your own computer to use offline.

* Unix version. Runs on SunOS. You can get it from the CBN website
<http://mitpress.mit.edu/books/FLLAOH/cbnhtml/download.htmI> or locally
(<~mclennan/pub/420-594/CBN/cbn/code/bin/ca>,
<http://www.cs.utk.edu/~mclennan/Classes/420/experiments/CBN/cbn/code/bin>).
You may want to copy the ca program into your own directory.

* Mac version. Runs under Mac OS 9/X. You can get it from the CBN website
<http://mitpress.mit.edu/books/FLLAOH/cbnhtml/download.htmlI>.

* Windows version. You can get it from the CBN website
<http://mitpress.mit.edu/books/FLLAOH/cbnhtml/download.html>.

As I'said, it’s up to you which you use. The Java version has a nice graphical
interface; the others have a command-line interface, as described in the book (p. 256, but
note some changes as described in the Errata). You will probably be doing some cutting
and pasting of rule strings between the simulator and your A-H calculator (see below), so
you will have to find a way of doing the experiments that is not too tedious. You might
want to write a shell script to automate some of the procedure. (Note that the command-
line versions have a —~help option.)

Table-walk-through Procedure

As explained in class, we cannot simply allow the simulator to pick a random rule
string with a certain A value, since there is too much variability between unrelated rule
strings. Therefore we will use Chris Langton’s table-walk-through method, which
involves generating a series of rule strings differing only in the number of quiescent
entries. The following describes an operational procedure.

Pick a random seed and record it. See the last page of this handout for a form that you
can use for recording your experiments; for your convenience, a blank form is available
online:
<http://www.cs.utk.edu/~mclennan/Classes/420/handouts/Experiment-Record-1.doc>.

Each experiment is conducted on a random rule string. The easiest way to get this is
to set Lambda=1.0 in the ca simulator, and let it generate a random rule string. (You can
also generate one yourself by picking 13 random integers in the range 1 to 4; we exclude
the quiescent state.) If you have ca generate the string, you may have to replace one or
more zeroes by digits in the range 1-4. Make sure to record your random rule string.

You will now decimate your rule string by zeroing one entry at a time. For your
original rule string and for each of the decimated rule strings you will compute a A and an
H value. Whether you compute them as you go along or do them all at then end is up to
you; which is easier will probably depend on the cutting-and-pasting or other
experimental procedure that you have selected. You will also observe and record the
behavior (I, II, III, or IV) of the original string and each of its decimations.

For each decimation, randomly select one of the non-zero entries in the rule string and
set it to zero. Observe the behavior of the resulting CA and record it. Note: if you are
using the Java version of the simulator, make sure you set Lambda=-1 (or any negative
value) before you enter your decimated string, or it will ignore your string and regenerate
the undecimated string!

A and Entropy Calculations

The A and entropy values are defined over the complete transition table, which has
T =K" (for N =2r+1) entries. However, we have an abbreviated rule-string, of length
(K - l)N + 1, which gives the new state R, for the sum k of the neighborhood states; in

most cases there are multiple configurations having the same sum.

Therefore, let C, be the number of neighborhood configurations having the sum k. For
K=5 and r=1, C, is given by the following table:

k 0 1 2 3 4 5 6 7 8 9 10 | 11 12

C, 1 3 6 10 | 15 | 18 | 19 | 18 | 15 | 10 6 3 1

Define n_to be the number of configurations leading to state s:

where R, is the k" character (counting from 0) of the rule string. That is, n_ is the total
number of configurations that are mapped into state s by the rule string. The probability

of a new state in the complete transition table is given by p =n /T. Then Langton’s A is

defined:
_ T - n, _ n / _
A= T =1- OT =1-p,.
The entropy of the complete transition table is defined:

H=-Yplgp,.

where 1g x is the logarithm of x to the base 2. (Note that 01g0 =0, which you will have
to handle as a special case since 1g0=- .)

Since you will be computing the A and H values for each rule string, you will have to
use a program to do it. This is not an important part of the project, so you can do it in any
way convenient. You can implement your own program, or several (or all) of you can get
together and share a program. Also, some versions of the ca program will compute A (but
not H) for you. If you know LISP, you can use my program:
<~mclennan/pub/420-594/entropy.lsp> or
<http://www.cs.utk.edu/~mclennan/Classes/420/experiments/entropy.lsp>.

Writeup

Calculations

Compute the average and standard deviation of the A and entropy values for all
simulation instances that exhibit class IV behavior. Which (A or H) seems to be a more
reliable indicator of class IV behavior?

Graphs

Make two graphs, one of behavior vs. A, the other of behavior vs. H. That is, use A for
the abscissa (x-axis) of one graph and H for the abscissa of the other. For the ordinate (y-
axis) of both graphs, use the following numerical values to indicate qualitative behavior:
0 for classes I and II, 1 for class IV, and 2 for class III. Each of your graphs should show
all of your experiments as separate curves; try to use colors or other ways of making the
curves distinguishable.

Discussion

Draw some conclusions about the range of values of A and H that lead to calls IV
behavior. Note any anomalies. Did you ever observe class I or II behavior at high A and
H values? Did you ever observe complex (IV) or chaotic (III) behavior at A or H values
that were otherwise in the simple (I, IT) region? How do you explain these anomalies?

Experiment Record: 1D CA “Edge of Chaos”

Your Name: __ Bruce MacLennan

simulator: [_]java, []unix, [] mac,[]| windows, [] other:
K (states) = 5. r (radius) = 1
initial state (init) = _ -1

wrap: [V] sq: []

random seed = __ 100 . Experiment Number: __ 1

Random Rule String:
3 2 3 2 4 1 1 2 3 4 1 1 2
0 1 2 3 4 5 6 7 8 9 10 11 12

Table Walk-through:

Step Entry Class A H Observations
Zeroed
0 — III 1.000 1.940
1 3 III 0.920 2.169
2 8 III 0.800 2.133
3 9 III 0.720 2.086
4 6 0.568 2.042 | looks like about to-become periodic
5 1 II 0.544 2.007
6 2 II 0.496 1.812
7 12 II 0.488 1.797
8 4 II 0.368 1.354
9 10 II 0.320 1.269
10 0 I 0.312 1.206 | dies very quickly from here on down
11 11 I 0.288 1.154
12 7 I 0.144 0.595
13 5 I 0.000 0.000

