

Assumptions

- Periodic boundary conditions

 no special place
- Strong quiescence:
 - if all the states in the neighborhood are the same, then the new state will be the same
 persistence of uniformity
- Spatial isotropy:
 - all rotations of neighborhood state result in same new state
 - no special direction
- Totalistic [not used by Langton]:
 - depend only on sum of states in neighborhoodimplies spatial isotropy
- 8/27/04

Langton's Lambda

- Designate one state to be quiescent state
- Let K = number of states
- Let N = 2r + 1 = area of neighborhood
- Let $T = K^N$ = number of entries in table
- Let n_q = number mapping to quiescent state

$$\lambda = \frac{T - n_q}{T}$$

8/27/04

3

• Then

Class IV Shows Some of the Characteristics of Computation

- Persistent, but not perpetual storage
- Terminating cyclic activity
- Global transfer of control/information

8/27/04

Entropy of Transition Rules	
• Among other things, a way to measure the uniformity of a distribution	
$H = -\sum_{i} p_{i} \lg p_{i}$	
• Distinction of quiescent state is arbitrary	
• Let n_k = number mapping into state k	
• Then $p_k = n_k / T$	
$H = \lg T - \frac{1}{T} \sum_{k=1}^{K} n_k \lg n_k$	
8/27/04	32

Maximum and Minimum Entropy

- Maximum entropy is achieved when all signals are equally likely No ability to guess; maximum surprise
- Minimum entropy occurs when one symbol is certain and the others are impossible

