

Adaptive Significance

- Selects most profitable from array of food sources
- Selects shortest route to it
- longer paths abandoned within 1-2 hours
- Adjusts amount of exploration to quality of identified sources
- Collective decision making can be as accurate and effective as some vertebrate individuals

Observations on Trail Formation

- Two equal-length paths presented at same time: ants choose one at random
- Sometimes the longer path is initially chosen
- Ants may remain "trapped" on longer path, once established
- Or to a lower quality source, if it's discovered first
- But there may be advantages to sticking to paths - easier to follow
- easier to protect trail \& source
- safer

9/28/04

Process of Trail Formation

1. Trail laying
2. Trail following

Trail Laying

- On discovering food, forager lays chemical trail while returning to nest
- only ants who have found food deposit pheromone
- Others stimulated to leave nest by:
- the trail
- the recruitor exciting nestmates (sometimes)
- In addition to defining trail, pheromone:
- serves as general orientation signal for ants outside nest
- serves as arousal signal for ants inside

9/28/04

Additional Complexities

- Some ants begin marking on return from discovering food
- Others on their first return trip to food
- Others not at all, or variable behavior
- Probability of trail laying decreases with number of trips

Frequency of Trail Marking

- Ants modulate frequency of trail marking
- May reflect quality of source
- hence more exploration if source is poor
- May reflect orientation to nest
- ants keep track of general direction to nest
- and of general direction to food source
- trail laying is less intense if the angle to homeward direction is large

Trail Following

- Ants preferentially follow stronger of two trails
- show no preference for path they used previously
- Ant may double back, because of:
- decrease of pheromone concentration
- unattractive orientation

Probability of Choosing One of Two Branches

- Let C_{L} and C_{R} be units of pheromone deposited on left \& right branches
- Let P_{L} and P_{R} be probabilities of choosing them
- Then:

$$
P_{\mathrm{L}}=\frac{\left(C_{\mathrm{L}}+6\right)^{2}}{\left(C_{\mathrm{L}}+6\right)^{2}+\left(C_{\mathrm{R}}+6\right)^{2}}
$$

- Nonlinearity amplifies probability 9/28/04 9

Additional Adaptations

- If a source is crowded, ants may return to nest or explore for other sources
- New food sources are preferred if they are near to existing sources
- Foraging trails may rotate systematically around a nest

Pheromone Evaporation

- Trails can persist from several hours to several months
- Pheromone has mean lifetime of 30-60 min.
- But remains detectable for many times this
- Long persistence of pheromone prevents switching to shorter trail
- Artificial ant colony systems rely more heavily on evaporation

Environment

- Nest emits nest-scent, which
- diffuses uniformly
- decays slowly
- provides general orientation signal
- by diffusing around barriers, shows possible paths around barriers
- Trail pheromone
- emitted by ants carrying food
- diffuses uniformly
- decays quickly
- Food detected only by contact

Resnick Ant Behavior

1. Looking for food:
if trail pheromone weak then wander
else move toward increasing concentration
2. Acquiring food: if at food then
pick it up, turn around, \& begin depositing pheromone
3. Returning to nest:
deposit pheromone \& decrease amount available
move toward increasing nest-scent
4. Depositing food:
if at nest then
deposit food, stop depositing pheromone, \& turn around
5. Repeat forever

9/2804

