

- · States of neurons as yes/no decisions
- Weights represent *soft constraints* between decisions
 - hard constraints must be respected
 - soft constraints have degrees of importance
- Decisions change to better respect constraints

11/5/04

• Is there an optimal set of decisions that best respects all constraints?

Convergence

- Does such a system converge to a stable state?
- Under what conditions does it converge?
- There is a sense in which each step relaxes the "tension" in the system
- But could a relaxation of one neuron lead to greater tension in other places?

11/5/04

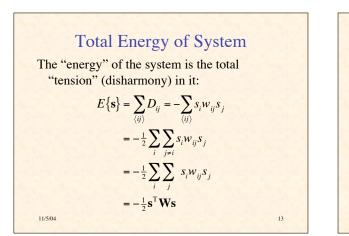
Quantifying "Tension"

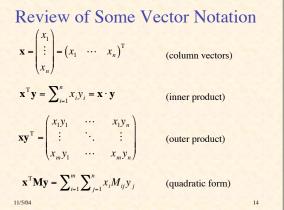
- If $w_{ij} > 0$, then s_i and s_j want to have the same sign $(s_i s_j = +1)$
- If $w_{ij} < 0$, then s_i and s_j want to have opposite signs $(s_i s_j = -1)$
- If $w_{ij} = 0$, their signs are independent
- Strength of interaction varies with $|w_{ij}|$
- Define disharmony ("tension") D_{ij} between neurons *i* and *j*:
 - $D_{ij} = -s_i w_{ij} s_j$ $D_{ij} < 0 \implies \text{they are happy}$
 - $D_{ij} > 0 \implies$ they are unhappy $D_{ij} > 0 \implies$ they are unhappy

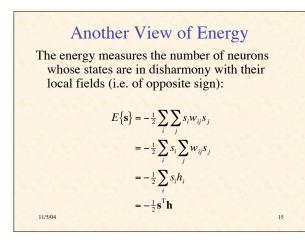
11/5/04

11

12







Do State Changes Decrease Energy?

• Suppose that neuron k changes state

• Change of energy:

$$\Delta E = E\{s'\} - E\{s\}$$

$$= -\sum_{\langle ij \rangle} s'_i w_{ij} s'_j + \sum_{\langle ij \rangle} s_i w_{ij} s_j$$

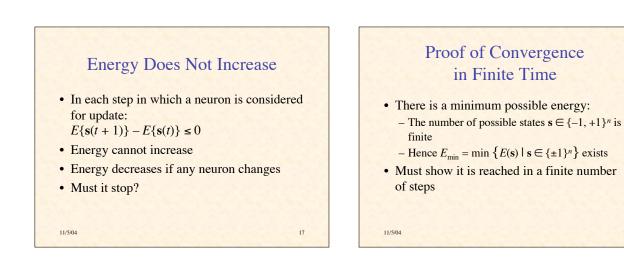
$$= -\sum_{j \neq k} s'_k w_{kj} s_j + \sum_{j \neq k} s_k w_{kj} s_j$$

$$= -(s'_k - s_k) \sum_{j \neq k} w_{kj} s_j$$

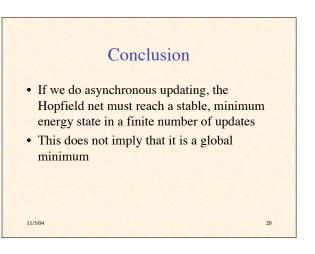
$$= -\Delta s_k h_k$$

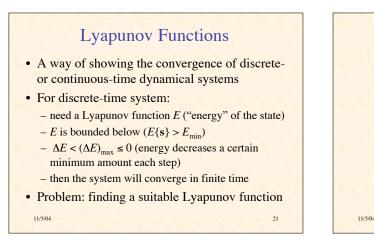
$$< 0$$
11/504
16

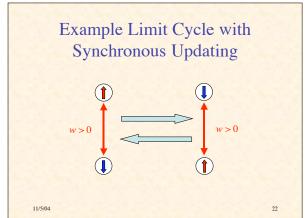
18



Steps are of a Certain Minimum Size If $h_k > 0$, then (let $h_{\min} = \min$ of possible positive h) $h_k \ge \min\left\{h\left|h = \sum_{j \neq k} w_{kj}s_j \land \mathbf{s} \in \{\pm \mathbf{1}\}^n \land h > 0\right\} =_{df} h_{\min}\right\}$ $\Delta E = -\Delta s_k h_k = -2h_k \le -2h_{\min}$ If $h_k < 0$, then (let h_{\max} = max of possible negative h) $h_k \ge \max\left\{h\left|h = \sum_{j \neq k} w_{kj}s_j \land \mathbf{s} \in \{\pm \mathbf{1}\}^n \land h < 0\right\} =_{df} h_{\max}\right\}$ $\Delta E = -\Delta s_k h_k = 2h_k \le 2h_{\max}$







The Hopfield Energy Function is Even

- A function *f* is odd if *f*(-*x*) = -*f*(*x*), for all *x*
- A function *f* is **even** if f(-x) = f(x), for all *x*
- Observe:

11/5/04

$$E\{-\mathbf{s}\} = -\frac{1}{2}(-\mathbf{s})^{\mathrm{T}}\mathbf{W}(-\mathbf{s}) = -\frac{1}{2}\mathbf{s}^{\mathrm{T}}\mathbf{W}\mathbf{s} = E\{\mathbf{s}\}$$

