

Applications of Hopfield Memory

- Pattern restoration
- Pattern completion
- Pattern generalization
- Pattern association

Hopfield Net for Optimization and for Associative Memory

- For optimization:
- we know the weights (couplings)
- we want to know the minima (solutions)
- For associative memory:
- we know the minima (retrieval states)
- we want to know the weights

Demonstration of Hopfield Net

Run Hopfield Demo

11/8/04
20

Hebb's Rule

"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased."
-Donald Hebb (The Organization of Behavior, 1949, p. 62)

Example of Hebbian Learning:

 Pattern Imprinted

Example of Hebbian Learning:
Partial Pattern Reconstruction

23

Mathematical Model of Hebbian

Learning for One Pattern
Let $W_{i j}=\left\{\begin{array}{cc}x_{i} x_{j}, & \text { if } i \neq j \\ 0, & \text { if } i=j\end{array}\right.$
Since $x_{i} x_{i}=x_{i}^{2}=1, \quad \mathbf{W}=\mathbf{x x}{ }^{\mathrm{T}}-\mathbf{I}$
For simplicity, we will include self-coupling:

$$
\mathbf{W}=\mathbf{x x}^{\mathrm{T}}
$$

A Single Imprinted Pattern is a Stable State

- Suppose $\mathbf{W}=\mathbf{x x}^{\mathrm{T}}$
- Then $\mathbf{h}=\mathbf{W} \mathbf{x}=\mathbf{x x}^{\mathrm{T}} \mathbf{x}=n \mathbf{x}$
since

$$
\mathbf{x}^{\mathrm{T}} \mathbf{x}=\sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n}(\pm \mathbf{1})^{2}=n
$$

- Hence, if initial state is $\mathbf{s}=\mathbf{x}$, then new state is $\mathbf{s}^{\prime}=\operatorname{sgn}(n \mathbf{x})=\mathbf{x}$
- May be other stable states (e.g., $-\mathbf{x}$)

Questions

- How big is the basin of attraction of the imprinted pattern?
- How many patterns can be imprinted?
- Are there unneeded spurious stable states?
- These issues will be addressed in the context of multiple imprinted patterns

Definition of Covariance

Consider samples $\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right), \ldots,\left(x^{N}, y^{N}\right)$
Let $\bar{x}=\left\langle x^{k}\right\rangle$ and $\bar{y}=\left\langle y^{k}\right\rangle$
Covariance of x and y values:

$$
\begin{aligned}
C_{x y} & =\left\langle\left(x^{k}-\bar{x}\right)\left(y^{k}-\bar{y}\right)\right\rangle \\
& =\left\langle x^{k} y^{k}-\bar{x} y^{k}-x^{k} \bar{y}+\bar{x} \cdot \bar{y}\right\rangle \\
& =\left\langle x^{k} y^{k}\right\rangle-\bar{x}\left\langle y^{k}\right\rangle-\left\langle x^{k}\right\rangle \bar{y}+\bar{x} \cdot \bar{y} \\
& =\left\langle x^{k} y^{k}\right\rangle-\bar{x} \cdot \bar{y}-\bar{x} \cdot \bar{y}+\bar{x} \cdot \bar{y} \\
C_{x y} & =\left\langle x^{k} y^{k}\right\rangle-\bar{x} \cdot \bar{y}
\end{aligned}
$$

Weights \& the Covariance Matrix

Sample pattern vectors: $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{p}$
Covariance of i^{h} and $j^{\text {th }}$ components:

$$
C_{i j}=\left\langle x_{i}^{k} x_{j}^{k}\right\rangle-\overline{x_{i}} \cdot \overline{x_{j}}
$$

If $\forall i: \bar{x}_{i}=0$ (± 1 equally likely in all positions):

$$
\begin{aligned}
& C_{i j}=\left\langle x_{i}^{k} x_{j}^{k}\right\rangle=\frac{1}{p} \sum_{k=1}^{p} x_{i}^{k} y_{j}^{k} \\
& \therefore \mathbf{W}=\frac{p}{n} \mathbf{C}
\end{aligned}
$$

\qquad \square

Characteristics

 of Hopfield Memory- Distributed ("holographic")
- every pattern is stored in every location (weight)
- Robust
- correct retrieval in spite of noise or error in patterns
- correct operation in spite of considerable weight damage or noise

Stability of Imprinted Memories

- Suppose the state is one of the imprinted patterns \mathbf{x}^{m}
- Then: $\mathbf{h}=\mathbf{W} \mathbf{x}^{m}=\left[\frac{1}{n} \sum_{k} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}}\right] \mathbf{x}^{m}$

$$
=\frac{1}{n} \sum_{k} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}} \mathbf{x}^{m}
$$

$$
=\frac{1}{n} \mathbf{x}^{m}\left(\mathbf{x}^{m}\right)^{\mathrm{T}} \mathbf{x}^{m}+\frac{1}{n} \sum_{k \neq m} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}} \mathbf{x}^{m}
$$

$$
=\mathbf{x}^{m}+\frac{1}{n} \sum_{k \neq m}\left(\mathbf{x}^{k} \cdot \mathbf{x}^{m}\right) \mathbf{x}^{k}
$$

11/8/04

Interpretation of Inner Products

- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}=n$ if they are identical - highly correlated
- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}=-n$ if they are complementary - highly correlated (reversed)
- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}=0$ if they are orthogonal - largely uncorrelated
- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}$ measures the crosstalk between patterns k and m

