Conditions for Stability

Stability of entire pattern:

$$
\mathbf{x}^{m}=\operatorname{sgn}\left(\mathbf{x}^{m}+\frac{1}{n} \sum_{k \neq m} \mathbf{x}^{k} \cos \theta_{k m}\right)
$$

Stability of a single bit :

$$
x_{i}^{m}=\operatorname{sgn}\left(x_{i}^{m}+\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m}\right)
$$

Sufficient Conditions for Instability (Case 1)

Suppose $x_{i}^{m}=-1$. Then unstable if :

$$
\begin{aligned}
(-1)+\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m}>0 \\
\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m}>1
\end{aligned}
$$

11/10/04

Sufficient Conditions for

 Stability$$
\left|\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m}\right| \leq 1
$$

The crosstalk with the sought pattern must be sufficiently small

11/10/04

Capacity of Hopfield Memory

- Depends on the patterns imprinted
- If orthogonal, $p_{\max }=n$
- but every state is stable \Rightarrow trivial basins
- So $p_{\text {max }}<n$
- Let load parameter $\alpha=p / n$

Approximation of Probability

Let crosstalk $C_{i}^{m}=\frac{1}{n} \sum_{k \neq m} x_{i}^{k}\left(\mathbf{x}^{k} \cdot \mathbf{x}^{m}\right)$
We want $\operatorname{Pr}\left\{C_{i}^{m}>1\right\}=\operatorname{Pr}\left\{n C_{i}^{m}>n\right\}$
Note: $n C_{i}^{m}=\sum_{\substack{k=1 \\ k \neq m}}^{p} \sum_{j=1}^{n} x_{i}^{k} x_{j}^{k} x_{j}^{m}$ A sum of $n(p-1) \approx n p$ random ± 1

Variance $\sigma^{2}=n p$
11/10/04 7

Single Bit Stability Analysis

- For simplicity, suppose \mathbf{x}^{k} are random
- Then $\mathbf{x}^{k} \cdot \mathbf{x}^{m}$ are sums of n random ± 1
- binomial distribution \approx Gaussian
- in range $-n, \ldots,+n$
- with mean $\mu=0$
- and variance $\sigma^{2}=n$

$$
\text { - Probability sum }>t: \quad \frac{1}{2}\left[1-\operatorname{erf}\left(\frac{t}{\sqrt{2 n}}\right)\right]
$$

[See "Review of Gaussian (Normal) Distributions" on course website] 11/10/04

Tabulated Probability of Single-Bit Instability	
$\qquad$$P_{\text {error }}$	α
0.1%	0.105
0.36%	0.138
1%	0.185
10%	0.37
(table from Hertz \& al. Intr. Theory Neur. Comp.)	

Spurious Attractors

- Mixture states:
- sums or differences of odd numbers of retrieval states
- number increases combinatorially with p
- shallower, smaller basins
- basins of mixtures swamp basins of retrieval states \Rightarrow overload
- useful as combinatorial generalizations?
- self-coupling generates spurious attractors
- Spin-glass states:
- not correlated with any finite number of imprinted patterns
- occur beyond overload because weights effectively random

11/10/04

Fraction of Unstable Imprints

11/10/04
(fig from Bar-Yam)
12
Number of stable Imprints

| Number of monprints with Basins |
| :---: | :---: | :---: | :---: |
| of indicated size $(n=100)$ |

Summary of Capacity Results

- Absolute limit: $p_{\max }<\alpha_{c} n=0.138 n$
- If a small number of errors in each pattern permitted: $p_{\text {max }} \propto n$
- If all or most patterns must be recalled perfectly: $p_{\text {max }} \propto n / \log n$
- Recall: all this analysis is based on random patterns
- Unrealistic, but sometimes can be arranged

Stochastic Neural Networks

(in particular, the stochastic Hopfield network)

11/10/04
16

