Reading

- CS 420/594: Read Flake, ch. 22 (Neural Networks and Learning)
- CS 594: Read Bar-Yam, sec. 2.3 (Feedforward Networks)

11/21/04

• Developed by John Holland in '60s

Genetic Algorithms

- Did not become popular until late '80s
- · A simplified model of genetics and evolution by natural selection
- · Most widely applied to optimization problems (maximize "fitness")

11/21/04

Assumptions

- Existence of fitness function to quantify merit of potential solutions
 - this "fitness" is what the GA will maximize
- A mapping from bit-strings to potential
 - best if each possible string generates a legal potential solution
 - choice of mapping is important
 - can use strings over other finite alphabets

Outline of Simplified GA

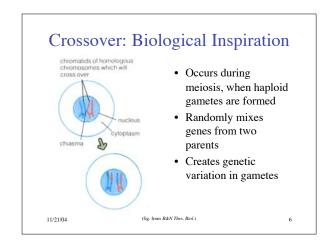
- 1. Random initial population P(0)
- 2. Repeat for $t = 0, ..., t_{\text{max}}$ or until converges:
 - a) create empty population P(t + 1)
 - b) repeat until P(t + 1) is full:
 - 1) select two individuals from P(t) based on fitness
 - 2) optionally mate & replace with offspring
 - 3) optionally mutate offspring
 - 4) add two individuals to P(t+1)

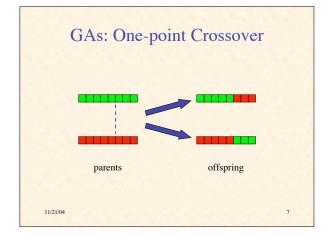
Fitness-Biased Selection

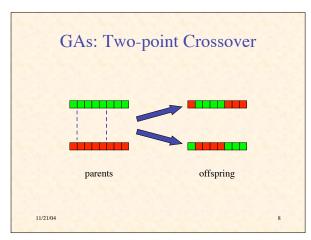
- Want the more "fit" to be more likely to reproduce
 - always selecting the best⇒ premature convergence
 - probabilistic selection ⇒ better exploration
- Roulette-wheel selection: probability ∝ relative fitness:

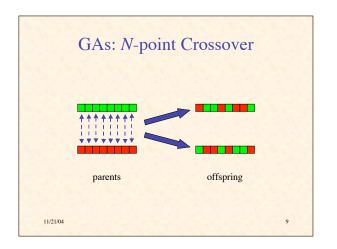
$$\Pr\{i \text{ mates}\} = \frac{f_i}{\sum_{j=1}^n f_j}$$

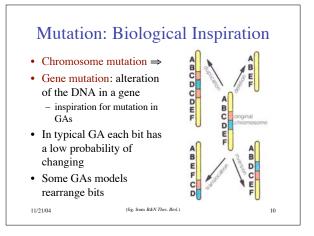
11/21/04

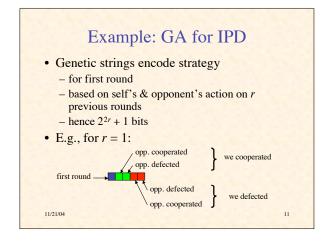


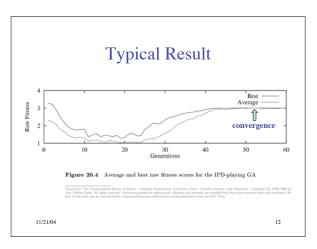












The Red Queen Hypothesis

"Now, here, you see, it takes all the running you can do, to keep in the same place." — Through the Looking-Glass and What Alice Found There

- Observation: a species probability of extinction is independent of time it has existed
- Hypothesis: species continually adapt to each other
- Extinction occurs with insufficient variability for further adaptation

21/04

Why Does the GA Work?

The Schema Theorem

11/21/04 14

Schemata A schema is a description of certain patterns of bits in a genetic string 110000 **0*1* 11*0** 111010 110010 110*10 a string a schema belongs to 110010 describes many schemata many strings

The Fitness of Schemata

- The schemata are the building blocks of solutions
- We would like to know the average fitness of all possible strings belonging to a schema
- We cannot, but the strings in a population that belong to a schema give an estimate of the fitness of that schema
- Each string in a population is giving information about all the schemata to which it belongs (implicit parallelism)

11/21/04 16

Effect of Selection

Let n = size of population

Let m(S,t) = number of instances of schema S at time t

String i gets picked with probability $\frac{f_i}{\sum_j f_j}$

Let f(S) = avg fitness of instances of S at time t

So expected $m(S, t+1) = m(S, t) \cdot n \cdot \frac{f(S)}{\sum_{i} f_{i}}$

Since
$$f_{av} = \frac{\sum_{j} f_{j}}{n}$$
, $m(S, t+1) = m(S, t) \frac{f(S)}{f_{av}}$

Exponential Growth

- We have discovered: $m(S, t+1) = m(S, t) \cdot f(S) / f_{av}$
- Suppose $f(S) = f_{av} (1 + c)$
- Then $m(S, t) = m(S, 0) (1 + c)^t$
- That is, exponential growth in aboveaverage schemata

11/21/04

18

Effect of Crossover

1 ... 0* ←δ→

- Let λ = length of genetic strings
- Let $\delta(S)$ = defining length of schema S
- Probability {crossover destroys *S*}: $p_d \le \delta(S) / (\lambda 1)$
- Let p_c = probability of crossover
- Probability schema survives:

$$p_{\rm s} \ge 1 - p_{\rm c} \frac{\delta(S)}{\lambda - 1}$$

11/21/0

19

Selection & Crossover Together

$$m(S,t+1) \ge m(S,t) \frac{f(S)}{f_{av}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} \right]$$

11/21/04

20

Effect of Mutation

- Let $p_{\rm m}$ = probability of mutation
- So $1 p_{\rm m}$ = probability an allele survives
- Let o(S) = number of fixed positions in S
- The probability they all survive is $(1 p_{\rm m})^{o(S)}$
- If $p_{\rm m} << 1$, $(1 p_{\rm m})^{o(S)} \approx 1 o(S) p_{\rm m}$

/04

Schema Theorem: "Fundamental Theorem of GAs"

$$m(S,t+1) \ge m(S,t) \frac{f(S)}{f_{\text{av}}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} - o(S) p_m \right]$$

11/21/04 22

The Bandit Problem

- Two-armed bandit:
 - random payoffs with (unknown) means m_1, m_2 and variances σ_1, σ_2
 - optimal strategy: allocate exponentially greater number of trials to apparently better lever
- *k*-armed bandit: similar analysis applies
- Analogous to allocation of population to schemata
- Suggests GA may allocate trials optimally

11/21/04 23

Goldberg's Analysis of Competent & Efficient GAs

1/21/04 24

Paradox of GAs

- Individually uninteresting operators:

 selection, recombination, mutation
- Selection + mutation ⇒ continual improvement
- Selection + recombination ⇒ innovation
 generation vs.evaluation
- Fundamental intuition of GAs: the three work well together

11/21/04 25

Race Between Selection & Innovation: Takeover Time

- Takeover time t^* = average time for most fit to take over population
- Transaction selection: top 1/s replaced by s copies
 - s quantifies selective pressure
- Estimate $t^* \approx \ln n / \ln s$

11/21/04 26

Innovation Time

- Innovation time t_i = average time to get a better individual through crossover & mutation
- Let p_i = probability a single crossover produces a better individual
- Number of individuals undergoing crossover = $p_c n$
- Probability of improvement = $p_i p_c n$
- Estimate: $t_i \approx 1 / (p_c p_i n)$

11/21/0

27

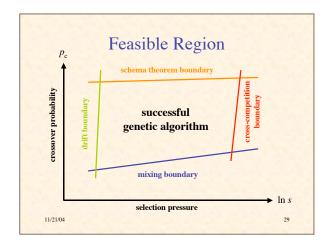
Steady State Innovation

- Bad: $t^* < t_i$
 - because once you have takeover, crossover does no good
- Good: $t_i < t^*$
 - because each time a better individual is produced, the t* clock resets
 - steady state innovation
- Innovation number:

$$Iv = \frac{t^*}{t_i} = p_c p_i \frac{n \ln n}{\ln s} > 1$$

11/21/04

28



Other Algorithms Inspired by Genetics and Evolution

- Evolutionary Programming
 - natural representation, no crossover, time-varying continuous mutation
- Evolutionary Strategies
 - similar, but with a kind of recombination
- Genetic Programming
 - like GA, but program trees instead of strings
- · Classifier Systems
 - GA + rules + bids/payments
- · and many variants & combinations...

11/21/04

30

Additional Bibliography

- 1. Goldberg, D.E. *The Design of Innovation:* Lessons from and for Competent Genetic Algorithms. Kluwer, 2002.
- 2. Milner, R. *The Encyclopedia of Evolution*. Facts on File, 1990.

11/21/04

31