

1

Reformulation as Positive Examples
We have positive $(y^p = 1)$ and negative $(y^p = 0)$ examples
Want $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^p > 0$ for positive, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^p \le 0$ for negative
Let $\mathbf{z}^p = \tilde{\mathbf{x}}^p$ for positive, $\mathbf{z}^p = -\tilde{\mathbf{x}}^p$ for negative
Want $\tilde{\mathbf{w}} \cdot \mathbf{z}^p \ge 0$, for $p = 1, \dots, P$
Hyperplane through origin with all \mathbf{z}^p on one side
11/24/04 16

18

Derivative of Squared Euclidea	n
Distance	
Suppose $D(\mathbf{t}, \mathbf{y}) = \ \mathbf{t} - \mathbf{y}\ ^2 = \sum_i (t_i - y_i)^2$	
$\frac{\partial D(\mathbf{t} - \mathbf{y})}{\partial y_j} = \frac{\partial}{\partial y_j} \sum_i (t_i - y_i)^2 = \sum_i \frac{\partial (t_i - y_i)^2}{\partial y_j}$	
$= \frac{d(t_i - y_i)^2}{dy_i} = -2(t_i - y_i)$	
$\therefore \frac{\mathrm{d} D(\mathbf{t}, \mathbf{y})}{\mathrm{d} \mathbf{y}} = 2(\mathbf{y} - \mathbf{t})$	
11/24/04	35

Gradient of Error on
$$q^{\text{th}}$$
 Input

$$\frac{\partial E^{q}}{\partial P_{k}} = \frac{d D(\mathbf{t}^{q}, \mathbf{y}^{q})}{d \mathbf{y}^{q}} \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$$

$$= 2(\mathbf{y}^{q} - \mathbf{t}^{q}) \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$$

$$= 2\sum_{j} (y_{j}^{q} - t_{j}^{q}) \frac{\partial y_{j}^{q}}{\partial P_{k}}$$
11240

