
Part 7: Neural Networks & Learning 11/24/04

1

11/24/04 1

VII. Neural Networks
and Learning

11/24/04 2

Supervised Learning

• Produce desired outputs for training inputs

• Generalize reasonably & appropriately to
other inputs

• Good example: pattern recognition

• Feedforward multilayer networks

11/24/04 3

Feedforward Network

. .
 .

. .
 . . .
 .

. .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

11/24/04 4

Typical Artificial Neuron

inputs

connection
weights

threshold

output

Part 7: Neural Networks & Learning 11/24/04

2

11/24/04 5

Typical Artificial Neuron

linear
combination

net input
(local field)

activation
function

11/24/04 6

Equations

hi = wijs j
j=1

n

h =Ws

Net input:

 s i = hi()

 s = h()

Neuron output:

11/24/04 7

Single-Layer Perceptron

. .
 . . .

 .

11/24/04 8

Variables

xj

xn

x1

y
h

wj

wn

w1

Part 7: Neural Networks & Learning 11/24/04

3

11/24/04 9

Single Layer Perceptron
Equations

Binary threshold activation function :

h() = h() =
1, if h > 0

0, if h 0

Hence, y =
1, if w j x j >

j

0, otherwise

=
1, if w x >

0, if w x

11/24/04 10

2D Weight Vector

w

w1

w2

xw x = w x cos

v

cos =
v

x

w x = w v

w x >

w v >

v > w w

+–

11/24/04 11

N-Dimensional Weight Vector

w

+

–

separating
hyperplane

normal
vector

11/24/04 12

Goal of Perceptron Learning

• Suppose we have training patterns x1, x2,
…, xP with corresponding desired outputs
y1, y2, …, yP

• where xp {0, 1}n, yp {0, 1}

• We want to find w, such that
yp = (w xp –) for p = 1, …, P

Part 7: Neural Networks & Learning 11/24/04

4

11/24/04 13

Treating Threshold as Weight

xj

xn

x1

y
h

wj

wn

w1

h = w j x j

j=1

n

= + w j x j

j=1

n

11/24/04 14

Treating Threshold as Weight

xj

xn

x1

y
h

wj

wn

w1

h = w j x j

j=1

n

= + w j x j

j=1

n

–1

h = w0x0 + w j x j =
j=1

n

w j x j = ˜ w ˜ x
j= 0

n

Let x0 = 1 and w0 =

= w0

x0 =

11/24/04 15

Augmented Vectors

˜ w =
w1

M

wn

˜ x p =

1

x1
p

M

xn
p

We want y p = ˜ w ˜ x p(), p =1,K,P

11/24/04 16

Reformulation as Positive
Examples

We have positive (y p =1) and negative (y p = 0) examples

Want ˜ w ˜ x p > 0 for positive, ˜ w ˜ x p 0 for negative

Let z p
= ˜ x p for positive, z p

= ˜ x p for negative

 Want ˜ w z p 0, for p =1,K,P

Hyperplane through origin with all z p on one side

Part 7: Neural Networks & Learning 11/24/04

5

11/24/04 17

Adjustment of Weight Vector

z10

z11

z1

z6

z7

z8

z4z3

z9

z5

z2

11/24/04 18

Outline of
Perceptron Learning Algorithm

1. initialize weight vector randomly

2. until all patterns classified correctly, do:

a) for p = 1, …, P do:

1) if zp classified correctly, do nothing

2) else adjust weight vector to be closer to correct

classification

11/24/04 19

Weight Adjustment

˜ w
z p

z p
˜ w

z p˜ w

11/24/04 20

Improvement in Performance

˜ w z p = ˜ w + z p() z p

= ˜ w z p + z p z p

= ˜ w z p + z p 2

> ˜ w z p

If ˜ w z p
< 0,

Part 7: Neural Networks & Learning 11/24/04

6

11/24/04 21

Perceptron Learning Theorem

• If there is a set of weights that will solve the
problem,

• then the PLA will eventually find it

• (for a sufficiently small learning rate)

• Note: only applies if positive & negative
examples are linearly separable

11/24/04 22

Classification Power of
Multilayer Perceptrons

• Perceptrons can function as logic gates
• Therefore MLP can form intersections,

unions, differences of linearly-separable
regions

• Classes can be arbitrary hyperpolyhedra
• Minsky & Papert criticism of perceptrons
• No one succeeded in developing a MLP

learning algorithm

11/24/04 23

Credit Assignment Problem

. .
 .

. .
 . . .
 .

. .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

How do we adjust the weights of the hidden layers?

. . .

Desired
output

11/24/04 24

Adaptive System

S F

Pk PmP1
… …

System
Evaluation Function

(Fitness, Figure of Merit)

Control Parameters
C

Control
Algorithm

Part 7: Neural Networks & Learning 11/24/04

7

11/24/04 25

Gradient

F

Pk
 measures how F is altered by variation of Pk

F =

F
P1

M

F
Pk

M

F
Pm

F points in direction of maximum increase in F

11/24/04 26

Gradient Ascent
on Fitness Surface

+

–

F

gradient ascent

11/24/04 27

Gradient Ascent
by Discrete Steps

+

–

F

11/24/04 28

Gradient Ascent is Local
But Not Shortest

+

–

Part 7: Neural Networks & Learning 11/24/04

8

11/24/04 29

Gradient Ascent Process
˙ P = F P()

Change in fitness :

˙ F =
dF

d t
=

F

Pk

dPk

d tk=1

m
= F()k

˙ P kk=1

m

˙ F = F ˙ P

˙ F = F F = F
2

0

Therefore gradient ascent increases fitness
(until reaches 0 gradient)

11/24/04 30

General Ascent in Fitness
Note that any parameter adjustment process P t()

 will increase fitness provided :

0 < ˙ F = F ˙ P = F ˙ P cos

where is angle between F and ˙ P

Hence we need cos > 0

or < 90o

11/24/04 31

General Ascent
on Fitness Surface

+

–

F

11/24/04 32

Fitness as Minimum Error

 Suppose for Q different inputs we have target outputs t1,K,tQ

Suppose for parameters P the corresponding actual outputs

 are y1,K,yQ

Suppose D t,y() 0,[) measures difference between

 target & actual outputs

Let E q = D tq ,yq() be error on qth sample

Let F P() = E q P() = D tq ,yq P()[]
q=1

Q

q=1

Q

Part 7: Neural Networks & Learning 11/24/04

9

11/24/04 33

Gradient of Fitness

F = E q

q

 = E q

q

Eq

Pk
=

Pk
D tq ,yq() =

D tq,yq()
y j
q

j

y j
q

Pk

=
dD tq ,yq()
dyq

yq

Pk

=
y q
D tq ,yq() yq

Pk
11/24/04 34

Jacobian Matrix

Define Jacobian matrix Jq =

y1
q

P1
L

y1
q

Pm
M O M

yn
q

P1
L

yn
q

Pm

Note Jq n m and D tq,yq() n 1

Since E q()
k

=
E q

Pk
=

y j
q

Pk

D tq,yq()
y j
q

j

,

Eq = Jq()
T
D tq,yq()

11/24/04 35

Derivative of Squared Euclidean
Distance

Suppose D t,y() = t y
2

= ti yi()
2

i

D t y()
y j

=
y j

ti yi()
2

i

=
ti yi()

2

y ji

=
d ti yi()

2

d yi
= 2 ti yi()

dD t,y()
dy

= 2 y t()

11/24/04 36

Gradient of Error on qth Input

Eq

Pk
=
dD tq,yq()
dyq

y q

Pk

= 2 yq tq()
y q

Pk

= 2 y j
q t j

q()
y j
q

Pkj

Part 7: Neural Networks & Learning 11/24/04

10

11/24/04 37

Recap

To know how to decrease the differences between

 actual & desired outputs,

we need to know elements of Jacobian,
y j
q

Pk
,

which says how jth output varies with kth parameter

(given the qth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network

˙ P = Jq()
T

tq yq()
q

