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VII. Neural Networks
and Learning
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Supervised Learning

Produce desired outputs for training inputs

Generalize reasonably & appropriately to
other inputs

Good example: pattern recognition

Feedforward multilayer networks
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Feedforward Network
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Typical Artificial Neuron
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Typical Artificial Neuron

Equations
linear activation
combination function 2
Net input: h, = Ewijsj -0
(L =
(24—’[ h=Ws-0
net input K '
C/ l (local field) IO R s;=o(h;)
s'=o(h)
Single-Layer Perceptron Variables
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Single Layer Perceptron 2D Weight Vector
: .
Equations wxslvlileost 1O : o
Binary threshold activation function: I \
COSQ =+ \
1, ifh>0 (i \
o(h)=©(h) = {0 T \ o
B wex=|wly \
. o
Hence, y = A ij’xj =4, L
0, otherwise " v \ 1
| w- x>0
={L ifw-x>0 <|wlv>e6 /6/
0, ifw-x=<6 <v> 0w M
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N-Dimensional Weight Vector
®

normal
w  vector
separating
hyperplane
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Goal of Perceptron Learning

* Suppose we have training patterns x', x?,
..., X with corresponding desired outputs

e ot b
* where x” € {0, 1}", y» € {0, 1}
¢ We want to find w, 0 such that
WY=0wx-0)forp=1,...,P
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Treating Threshold as Weight
h= [i w,.xj) -0

n
-0+ 2 wx;
J=1

y
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Treating Threshold as Weight
,\‘():@ h=[iw,.xj)—0

Letx,=-land w,=6

n n
h=w(,x0+2wjx] =ijxj =Ww-X
Jj=1 j=0
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Augmented Vectors

0 -1
b Wy B le
W= Xa=1

w, 52

We wanty” =@(W-%"), p=1....P
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Reformulation as Positive
Examples

We have positive (y” =1) and negative (y” =0) examples
Want w- X” > 0 for positive, W+ X” <0 for negative

Let z” = X" for positive, z” = —X” for negative
Wantw-z” =0, forp=1,...,P

Hyperplane through origin with all z” on one side
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Adjustment of Weight Vector

Outline of
Perceptron Learning Algorithm

1. initialize weight vector randomly
2. until all patterns classified correctly, do:
a) forp=1,..., Pdo:
1) if zr classified correctly, do nothing

2) else adjust weight vector to be closer to correct

classification
Weight Adjustment Improvement in Performance
K If -z <0,
Wl nz’ oy =
S W A A4 z”=(w+nz”) 7
z
=w-z" +nz’ -z
=w-z"+ n”z"”
>w-z”
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Perceptron Learning Theorem

« If there is a set of weights that will solve the
problem,

then the PLA will eventually find it
¢ (for a sufficiently small learning rate)

* Note: only applies if positive & negative
examples are linearly separable

11/24/04 21

Classification Power of
Multilayer Perceptrons

* Perceptrons can function as logic gates

¢ Therefore MLP can form intersections,
unions, differences of linearly-separable
regions

¢ Classes can be arbitrary hyperpolyhedra

* Minsky & Papert criticism of perceptrons

* No one succeeded in developing a MLP
learning algorithm
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Credit Assignment Problem

How do we adjust the weights of the hidden layers?

Desired
output

input hidden output
layer layers layer
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Adaptive System

Evaluation Function
System (Fitness, Figure of Merit)

Control
Algorithm

I

4 4

Control Parameters
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Gradient

gL measures how F is altered by variation of P,
k

F
i

OF
VF = Apk

oF
oP,
VF points in direction of maximum increase in F'
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Gradient Ascent
on Fitness Surface

Gradient Ascent

&
N
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Gradient Ascent is Local
But Not Shortest
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Gradient Ascent Process
P=nVF(P)
Change in fitness :
. dF @n JF dP, ~on .
e e s
F=VF-P

F =VF-nVF =q|VF| 20

Therefore gradient ascent increases fitness
(until reaches 0 gradient)
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General Ascent in Fitness
Note that any parameter adjustment process P(¢)
will increase fitness provided :
0<F =VF P = |VF[[Pcosp

where @is angle between VF and P

Hence we need cosg >0

or ‘(p‘ <90°
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General Ascent
on Fitness Surface
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Fitness as Minimum Error

Suppose for Q different inputs we have target outputs t',...,t°
Suppose for parameters P the corresponding actual outputs
arey',...,y°

Suppose D(t,y) E [0,00) measures difference between
target & actual outputs

LetE? = D(t”,y") be error on gth sample

Let F(P) = —i E‘(P)= —i D[ty (P)]
11/24/04 ¥ £ 32
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Gradient of Fitness

VF =V —EE" =—EVE"
q q

JE* 4 CQD(ty") oy

o, ) =2
iy dD(tq,yq) ' &yﬂ
ST
-v, 05 W
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Jacobian Matrix

Note J € R"™" and VD(t“,y") enR!

Define Jacobian matrix J¢ =

_IE" _ %&D(t",y“)

Since (VE")k = -
o, <P, %"

. VE"=(3) VD(t",y")
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Derivative of Squared Euclidean
Distance

Suppose D(t,y) =|ft - sz = E = )’i)z

i

aD(t-y)

7=12(’-—y-)2=EM
e LN ot TR
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Gradient of Error on ¢ Input

OE* dD(t",y") !

dP, dy* dP,
ayq

=2(y? -t7)- 2
i

ay*
e

11/24/04 36




Part 7: Neural Networks & Learning 11/24/04

Recap
b=n3, (1) (t*-¥')

To know how to decrease the differences between

actual & desired outputs,

q
we need to know elements of Jacobian, 2 % X
k

which says how jth output varies with kth parameter
(given the gth input)
The Jacobian depends on the specific form of the system,

in this case, a feedforward neural network
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