

Supervised Learning

- Produce desired outputs for training inputs
- Generalize reasonably \& appropriately to other inputs
- Good example: pattern recognition
- Feedforward multilayer networks

Equations	
Net input:	$h_{i}=\left(\sum_{j=1}^{n} w_{i j} s_{j}\right)-\theta$
$\mathbf{h}=\mathbf{W s}-\theta$	
Neuron output:	$s_{i}^{\prime}=\sigma\left(h_{i}\right)$
$\mathbf{s}^{\prime}=\sigma(\mathbf{h})$	

Single Layer Perceptron Equations

Binary threshold activation function:

$$
\sigma(h)=\Theta(h)= \begin{cases}1, & \text { if } h>0 \\ 0, & \text { if } h \leq 0\end{cases}
$$

Hence, $y= \begin{cases}1, & \text { if } \sum_{j} w_{j} x_{j}>\theta \\ 0, & \text { otherwise }\end{cases}$

$$
= \begin{cases}1, & \text { if } \mathbf{w} \cdot \mathbf{x}>\theta \\ 0, & \text { if } \mathbf{w} \cdot \mathbf{x} \leq \theta\end{cases}
$$

11/24/04

Goal of Perceptron Learning

- Suppose we have training patterns $\mathbf{x}^{1}, \mathbf{x}^{2}$, \ldots, \mathbf{x}^{P} with corresponding desired outputs $y^{1}, y^{2}, \ldots, y^{P}$
- where $\mathbf{x}^{p} \in\{0,1\}^{n}, y^{p} \in\{0,1\}$
- We want to find \mathbf{w}, θ such that $y^{p}=\Theta\left(\mathbf{w} \cdot \mathbf{x}^{p}-\theta\right)$ for $p=1, \ldots, P$

11/24/04

Treating Threshold as Weight

11/24/04
13

Treating Threshold as Weight

11/24/04
14

Reformulation as Positive Examples

We have positive $\left(y^{p}=1\right)$ and negative ($y^{p}=0$) examples

Want $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^{p}>0$ for positive, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^{p} \leq 0$ for negative
Let $\mathbf{z}^{p}=\tilde{\mathbf{x}}^{p}$ for positive, $\mathbf{z}^{p}=-\tilde{\mathbf{x}}^{p}$ for negative

Want $\tilde{\mathbf{w}} \cdot \mathbf{z}^{p} \geq 0$, for $p=1, \ldots, P$
Hyperplane through origin with all \mathbf{z}^{p} on one side 1/24/04

16

Outline of Perceptron Learning Algorithm

1. initialize weight vector randomly
2. until all patterns classified correctly, do:
a) for $p=1, \ldots, P$ do:
1) if \mathbf{z}^{p} classified correctly, do nothing
2) else adjust weight vector to be closer to correct classification

Improvement in Performance
If $\tilde{\mathbf{w}} \cdot \mathbf{z}^{p}<0$,

$$
\begin{aligned}
\tilde{\mathbf{w}}^{\prime} \cdot \mathbf{z}^{p} & =\left(\tilde{\mathbf{w}}+\eta \mathbf{z}^{p}\right) \cdot \mathbf{z}^{p} \\
& =\tilde{\mathbf{w}} \cdot \mathbf{z}^{p}+\eta \mathbf{z}^{p} \cdot \mathbf{z}^{p} \\
& =\tilde{\mathbf{w}} \cdot \mathbf{z}^{p}+\eta\left\|\mathbf{z}^{p}\right\|^{2} \\
& >\tilde{\mathbf{w}} \cdot \mathbf{z}^{p}
\end{aligned}
$$

11/24/04

Perceptron Learning Theorem

- If there is a set of weights that will solve the problem,
- then the PLA will eventually find it
- (for a sufficiently small learning rate)
- Note: only applies if positive \& negative examples are linearly separable

Classification Power of Multilayer Perceptrons

- Perceptrons can function as logic gates
- Therefore MLP can form intersections, unions, differences of linearly-separable regions
- Classes can be arbitrary hyperpolyhedra
- Minsky \& Papert criticism of perceptrons
- No one succeeded in developing a MLP learning algorithm

Credit Assignment Problem

How do we adjust the weights of the hidden layers?

Adaptive System
Evaluation Function
System
(Fitness, Figure of Merit)

Gradient
$\frac{\partial F}{\partial P_{k}}$ measures how F is altered by variation of P_{k}
$\nabla F=\left(\begin{array}{c}\partial F / \partial P_{1} \\ \vdots \\ \partial F / \partial P_{k} \\ \vdots \\ \partial F / \partial P_{m}\end{array}\right)$
∇F points in direction of maximum increase in F
${ }_{11 / 2404} \quad$

Gradient Ascent Process

$$
\dot{\mathbf{P}}=\eta \nabla F(\mathbf{P})
$$

Change in fitness :
$\dot{F}=\frac{\mathrm{d} F}{\mathrm{~d} t}=\sum_{k=1}^{m} \frac{\partial F}{\partial P_{k}} \frac{\mathrm{~d} P_{k}}{\mathrm{~d} t}=\sum_{k=1}^{m}(\nabla F)_{k} \dot{P}_{k}$
$\dot{F}=\nabla F \cdot \dot{\mathbf{P}}$
$\dot{F}=\nabla F \cdot \eta \nabla F=\eta\|\nabla F\|^{2} \geq 0$
Therefore gradient ascent increases fitness (until reaches 0 gradient)

Fitness as Minimum Error

Suppose for Q different inputs we have target outputs $\mathbf{t}^{1}, \ldots, \mathbf{t}^{Q}$
Suppose for parameters \mathbf{P} the corresponding actual outputs are $\mathbf{y}^{1}, \ldots, \mathbf{y}^{\ell}$

Suppose $D(\mathbf{t}, \mathbf{y}) \in[0, \infty)$ measures difference between target \& actual outputs

Let $E^{q}=D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)$ be error on q th sample
Let $F(\mathbf{P})=-\sum_{q=1}^{Q} E^{q}(\mathbf{P})=-\sum_{q=1}^{Q} D\left[\mathbf{t}^{q}, \mathbf{y}^{q}(\mathbf{P})\right]$
1/24/04
32

Jacobian Matrix

Define Jacobian matrix $\mathbf{J}^{q}=\left(\begin{array}{ccc}\partial y_{1}^{q} & \partial P_{1} & \ldots \\ \vdots & \partial y_{1}^{q} \\ \vdots & \ddots & \vdots \\ \partial y_{n}^{q} / \partial P_{m} & \ldots & \partial y_{n}^{q} \\ & & \partial P_{m}\end{array}\right)$
Note $\mathbf{J}^{q} \in \Re^{n \times m}$ and $\nabla D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right) \in \Re^{n \times 1}$
Since $\left(\nabla E^{q}\right)_{k}=\frac{\partial E^{q}}{\partial P_{k}}=\sum_{j} \frac{\partial y_{j}^{q}}{\partial P_{k}} \frac{\partial D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)}{\partial y_{j}^{q}}$,
$\therefore \nabla E^{q}=\left(\mathbf{J}^{q}\right)^{\mathrm{T}} \nabla D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)$
11/24/04

Derivative of Squared Euclidean Distance
Suppose $D(\mathbf{t}, \mathbf{y})=\|\mathbf{t}-\mathbf{y}\|^{2}=\sum_{i}\left(t_{i}-y_{i}\right)^{2}$
$\frac{\partial D(\mathbf{t}-\mathbf{y})}{\partial y_{j}}=\frac{\partial}{\partial y_{j}} \sum_{i}\left(t_{i}-y_{i}\right)^{2}=\sum_{i} \frac{\partial\left(t_{i}-y_{i}\right)^{2}}{\partial y_{j}}$

$$
=\frac{\mathrm{d}\left(t_{i}-y_{i}\right)^{2}}{\mathrm{~d} y_{i}}=-2\left(t_{i}-y_{i}\right)
$$

$\therefore \frac{\mathrm{d} D(\mathbf{t}, \mathbf{y})}{\mathrm{d} \mathbf{y}}=2(\mathbf{y}-\mathbf{t})$
11/24/04
35

Gradient of Error on $q^{\text {th }}$ Input

$$
\begin{aligned}
\frac{\partial E^{q}}{\partial P_{k}} & =\frac{\mathrm{d} D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)}{\mathrm{d} \mathbf{y}^{q}} \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}} \\
& =2\left(\mathbf{y}^{q}-\mathbf{t}^{q}\right) \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}} \\
& =2 \sum_{j}\left(y_{j}^{q}-t_{j}^{q}\right) \frac{\partial y_{j}^{q}}{\partial P_{k}}
\end{aligned}
$$

$$
\begin{gathered}
\text { Recap } \\
\dot{\mathbf{P}}=\eta \sum_{q}\left(\mathbf{J}^{q}\right)^{\mathrm{T}}\left(\mathbf{t}^{q}-\mathbf{y}^{q}\right)
\end{gathered}
$$

To know how to decrease the differences between actual \& desired outputs,
we need to know elements of Jacobian, $\partial y_{j}^{q} / \partial P_{k}$,
which says how j th output varies with k th parameter (given the q th input)

The Jacobian depends on the specific form of the system, in this case, a feedforward neural network

