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VII. Neural Networks
and Learning
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Supervised Learning

• Produce desired outputs for training inputs

• Generalize reasonably & appropriately to
other inputs

• Good example: pattern recognition

• Feedforward multilayer networks
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Typical Artificial Neuron
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Typical Artificial Neuron

linear
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net input
(local field)

activation
function
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Equations

hi = wijs j
j=1

n 

 

  

 

 

  

h =Ws

Net input:

 s i = hi( )

 s = h( )

Neuron output:
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Single-Layer Perceptron
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Variables
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Single Layer Perceptron
Equations

Binary threshold activation function :  

h( ) = h( ) =
1, if h > 0

0, if h 0

 
 
 

Hence, y =
1, if w j x j >

j

0, otherwise

 
 
 

=
1, if w x >

0, if w x
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2D Weight Vector

w

w1

w2

xw x = w x cos

v

cos =
v

x

w x = w v

w x >

w v >

v > w w

+–
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N-Dimensional Weight Vector
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separating
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Goal of Perceptron Learning

• Suppose we have training patterns x1, x2,
…, xP with corresponding desired outputs
y1, y2, …, yP

• where xp  {0, 1}n, yp  {0, 1}

• We want to find w,  such that
yp = (w xp – ) for p = 1, …, P
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Treating Threshold as Weight
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Treating Threshold as Weight

xj
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h = w j x j

j=1
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= + w j x j

j=1

n

–1

h = w0x0 + w j x j =
j=1

n

w j x j = ˜ w ˜ x 
j= 0

n

Let x0 = 1 and w0 =

= w0

x0 =
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Augmented Vectors
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w1
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wn
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We want y p = ˜ w ˜ x p( ),   p =1,K,P
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Reformulation as Positive
Examples

We have positive (y p =1) and negative (y p = 0) examples

Want ˜ w ˜ x p > 0 for positive, ˜ w ˜ x p 0 for negative

Let z p
= ˜ x p  for positive, z p

= ˜ x p  for negative

  Want ˜ w z p 0, for p =1,K,P

Hyperplane through origin with all z p  on one side
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Adjustment of Weight Vector
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Outline of
Perceptron Learning Algorithm

1. initialize weight vector randomly

2. until all patterns classified correctly, do:

a) for p = 1, …, P do:

1) if zp classified correctly, do nothing

2) else adjust weight vector to be closer to correct

classification
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Weight Adjustment

˜ w 
z p

z p
˜  w 

z p˜   w 
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Improvement in Performance

˜  w z p = ˜ w + z p( ) z p

= ˜ w z p + z p z p

= ˜ w z p + z p 2

> ˜ w z p

If ˜ w z p
< 0,
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Perceptron Learning Theorem

• If there is a set of weights that will solve the
problem,

• then the PLA will eventually find it

• (for a sufficiently small learning rate)

• Note: only applies if positive & negative
examples are linearly separable
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Classification Power of
Multilayer Perceptrons

• Perceptrons can function as logic gates
• Therefore MLP can form intersections,

unions, differences of linearly-separable
regions

• Classes can be arbitrary hyperpolyhedra
• Minsky & Papert criticism of perceptrons
• No one succeeded in developing a MLP

learning algorithm
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Credit Assignment Problem
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Adaptive System

S F

Pk PmP1
… …

System
Evaluation Function

(Fitness, Figure of Merit)

Control Parameters
C

Control
Algorithm
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Gradient

F

Pk
 measures how F is altered by variation of Pk

  

F =

F
P1

M

F
Pk

M

F
Pm

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

F points in direction of maximum increase in F
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Gradient Ascent
on Fitness Surface

+

–

F

gradient ascent
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Gradient Ascent
by Discrete Steps

+

–

F
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Gradient Ascent is Local
But Not Shortest

+

–
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Gradient Ascent Process
˙ P = F P( )

Change in fitness :

˙ F =
dF

d t
=

F

Pk

dPk

d tk=1

m
= F( )k

˙ P kk=1

m

˙ F = F ˙ P 

˙ F = F F = F
2

0

Therefore gradient ascent increases fitness
(until reaches 0 gradient)
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General Ascent in Fitness
Note that any parameter adjustment process P t( )

 will increase fitness provided :

0 < ˙ F = F ˙ P = F ˙ P cos

where  is angle between F and ˙ P 

  

Hence we need cos > 0

or < 90o
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General Ascent
on Fitness Surface

+

–

F
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Fitness as Minimum Error

  Suppose for Q different inputs we have target outputs t1,K,tQ

  

Suppose for parameters P the corresponding actual outputs

 are y1,K,yQ

Suppose D t,y( ) 0,[ ) measures difference between

 target &  actual outputs

Let E q = D tq ,yq( ) be error on qth sample

Let F P( ) = E q P( ) = D tq ,yq P( )[ ]
q=1

Q

q=1

Q
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Gradient of Fitness

F = E q

q

 

 

  

 

 

  = E q

q

Eq

Pk
=

Pk
D tq ,yq( ) =

D tq,yq( )
y j
q

j

y j
q

Pk

=
dD tq ,yq( )
dyq

yq

Pk

=
y q
D tq ,yq( ) yq

Pk
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Jacobian Matrix

  

Define Jacobian matrix Jq =

y1
q

P1
L

y1
q

Pm
M O M

yn
q

P1
L

yn
q

Pm

 

 

 
 
 
 

 

 

 
 
 
 

Note Jq n m  and D tq,yq( ) n 1

Since E q( )
k

=
E q

Pk
=

y j
q

Pk

D tq,yq( )
y j
q

j

,

Eq = Jq( )
T
D tq,yq( )
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Derivative of Squared Euclidean
Distance

Suppose D t,y( ) = t y
2

= ti yi( )
2

i

D t y( )
y j

=
y j

ti yi( )
2

i

=
ti yi( )

2

y ji

=
d ti yi( )

2

d yi
= 2 ti yi( )

dD t,y( )
dy

= 2 y t( )
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Gradient of Error on qth Input

Eq

Pk
=
dD tq,yq( )
dyq

y q

Pk

= 2 yq tq( )
y q

Pk

= 2 y j
q t j

q( )
y j
q

Pkj
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Recap

To know how to decrease the differences between

 actual &  desired outputs,

we need to know elements of Jacobian, 
y j
q

Pk
,

which says how jth output varies with kth parameter

(given the qth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network

˙ P = Jq( )
T

tq yq( )
q


