

From Life to CAs in General

- What gives Life this very rich behavior?
- Is there some simple, general way of characterizing CAs with rich behavior?
- It belongs to Wolfram's Class IV

8/2907

The four classes of feedback behaviour

Wolfram's Classification

- Class I: evolve to fixed, homogeneous state \sim limit point
- Class II: evolve to simple separated periodic structures
\sim limit cycle
- Class III: yield chaotic aperiodic patterns ~ strange attractor (chaotic behavior)
- Class IV: complex patterns of localized structure \sim long transients, no analog in dynamical systems

8/29/07

Langton's Investigation

Under what conditions can we expect a complex dynamics of information to emerge spontaneously and come to dominate the behavior of a CA?

8/29/07 5

Approach

- Investigate 1D CAs with:
- random transition rules
- starting in random initial states
- Systematically vary a simple parameter characterizing the rule
- Evaluate qualitative behavior (Wolfram class)

8/29/07

Why a Random Initial State?

- How can we characterize typical behavior of CA?
- Special initial conditions may lead to special (atypical) behavior
- Random initial condition effectively runs CA in parallel on a sample of initial states
- Addresses emergence of order from randomness

8/29.07

Assumptions

- Periodic boundary conditions - no special place
- Strong quiescence:
- if all the states in the neighborhood are the same, then the new state will be the same
- persistence of uniformity
- Spatial isotropy:
- all rotations of neighborhood state result in same new state
- no special direction
- Totalistic [not used by Langton]:
- depend only on sum of states in neighborhood
- implies spatial isotropy

8/29/07

Langton's Lambda

- Designate one state to be quiescent state
- Let $K=$ number of states
- Let $N=2 r+1=$ size of neighborhood
- Let $T=K^{N}=$ number of entries in table
- Let $n_{q}=$ number mapping to quiescent state
- Then

$$
\lambda=\frac{T-n_{q}}{T}
$$

8/29/07

Example

- States: $K=5$
- Radius: $r=1$
- Initial state: random
- Transition function: random (given $\boldsymbol{\lambda}$)

8/29/07 11

Demonstration of

 1D Totalistic CARun NetLogo 1D CA General Totalistic
or
<www.cs.utk. edu/~mclennan/Classes/420/NetLogo/ CA-1D-General-Totalistic.html>

Go to CBN
Online Experimentation Center
<mitpress.mit.edu/books/FLAOH/cbnhtml/java.html>

Class II ($\boldsymbol{\lambda}=0.4$) Closeup

Class II ($\lambda=0.31$)

\qquad
Class II ($\boldsymbol{\lambda}=0.31$) Closeup

Class II ($\lambda=0.37$) Closeup

8/2907

Class IV $(\boldsymbol{\lambda}=0.35)$

Class IV ($\boldsymbol{\lambda}=0.35$) Closeup

Class IV Shows Some of the
Characteristics of Computation

- Persistent, but not perpetual storage
- Terminating cyclic activity
- Global transfer of control/information

λ of Life

- For Life, $\lambda \approx 0.273$
- which is near the critical region for CAs with:
$K=2$
$N=9$

8/29/07

Transient Length (I, II)

Shannon Information (very briefly!)

- Information varies directly with surprise
- Information varies inversely with probability
- Information is additive
- \therefore The information content of a message is proportional to the negative \log of its probability

$$
I\{s\}=-\lg \operatorname{Pr}\{s\}
$$

8/29/07

Maximum and Minimum
 Entropy

- Maximum entropy is achieved when all signals are equally likely
No ability to guess; maximum surprise $H_{\text {max }}=\lg N$
- Minimum entropy occurs when one symbol is certain and the others are impossible
No uncertainty; no surprise
$H_{\text {min }}=0$
8/29/07

Entropy of Transition Rules

- Among other things, a way to measure the uniformity of a distribution

$$
H=-\sum_{i} p_{i} \lg p_{i}
$$

- Distinction of quiescent state is arbitrary
- Let $n_{k}=$ number mapping into state k
- Then $p_{k}=n_{k} / T$

$$
H=\lg T-\frac{1}{T} \sum_{k=1}^{K} n_{k} \lg n_{k}
$$

Entropy Range

- Maximum entropy $(\lambda=1-1 / K)$:
uniform as possible
all $n_{k}=T / K$
$H_{\text {max }}=\lg K$
- Minimum entropy ($\lambda=0$ or $\lambda=1$):
non-uniform as possible
one $n_{s}=T$
all other $n_{r}=0(r \neq s)$
$H_{\text {min }}=0$
8/29/07
- 2-D CAs
- $K=8$
- $N=5$
- 64×64 lattice
- periodic boundary conditions

Avg. Transient Length vs. λ
($K=4, N=5$)

Avg. Cell Entropy vs. λ
($K=8, N=5$)

8/29/07

Avg. Cell Entropy vs. λ

$$
(K=8, N=5)
$$

Avg. Cell Entropy vs. λ

$$
(K=8, N=5)
$$

8/29/07

Avg. Cell Entropy vs. $\Delta \lambda$
Entropy of Independent Systems

- Suppose sources A and B are independent
- Let $p_{j}=\operatorname{Pr}\left\{a_{j}\right\}$ and $q_{k}=\operatorname{Pr}\left\{b_{k}\right\}$
- Then $\operatorname{Pr}\left\{a_{j}, b_{k}\right\}=\operatorname{Pr}\left\{a_{j}\right\} \operatorname{Pr}\left\{b_{k}\right\}=p_{j} q_{k}$
$H(A, B)=\sum_{j, k} \operatorname{Pr}\left(a_{j}, b_{k}\right) \lg \operatorname{Pr}\left(a_{j}, b_{k}\right)$
$=\sum_{j, k} p_{j} q_{k} \lg \left(p_{j} q_{k}\right)=\sum_{j, k} p_{j} q_{k}\left(\lg p_{j}+\lg q_{k}\right)$
$=\sum_{j} p_{j} \lg p_{j}+\sum_{k} q_{k} \lg q_{k}=H(A)+H(B)$

Mutual Information

- Mutual information measures the degree to which two sources are not independent
- A measure of their correlation

$$
I(A, B)=H(A)+H(B)-H(A, B)
$$

- $I(A, B)=0$ for completely independent sources
- $I(A, B)=H(A)=H(B)$ for completely correlated sources
8/29/07

Additional Bibliography

1. Langton, Christopher G. "Computation at the Edge of Chaos: Phase Transitions and Emergent Computation," in Emergent Computation, ed. Stephanie Forrest. North-Holland, 1990.
2. Langton, Christopher G. "Life at the Edge of Chaos," in Artificial Life II, ed. Langton et al. Addison-Wesley, 1992.
3. Emmeche, Claus. The Garden in the Machine: The Emerging Science of Artificial Life. Princeton, 1994.

8/29/07

