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Differentiation
& Pattern Formation

• A central problem in
development: How do cells
differentiate to fulfill
different purposes?

• How do complex systems
generate spatial & temporal
structure?

• CAs are natural models of
intercellular communication

photos ©2000, S. Cazamine
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Zebra

figs. from Camazine & al.: Self-Org. Biol. Sys. 9/17/07 4

Vermiculated Rabbit Fish

figs. from Camazine & al.: Self-Org. Biol. Sys.
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Activation & Inhibition
in Pattern Formation

• Color patterns typically have a charac-
teristic length scale

• Independent of cell size and animal size

• Achieved by:
– short-range activation  local uniformity

– long-range inhibition  separation
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Interaction Parameters

• R1 and R2 are the interaction ranges

• J1 and J2 are the interaction strengths
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CA Activation/Inhibition Model

• Let states si  {–1, +1}

• and h be a bias parameter

• and rij be the distance between cells i and j

• Then the state update rule is:

si t +1( ) = sign h + J1 s j t( )
rij <R1

+ J2 s j t( )
R1<rij <R2
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Example
(R1=1, R2=6, J1=1, J2=–0.1, h=0)

figs. from Bar-Yam
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Effect of Bias
(h = –6, –3, –1; 1, 3, 6)

figs. from Bar-Yam 9/17/07 10

Effect of Interaction Ranges

R2 = 6
R1 = 1
h = 0

R2 = 6
R1 = 1.5

h = 0

R2 = 8
R1 = 1
h = 0

R2 = 6
R1 = 1.5
h = –3

figs. from Bar-Yam
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Demonstration of NetLogo
Program for Activation/Inhibition

Pattern Formation:
Fur

Run Fur.nlogo
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Differential Interaction Ranges

• How can a system using strictly local
interactions discriminate between states at
long and short range?

• E.g. cells in developing organism

• Can use two different morphogens diffusing
at two different rates
– activator diffuses slowly (short range)

– inhibitor diffuses rapidly (long range)
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Digression on Diffusion
• Simple 2-D diffusion equation:

• Recall the 2-D Laplacian:

• The Laplacian (like 2nd derivative) is:
– positive in a local minimum

– negative in a local maximum

2A x,y( ) =
2A x,y( )
x 2

+
2A x,y( )
y 2

˙ A x, y( ) = c 2A x,y( )
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Reaction-Diffusion System
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reactiondiffusion
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Example:
Activation-Inhibition System

• Let  be the logistic sigmoid function

• Activator A and inhibitor I may diffuse at
different rates in x and y directions

• Cell is “on” if activator + bias exceeds
inhibitor

A

t
= dAx

2A

x 2
+ dAy

2A

y 2
+ kA mA A + B I( )[ ]

I

t
= dIx

2I

x 2
+ dIy

2I

y 2
+ kI mI A + B I( )[ ]
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NetLogo Simulation of
Reaction-Diffusion System

1. Diffuse activator in X and Y directions
2. Diffuse inhibitor in X and Y directions
3. Each patch performs:

stimulation = bias + activator – inhibitor + noise
if stimulation > 0 then

set activator and inhibitor to 100
else

set activator and inhibitor to 0
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Demonstration of NetLogo
Program for Activation/Inhibition

Pattern Formation

Run Pattern.nlogo
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Abstract Activation/Inhibition
Spaces

• Consider two axes of cultural preference
– E.g. hair length & interpersonal distance
– Fictitious example!

• Suppose there are no objective reasons for
preferences

• Suppose people approve/encourage those with
similar preferences

• Suppose people disapprove/discourage those with
different preferences

• What is the result?
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Emergent Regions of Acceptable
Variation
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A Key Element of
Self-Organization

• Activation vs. Inhibition

• Cooperation vs. Competition

• Amplification vs. Stabilization

• Growth vs. Limit

• Positive Feedback vs. Negative Feedback

– Positive feedback creates

– Negative feedback shapes
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Simple Example:
Reaction-Diffusion System

• Many natural patterns can
be explained by reaction-
diffusion equations

• c / t = D 2c + F(c)

• where c is a vector of
concentrations,
and D is a diagonal matrix
of diffusion rates,
and F is a nonlinear vector
function

photos ©2000, S. Cazamine
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Equal X & Y Rates, No Bias
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Equal X & Y Rates, Positive Bias
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Inhibitor Y Rate >> X Rate
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Example: Double Activation-
Inhibition System

• Two independently diffusing activation-inhibition
pairs

• May have different diffusion rates in X and Y
directions
– In this example, I1y >> I1x and I2x >> I2y

• Colors in simulation:
– green = system 1 active
– red = system 2 active
– yellow = both active
– black = neither active
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Random Initial State
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T = 1
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T = 2
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T = 10
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Stable Pattern (T = 209)
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Damaged Pattern
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T = damage + 1
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T = damage + 2
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T = damage + 3
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T = damage + 4
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Stable (T = damage + 168)
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Comparison to Original
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Example of Reorganization

• Exchange inhibitor diffusion rates for
systems 1 & 2

• Vertical stripes (red) become horizontal

• Horizontal stripes (green) become vertical
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Stable Pattern
Before Parameters Changed
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T = change + 1
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T = change + 2
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T = change + 3
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T = change + 4
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T = change + 6
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T = change + 9
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T = change + 18

9/17/07 47

T = change + 34
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Stable (T = change + 85)
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Introduction of Annealing Noise
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Stability After Noise Eliminated
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