Lecture 13
no47

Project 2

- See course website under "Projects / Assignments"
- Due Oct. 25
- This project involves programming as well as some lengthy computations
- Start early!

Digression:

Time-Reversibility and the Physical Limits of Computation

Work done by:

- Rolf Landauer (1961)
- Charles Bennett (1973)
- Richard Feynman (1981-3)

10/4/07

Entropy of Physical Systems

- Recall information content of N equally likely messages: $I_{2}=\lg N$ bits.
- Can also use natural logs: $I_{e}=\ln N$ nats $=I_{2} \ln 2$.
- To specify position \& momentum of each particle of a physical system: $S=k \ln N=k I_{2} \ln 2$.
- k is Boltzmann's constant
- This is the entropy of the system - entropies of 10 bits/atom are typical

10/407

Thermodynamics

 of Recording One Bit

- ΔS derived by gas laws \& classical thermodynamics
- Boltzmann constant: $k=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ 10/4/07

Entropy Change in Terms of Phase Space

- Let $W=$ number of microstates corresponding to a macrostate
- Entropy $S=k \ln W$
- Then $\Delta S=k \ln W_{2}-k \ln W_{1}=k \ln \left(W_{2} / W_{1}\right)$
- If $W_{2}=W_{1} / 2$, then $\Delta S=-k \ln 2$

10/4/07

Information and Energy

- initialization equivalent to storing energy
- information and energy are complementary

10/4/07

Minimum Energy for Irreversible Computation

2 bits

1 bit

- Loss of one bit of information
- an irreversible operation (many to one)
- $\Delta S=-k \ln 2$
- entropy decrease must be compensated by heat dissipation
- Minimum energy required: $\Delta F=k T \ln 2$
- transistors: $\sim 10^{8} k T$; RNA polymerase: $\sim 100 k T$

10/4/07

Reversible Gates

- Can make dissipation arbitrarily small by using reversible gates
- All outputs must go somewhere
- Cannot ever throw information away
- The Fredkin CCN gate ("Controlled Controlled Not") is reversible
- can be used for constructing other gates
$\begin{aligned} & \text { control lines } \begin{cases}A \longrightarrow & A^{\prime}=A \\ B \longrightarrow & B^{\prime}=B\end{cases} \\ & C \longrightarrow C^{\prime}=\left\{\begin{array}{l}\neg \text { if } A \wedge B \\ C, \text { otherwise }\end{array},\right.\end{aligned}$
10/4/07

Reversible Computer

- Reversible because get input back
- Only loss is resetting machine for next job - energy is proportional to n, number of output bits 101407

Summary: Energy Required for Reversible Computing

- There is no lower limit on the energy required for basic operations (gates, bit copying, etc.) provided:
- it is done reversibly
- it is done sufficiently slowly
- What is the fundamental relation between speed and energy dissipation?

Energy and the Speed of Computation

- Let r be ratio of forward to backward rate
- Statistical mechanics shows: $k T \ln r=\Delta E$
- Greater "driving energy" \Rightarrow greater rate

Entropy and the Speed of Computation

- Consider number of accessible microstates, n_{1} and n_{2}
- Can show: $r=n_{2} / n_{1}$
- Hence, $k T \ln r=k T\left(\ln n_{2}-\ln n_{1}\right)$ $=\left(S_{2}-S_{1}\right) T=T \Delta S$
10/4/07

Additional Information

1. Feynman, R. P. Feynman Lectures on Computation, ed. by A.J.G Hey \& R.W. Allen. Perseus, 1996.
2. Hey, A.J.G. (ed.) Feynman and Computation: Exploring the Limits of Computation. Perseus, 1999.

10/4/07

Adaptive Significance

- Selects most profitable from array of food sources
- Selects shortest route to it
- longer paths abandoned within 1-2 hours
- Adjusts amount of exploration to quality of identified sources
- Collective decision making can be as accurate and effective as some vertebrate individuals

Conclusions

- Entropy increase and energy dissipation can be made arbitrarily small by doing reversible computation
- However, the speed of computation is an exponential function of the driving energy or entropy increase

Real Ants	
(especially the black garden ant,	
Lasius niger)	

Observations on Trail Formation

- Two equal-length paths presented at same time: ants choose one at random
- Sometimes the longer path is initially chosen
- Ants may remain "trapped" on longer path, once established
- Or on path to lower quality source, if it's discovered first
- But there may be advantages to sticking to paths - easier to follow
- easier to protect trail \& source
- safer

10/4/07

Process of Trail Formation

1. Trail laying
2. Trail following

10/4/07

Additional Complexities

- Some ants begin marking on return from discovering food
- Others on their first return trip to food
- Others not at all, or variable behavior
- Probability of trail laying decreases with number of trips

10/4/07

Trail Following

- Ants preferentially follow stronger of two trails
- show no preference for path they used previously
- Ant may double back, because of:
- decrease of pheromone concentration
- unattractive orientation

10/4/07

Trail Laying

- On discovering food, forager lays chemical trail while returning to nest
- only ants who have found food deposit pheromone
- Others stimulated to leave nest by:
- the trail
- the recruitor exciting nestmates (sometimes)
- In addition to defining trail, pheromone:
- serves as general orientation signal for ants outside nest
- serves as arousal signal for ants inside

10/4/07
20

Frequency of Trail Marking

- Ants modulate frequency of trail marking
- May reflect quality of source
- hence more exploration if source is poor
- May reflect orientation to nest
- ants keep track of general direction to nest
- and of general direction to food source
- trail laying is less intense if the angle to homeward direction is large

Probability of Choosing One of Two Branches

- Let C_{L} and C_{R} be units of pheromone deposited on left \& right branches
- Let P_{L} and P_{R} be probabilities of choosing them
- Then:

$$
P_{\mathrm{L}}=\frac{\left(C_{\mathrm{L}}+6\right)^{2}}{\left(C_{\mathrm{L}}+6\right)^{2}+\left(C_{\mathrm{R}}+6\right)^{2}}
$$

- Nonlinearity amplifies probability

10/4/07

Additional Adaptations

- If a source is crowded, ants may return to nest or explore for other sources
- New food sources are preferred if they are near to existing sources
- Foraging trails may rotate systematically around a nest

10/4/07 25

Pheromone Evaporation

- Trails can persist from several hours to several months
- Pheromone has mean lifetime of 30-60 min.
- But remains detectable for many times this
- Long persistence of pheromone prevents switching to shorter trail
- Artificial ant colony systems rely more heavily on evaporation

