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Reading

• Flake, ch. 20 (“Genetics and Evolution”)
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Imprinting Multiple Patterns

• Let x1, x2, …, xp be patterns to be imprinted
• Define the sum-of-outer-products matrix:
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Definition of Covariance
Consider samples (x1, y1), (x2, y2), …, (xN, yN)
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Weights & the Covariance Matrix
Sample pattern vectors: x1, x2, …, xp

Covariance of ith and jth components:
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Characteristics
of Hopfield Memory

• Distributed (“holographic”)
– every pattern is stored in every location

(weight)
• Robust

– correct retrieval in spite of noise or error in
patterns

– correct operation in spite of considerable
weight damage or noise
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Stability of Imprinted Memories
• Suppose the state is one of the imprinted

patterns xm

• Then:
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Interpretation of Inner Products
• xk ⋅ xm = n if they are identical

– highly correlated
• xk ⋅ xm = –n if they are complementary

– highly correlated (reversed)
• xk ⋅ xm = 0 if they are orthogonal

– largely uncorrelated
• xk ⋅ xm measures the crosstalk between

patterns k and m
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Cosines and Inner products
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Conditions for Stability
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Stability of entire pattern :
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Sufficient Conditions for
Instability (Case 1)
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Suppose x
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Sufficient Conditions for
Instability (Case 2)
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Sufficient Conditions for
Stability
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The crosstalk with the sought pattern must be
sufficiently small
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Capacity of Hopfield Memory

• Depends on the patterns imprinted
• If orthogonal, pmax = n

– but every state is stable ⇒ trivial basins
• So pmax < n
• Let load parameter α = p / n

equations
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Single Bit Stability Analysis
• For simplicity, suppose xk are random
• Then xk ⋅ xm are sums of n random ±1

 binomial distribution ≈ Gaussian
 in range –n, …, +n
 with mean µ = 0
 and variance σ2 = n

• Probability sum > t:

[See “Review of Gaussian (Normal) Distributions” on course website]
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Approximation of Probability
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Probability of Bit Instability
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(fig. from Hertz & al. Intr. Theory Neur. Comp.) 11/8/07 18

Tabulated Probability of
Single-Bit Instability

0.6110%

0.375%

0.1851%

0.1380.36%

0.1050.1%

αPerror

(table from Hertz & al. Intr. Theory Neur. Comp.)



Part 3: Autonomous Agents 11/8/07

4

11/8/07 19

Spurious Attractors
• Mixture states:

– sums or differences of odd numbers of retrieval states
– number increases combinatorially with p
– shallower, smaller basins
– basins of mixtures swamp basins of retrieval states ⇒ overload
– useful as combinatorial generalizations?
– self-coupling generates spurious attractors

• Spin-glass states:
– not correlated with any finite number of imprinted patterns
– occur beyond overload because weights effectively random
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Basins of Mixture States
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Fraction of Unstable Imprints
(n = 100)

(fig from Bar-Yam) 11/8/07 22

Number of Stable Imprints
(n = 100)

(fig from Bar-Yam)
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Number of Imprints with Basins
of Indicated Size (n = 100)

(fig from Bar-Yam) 11/8/07 24

Summary of Capacity Results
• Absolute limit: pmax < αcn = 0.138 n
• If a small number of errors in each pattern

permitted: pmax ∝ n
• If all or most patterns must be recalled

perfectly: pmax ∝ n / log n
• Recall: all this analysis is based on random

patterns
• Unrealistic, but sometimes can be arranged
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Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
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Trapping in Local Minimum
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Escape from Local Minimum
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Escape from Local Minimum
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Motivation

• Idea: with low probability, go against the local
field
– move up the energy surface
– make the “wrong” microdecision

• Potential value for optimization: escape from local
optima

• Potential value for associative memory: escape
from spurious states
– because they have higher energy than imprinted states
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The Stochastic Neuron
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Properties of Logistic Sigmoid

• As h → +∞, σ(h) → 1
• As h → –∞, σ(h) → 0
•  σ(0) = 1/2
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Logistic Sigmoid
With Varying T

T varying from 0.05 to ∞ (1/T = β = 0, 1, 2, …, 20)
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Logistic Sigmoid
T = 0.5

Slope at origin = 1 / 2T
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Logistic Sigmoid
T = 0.01
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Logistic Sigmoid
T = 0.1
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Logistic Sigmoid
T = 1
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Logistic Sigmoid
T = 10
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Logistic Sigmoid
T = 100
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Pseudo-Temperature

• Temperature = measure of thermal energy (heat)
• Thermal energy = vibrational energy of molecules
• A source of random motion
• Pseudo-temperature = a measure of nondirected

(random) change
• Logistic sigmoid gives same equilibrium

probabilities as Boltzmann-Gibbs distribution
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Transition Probability
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Stability

• Are stochastic Hopfield nets stable?
• Thermal noise prevents absolute stability
• But with symmetric weights:

! 

average values s
i

 become time - invariant
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Does “Thermal Noise” Improve
Memory Performance?

• Experiments by Bar-Yam (pp. 316-20):
 n = 100
 p = 8

• Random initial state
• To allow convergence, after 20 cycles

set T = 0
• How often does it converge to an imprinted

pattern?
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Probability of Random State Converging
on Imprinted State (n=100, p=8)

T = 1 / β

(fig. from Bar-Yam) 11/8/07 44

Probability of Random State Converging
on Imprinted State (n=100, p=8)

(fig. from Bar-Yam)
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Analysis of Stochastic Hopfield
Network

• Complete analysis by Daniel J. Amit &
colleagues in mid-80s

• See D. J. Amit, Modeling Brain Function:
The World of Attractor Neural Networks,
Cambridge Univ. Press, 1989.

• The analysis is beyond the scope of this
course
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Phase Diagram

(fig. from Domany & al. 1991)

(A) imprinted
 = minima

(B) imprinted,
but s.g. = min.

(C) spin-glass states

(D) all states melt
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Conceptual Diagrams
of Energy Landscape

(fig. from Hertz & al. Intr. Theory Neur. Comp.) 11/8/07 48

Phase Diagram Detail

(fig. from Domany & al. 1991)


