

Reading

- Flake, ch. 20 ("Genetics and Evolution")

Imprinting Multiple Patterns

- Let $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{p}$ be patterns to be imprinted
- Define the sum-of-outer-products matrix:

$$
\begin{aligned}
W_{i j} & =\frac{1}{n} \sum_{k=1}^{p} x_{i}^{k} x_{j}^{k} \\
\mathbf{W} & =\frac{1}{n} \sum_{k=1}^{p} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}}
\end{aligned}
$$

11/8/07

Definition of Covariance

Consider samples $\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right), \ldots,\left(x^{N}, y^{N}\right)$
Let $\bar{x}=\left\langle x^{k}\right\rangle$ and $\bar{y}=\left\langle y^{k}\right\rangle$
Covariance of x and y values:

$$
\begin{aligned}
C_{x y} & =\left\langle\left\langle x^{k}-\bar{x}\right)\left(y^{k}-\bar{y}\right)\right\rangle \\
& =\left\langle x^{k} y^{k}-\bar{x} y^{k}-x^{k} \bar{y}+\bar{x} \cdot \bar{y}\right\rangle \\
& =\left\langle x^{k} y^{k}\right\rangle-\bar{x}\left\langle y^{k}\right\rangle-\left\langle x^{k}\right\rangle \bar{y}+\bar{x} \cdot \bar{y} \\
& =\left\langle x^{k} y^{k}\right\rangle-\bar{x} \cdot \bar{y}-\bar{x} \cdot \bar{y}+\bar{x} \cdot \bar{y} \\
C_{x y} & =\left\langle x^{k} y^{k}\right\rangle-\bar{x} \cdot \bar{y}
\end{aligned}
$$

11/8/07

Weights \& the Covariance Matrix
Sample pattern vectors: $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{p}$
Covariance of $i^{\text {th }}$ and $j^{\text {th }}$ components:

$$
C_{i j}=\left\langle x_{i}^{k} x_{j}^{k}\right\rangle-\overline{x_{i}} \cdot \overline{x_{j}}
$$

If $\forall i: \overline{x_{i}}=0 \quad(\pm 1$ equally likely in all positions) :

$$
C_{i j}=\left\langle x_{i}^{k} x_{j}^{k}\right\rangle=\frac{1}{p} \sum_{k=1}^{p} x_{i}^{k} y_{j}^{k}
$$

11/8/07

Characteristics of Hopfield Memory

- Distributed ("holographic")
- every pattern is stored in every location (weight)
- Robust
- correct retrieval in spite of noise or error in patterns

$$
\therefore \mathbf{W}=\frac{p}{n} \mathbf{C}
$$

- correct operation in spite of considerable weight damage or noise

11/8/07

Stability of Imprinted Memories

- Suppose the state is one of the imprinted patterns \mathbf{x}^{m}
- Then: $\mathbf{h}=\mathbf{W} \mathbf{x}^{m}=\left[\frac{1}{n} \sum_{k} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}}\right] \mathbf{x}^{m}$
$=\frac{1}{n} \sum_{k} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}} \mathbf{x}^{m}$
$=\frac{1}{n} \mathbf{x}^{m}\left(\mathbf{x}^{m}\right)^{\mathrm{T}} \mathbf{x}^{m}+\frac{1}{n} \sum_{k \neq m} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}} \mathbf{x}^{m}$
$=\mathbf{x}^{m}+\frac{1}{n} \sum_{k \neq m}\left(\mathbf{x}^{k} \cdot \mathbf{x}^{m}\right) \mathbf{x}^{k}$
11/8/07

Cosines and Inner products

$\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\| \mathbf{v} \| \cos \theta_{\mathbf{u v}}$

If \mathbf{u} is bipolar, then $\mid \mathbf{u} \|^{2}=\mathbf{u} \cdot \mathbf{u}=n$
Hence, $\mathbf{u} \cdot \mathbf{v}=\sqrt{n} \sqrt{n} \cos \theta_{\mathbf{u v}}=n \cos \theta_{\mathbf{u v}}$

11/8/07

Sufficient Conditions for Instability (Case 1)

Suppose $x_{i}^{m}=-1$. Then unstable if :

$$
\begin{aligned}
&(-1)+\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m}>0 \\
& \frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m}>1
\end{aligned}
$$

Conditions for Stability

Stability of entire pattern:
$\mathbf{x}^{m}=\operatorname{sgn}\left(\mathbf{x}^{m}+\frac{1}{n} \sum_{k * m} \mathbf{x}^{k} \cos \theta_{k m}\right)$

Stability of a single bit :
$x_{i}^{m}=\operatorname{sgn}\left(x_{i}^{m}+\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m}\right)$

Interpretation of Inner Products

- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}=n$ if they are identical - highly correlated
- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}=-n$ if they are complementary - highly correlated (reversed)
- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}=0$ if they are orthogonal - largely uncorrelated
- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}$ measures the crosstalk between patterns k and m
Conditions for Stability
Stability of entire pattern:
$\mathbf{x}^{m}=\operatorname{sgn}\left(\mathbf{x}^{m}+\frac{1}{n} \sum_{k \neq m} \mathbf{x}^{k} \cos \theta_{k m}\right)$
Stability of a single bit :
$x_{i}^{m}=\operatorname{sgn}\left(x_{i}^{m}+\frac{1}{n} \sum_{k * m} x_{i}^{k} \cos \theta_{k m}\right)$

Sufficient Conditions for Instability (Case 2)

Suppose $x_{i}^{m}=+1$. Then unstable if :

$$
\begin{aligned}
(+1)+\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m} & <0 \\
\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m} & <-1
\end{aligned}
$$

Sufficient Conditions for Stability
 $$
\left|\frac{1}{n} \sum_{k * m} x_{i}^{k} \cos \theta_{k n}\right| \leq 1
$$

The crosstalk with the sought pattern must be sufficiently small

11/8/07 13

Single Bit Stability Analysis

- For simplicity, suppose \mathbf{x}^{k} are random
- Then $\mathbf{x}^{k} \cdot \mathbf{x}^{m}$ are sums of n random ± 1
- binomial distribution \approx Gaussian
- in range $-n, \ldots,+n$
- with mean $\mu=0$
- and variance $\sigma^{2}=n$

- Probability sum $>t$:

$$
\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{t}{\sqrt{2 n}}\right)\right]
$$

[See "Review of Gaussian (Normal) Distributions" on course website] 11/8:07

Capacity of Hopfield Memory

- Depends on the patterns imprinted
- If orthogonal, $p_{\text {max }}=n$
- but every state is stable \Rightarrow trivial basins
- So $p_{\max }<n$
- Let load parameter $\alpha=p / n$

Approximation of Probability

Let crosstalk $C_{i}^{m}=\frac{1}{n} \sum_{k \neq m} x_{i}^{k}\left(\mathbf{x}^{k} \cdot \mathbf{x}^{m}\right)$
We want $\operatorname{Pr}\left\{C_{i}^{m}>1\right\}=\operatorname{Pr}\left\{n C_{i}^{m}>n\right\}$
Note: $n C_{i}^{m}=\sum_{\substack{k=1 \\ k=m}}^{p} \sum_{j=1}^{n} x_{i}^{k} x_{j}^{k} x_{j}^{m}$
A sum of $n(p-1) \approx n p$ random $\pm 1 \mathrm{~s}$
Variance $\sigma^{2}=n p$
11/8/07

Probability of Bit Instability

Tabulated Probability of Single-Bit Instability

$P_{\text {error }}$	α
0.1%	0.105
0.36%	0.138
1%	0.185
5%	0.37
10%	0.61

11/8/07
(table from Hertz \& al. Intr. Theory Neur. Comp.)

Fraction of Unstable Imprints
Number of Stable Imprints

Number of Imprints with Basins
of Indicated Size $(n=100)$

11/8/07
(fig from Bar-Yam)
23

Summary of Capacity Results

- Absolute limit: $p_{\max }<\alpha_{\mathrm{c}} n=0.138 n$
- If a small number of errors in each pattern permitted: $p_{\text {max }} \propto n$
- If all or most patterns must be recalled perfectly: $p_{\text {max }} \propto n / \log n$
- Recall: all this analysis is based on random patterns
- Unrealistic, but sometimes can be arranged

Trapping in Local Minimum

Escape from Local Minimum

11/8/07 28

Motivation

- Idea: with low probability, go against the local field
- move up the energy surface
- make the "wrong" microdecision
- Potential value for optimization: escape from local optima
- Potential value for associative memory: escape from spurious states
- because they have higher energy than imprinted states

11/8/07 29

The Stochastic Neuron
Deterministic neuron: $s_{i}^{\prime}=\operatorname{sgn}\left(h_{i}\right)$

$$
\operatorname{Pr}\left\{s_{i}^{\prime}=+1\right\}=\Theta\left(h_{i}\right)
$$

$$
\operatorname{Pr}\left\{s_{i}^{\prime}=-1\right\}=1-\Theta\left(h_{i}\right)
$$

Stochastic neuron:
$\operatorname{Pr}\left\{s_{i}^{\prime}=+1\right\}=\sigma\left(h_{i}\right)$
$\operatorname{Pr}\left\{s_{i}^{\prime}=-1\right\}=1-\sigma\left(h_{i}\right)$

Logistic sigmoid: $\sigma(h)=\frac{1}{1+\exp (-2 h / T)}$

11/8/07
30

Properties of Logistic Sigmoid

$$
\sigma(h)=\frac{1}{1+e^{-2 h / T}}
$$

- As $h \rightarrow+\infty, \sigma(h) \rightarrow 1$
- As $h \rightarrow-\infty, \sigma(h) \rightarrow 0$
- $\sigma(0)=1 / 2$

11/8/07 31

Logistic Sigmoid With Varying T

T varying from 0.05 to $\infty(1 / T=\beta=0,1,2, \ldots, 20)$

11/8/07 32

Logistic Sigmoid

$$
T=0.01
$$

11/8/07

Logistic Sigmoid

$$
T=1
$$

11/8/07
36

Pseudo-Temperature

- Temperature $=$ measure of thermal energy (heat)
- Thermal energy $=$ vibrational energy of molecules
- A source of random motion
- Pseudo-temperature $=$ a measure of nondirected (random) change
- Logistic sigmoid gives same equilibrium probabilities as Boltzmann-Gibbs distribution

11/8/07

Stability

- Are stochastic Hopfield nets stable?
- Thermal noise prevents absolute stability
- But with symmetric weights: average values $\left\langle s_{i}\right\rangle$ become time - invariant

Logistic Sigmoid $T=100$

$$
\begin{aligned}
& \text { Transition Probability } \\
& \text { Recall, change in energy } \Delta E=-\Delta s_{k} h_{k} \\
& =2 s_{k} h_{k}
\end{aligned} \begin{array}{r}
\operatorname{rr}\left\{s_{k}^{\prime}= \pm 1 \mid s_{k}=\mp 1\right\}=\sigma\left(\pm h_{k}\right)=\sigma\left(-s_{k} h_{k}\right)
\end{array} \begin{array}{r}
\operatorname{Pr}\left\{s_{k} \rightarrow-s_{k}\right\}=\frac{1}{1+\exp \left(2 s_{k} h_{k} / T\right)} \\
=\frac{1}{1+\exp (\Delta E / T)}
\end{array}
$$

11/8/07

Does "Thermal Noise" Improve Memory Performance?

- Experiments by Bar-Yam (pp. 316-20):
- $n=100$
- $p=8$
- Random initial state
- To allow convergence, after 20 cycles set $T=0$
- How often does it converge to an imprinted pattern?

11/8/07 42

Probability of Random State Converging on Imprinted State ($n=100, p=8$)

43

Probability of Random State Converging on Imprinted State ($n=100, p=8$)

Analysis of Stochastic Hopfield
 Network

- Complete analysis by Daniel J. Amit \& colleagues in mid-80s
- See D. J. Amit, Modeling Brain Function: The World of Attractor Neural Networks, Cambridge Univ. Press, 1989.
- The analysis is beyond the scope of this course

11/8/07

Conceptual Diagrams
of Energy Landscape

\rightarrow nison

