

<u>Run Genetic Algorithm Viewer</u> <www.rennard.org/alife/english/gavgb.html>

11/20/07

11/20/07

11/20/07

14

Effect of Mutation

- Let $p_{\rm m}$ = probability of mutation
- So $1 p_m =$ probability an allele survives
- Let o(S) = number of fixed positions in S
- The probability they all survive is $(1 - p_m)^{o(S)}$

• If
$$p_{\rm m} \ll 1$$
, $(1 - p_{\rm m})^{o(S)} \approx 1 - o(S) p_{\rm m}$

Schema Theorem: "Fundamental Theorem of GAs" $m(S,t+1) \ge m(S,t) \frac{f(S)}{f_{av}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} - o(S) p_m \right]$

The Bandit Problem

13

15

17

11/20/07

- Two-armed bandit:
 - random payoffs with (unknown) means m_1, m_2 and variances σ_1, σ_2
 - optimal strategy: allocate exponentially greater number of trials to apparently better lever
- *k*-armed bandit: similar analysis applies
- Analogous to allocation of population to schemata
- Suggests GA may allocate trials optimally

Paradox of GAs

- Individually uninteresting operators: – selection, recombination, mutation
- Selection + mutation ⇒ continual improvement
- Selection + recombination \Rightarrow innovation
 - fundamental to invention: generation vs. evaluation
- Fundamental intuition of GAs: the three work well together

Race Between Selection & Innovation: Takeover Time

- Takeover time *t*^{*} = average time for most fit to take over population
- Transaction selection: population replaced by *s* copies of top 1/*s*
- s quantifies selective pressure
- Estimate $t^* \approx \ln n / \ln s$

11/20/07

18

11/20/07

Innovation Time Innovation time t_i = average time to get a better individual through crossover & mutation Let p_i = probability a single crossover produces a better individual Number of individuals undergoing crossover = p_c n Probability of improvement = p_i p_c n Estimate: t_i ≈ 1 / (p_c p_i n)

19

4

24

32

34

Essential vs. Inessential

- Essential: there is an advantage in forming coalitions
 - may involve agreements for payoffs, cooperation, etc.
 - can happen in zero-sum games only if $n \ge 3$ (obviously!)
- Inessential: there is no such advantage – "everyone for themselves"

11/20/07

31

11/20/07

Maximin Criterion

- Choose the strategy that *maximizes* the *minimum* payoff
- Also called *minimax*: minimize the maximum loss
 - since it's zero-sum, your loss is the negative of your payoff
 - pessimistic?

11/20/07

	Payof	f Matrix	
		Perrier	
		price = \$1	price = \$2
	price = \$1	0,0	5000, -5000
Apollinaris	price = \$2	-5000, 5000	0,0

Maximin for A.				
mini	mum at \$1	Per	rier	
minimu	Maximin Im at \$2	price = \$1	price = \$2	
A	price = \$1	00	5000, -5000	
Apollinaris	price = \$2	-5000, 5000	0,0	
11/20/07	15.00.10		38	

Μ	laximin	Equilibriu	um
		Per	rier
			price = \$2
A 111	price = \$1	0,0	5000, -5000
Apollinaris	price = \$2	-5000, 5000	0,0
11/20/07	1910		40

Payoff Matrix				
Minimur	n of each	Barb		
pure strateg	pure strategy is the same		tail	
	head	+1, -1	-1, +1	
Al	tail	-1, +1	+1, -1	
1/20/07	1.2.55.4.2	-	4:	

11/20/07

More General Analysis (Differing Payoffs) • Let A's payoffs be: H = HH, h = HT, t = TH, T = TT• $E{A} = P_A P_B H + P_A (1 - P_B)h + (1 - P_A)P_B t$ $+(1-P_{A})(1-P_{B})T$

$$= (H + T - h - t)P_AP_B + (h - T)P_A + (t - T)P_B + T$$

• To find saddle point set $\partial E\{A\}/\partial P_A = 0$ and ∂

E{A}/
$$\partial P_B = 0$$
 to get:
 $T = t$ $T = h$

$$P_{A} = \frac{I - I}{H + T - h - t}, \quad P_{B} = \frac{I - h}{H + T - h - t}$$

Review of von Neumann's Solution

- Every two-person zero-sum game has a maximin solution, provided we allow mixed strategies
- But- it applies only to two-person zerosum games
- Arguably, few "games" in real life are zerosum, except literal games (i.e., invented games for amusement)

52

11/20/07

51

12.00			1000	
Price Competition		Beta		
		<i>p</i> = 2	p = 3	
<i>p</i> = 1	0,0	50, -10	40, -20	
<i>p</i> = 2	-10, 50	20, 20	9 0, 10	
<i>p</i> = 3	-20, 40	10, 90	50, 50	
	p = 1 $p = 2$ $p = 3$	pe $p=1$ $p=1$ $p=2$ $-10, 50$ $p=3$ $-20, 40$	Beta tition $p = 1$ $p = 2$ $p = 1$ $0, 0$ $50, -10$ $p = 2$ $-10, 50$ $20, 20$ $p = 3$ $-20, 40$ $10, 90$	

Definition of Nash Equilibrium

- A set of strategies with the property: No player can benefit by changing actions while others keep strategies unchanged
- Players are in equilibrium if any change of strategy would lead to lower reward for that player
- For mixed strategies, we consider expected reward

57

11/20/07

Price		Beta		
Competition		<i>p</i> = 1	<i>p</i> = 2	<i>p</i> = 3
	<i>p</i> = 1	0,0	50, -10	40, -20
Alpha	<i>p</i> = 2	-10, 50	20, 20	90,10
	<i>p</i> = 3	-20, 40	10,90	50, 50

Not a Nash equilibrium Example from McCain's Game Theory: An Introductory Sketch

58

60

11/20/07

11/20/07

Pr	Price		Beta		
Competition		<i>p</i> = 1	<i>p</i> = 2	<i>p</i> = 3	
	<i>p</i> = 1	0,0	50, -10	40, -20	
Alpha	<i>p</i> = 2	-10, 50	20, 20	<u>90, 10</u>	
	<i>p</i> = 3	-20, 40	10, 90	50, 50	

Another Example (Reconsidered)

Cooperation Better for Both: A Dilemma				
Pr	ice	Beta		
Comp	Competition		<i>p</i> = 2	<i>p</i> = 3
	<i>p</i> = 1		50, -10	40, -20
Alpha	<i>p</i> = 2	-10, 50	20, 20	90, 10
	<i>p</i> = 3	-20, 40	10, 90	50, 50
				Cooperation
11/20/07 Example from McCain's Game Theory: An Introductory Sketch 61				

