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Lecture 25
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Reading

• Read Flake, ch. 17, “Competition &
Cooperation”
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Demonstration of GA:
Finding Maximum of

Fitness Landscape

Run Genetic Algorithms — An Intuitive
Introduction

by Pascal Glauser
<homepage.sunrise.ch/

homepage/pglaus/gentore.htm>
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Demonstration of GA:
Evolving to Generate
a Pre-specified Shape

(Phenotype)

Run Genetic Algorithm Viewer
<www.rennard.org/alife/english/gavgb.html>
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Demonstration of GA:
Eaters Seeking Food

http://math.hws.edu/xJava/GA/
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Why Does the GA Work?

The Schema Theorem
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Schemata
A schema is a description of certain patterns

of bits in a genetic string

1 1 * 0 * * 1 1 0 0 1 01 1 1 0 1 0

1 1 0 0 0 1

1 1 0 0 0 0

. .
 .

. .
 .

a schema
describes

many strings

* * 0 * 1 *

* * * * * 0

1 1 0 * 1 0

1 1 0 0 1 0

a string
belongs to

many schemata
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The Fitness of Schemata
• The schemata are the building blocks of

solutions
• We would like to know the average fitness

of all possible strings belonging to a schema
• We cannot, but the strings in a population

that belong to a schema give an estimate of
the fitness of that schema

• Each string in a population is giving
information about all the schemata to which
it belongs (implicit parallelism)
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Effect of Selection
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Exponential Growth

• We have discovered:
m(S, t+1) = m(S, t) ⋅ f(S) / fav

• Suppose f(S) = fav (1 + c)

• Then m(S, t) = m(S, 0) (1 + c)t

• That is, exponential growth in above-
average schemata
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Effect of Crossover
• Let λ = length of genetic strings
• Let δ(S) = defining length of schema S
• Probability {crossover destroys S}:

pd ≤ δ(S) / (λ – 1)
• Let pc = probability of crossover
• Probability schema survives:
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Selection & Crossover Together
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Effect of Mutation

• Let pm = probability of mutation
• So 1 – pm = probability an allele survives

• Let o(S) = number of fixed positions in S

• The probability they all survive is
(1 – pm)o(S)

• If pm << 1, (1 – pm)o(S) ≈ 1 – o(S) pm
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Schema Theorem:
“Fundamental Theorem of GAs”
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The Bandit Problem
• Two-armed bandit:

– random payoffs with (unknown) means m1, m2
and variances σ1, σ2

– optimal strategy: allocate exponentially greater
number of trials to apparently better lever

• k-armed bandit: similar analysis applies
• Analogous to allocation of population to

schemata
• Suggests GA may allocate trials optimally
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Goldberg’s Analysis of
Competent & Efficient GAs
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Paradox of GAs

• Individually uninteresting operators:
– selection, recombination, mutation

• Selection + mutation ⇒ continual
improvement

• Selection + recombination ⇒ innovation
– fundamental to invention:

generation vs. evaluation
• Fundamental intuition of GAs: the three

work well together
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Race Between Selection &
Innovation: Takeover Time

• Takeover time t* = average time for most fit
to take over population

• Transaction selection: population replaced
by s copies of top 1/s

• s quantifies selective pressure
• Estimate t* ≈ ln n / ln s
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Innovation Time
• Innovation time ti = average time to get a

better individual through crossover &
mutation

• Let pi = probability a single crossover
produces a better individual

• Number of individuals undergoing
crossover = pc n

• Probability of improvement = pi pc n
• Estimate: ti ≈ 1 / (pc pi n)
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Steady State Innovation
• Bad: t* < ti

– because once you have takeover, crossover
does no good

• Good: ti < t*

– because each time a better individual is
produced, the t* clock resets

– steady state innovation
• Innovation number:
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Feasible Region
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Other Algorithms Inspired by
Genetics and Evolution

• Evolutionary Programming
– natural representation, no crossover, time-varying

continuous mutation
• Evolutionary Strategies

– similar, but with a kind of recombination
• Genetic Programming

– like GA, but program trees instead of strings
• Classifier Systems

– GA + rules + bids/payments
• and many variants & combinations…
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Additional Bibliography

1. Goldberg, D.E.  The Design of Innovation:
Lessons from and for Competent Genetic
Algorithms.  Kluwer, 2002.

2. Milner, R.  The Encyclopedia of
Evolution.  Facts on File, 1990.

VI
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VI. Cooperation & Competition

 Game Theory and the Iterated
Prisoner’s Dilemma
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The Rudiments of Game Theory
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Leibniz on Game Theory

• “Games combining chance and skill give the best
representation of human life, particularly of
military affairs and of the practice of medicine
which necessarily depend partly on skill and partly
on chance.” — Leibniz (1710)

• “… it would be desirable to have a complete study
made of games, treated mathematically.”
 — Leibniz (1715)
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Origins of Modern Theory

• 1928: John von Neumann: optimal strategy for
two-person zero-sum games
– von Neumann: mathematician & pioneer computer

scientist (CAs, “von Neumann machine”)
• 1944: von Neumann & Oskar Morgenstern:Theory

of Games and Economic Behavior
– Morgenstern: famous mathematical economist

• 1950: John Nash: Non-cooperative Games
– his PhD dissertation (27 pages)
– “genius,” Nobel laureate (1994), schizophrenic
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Classification of Games

• Games of Chance
– outcome is independent of players’ actions
– “uninteresting” (apply probability theory)

• Games of Strategy
– outcome is at least partially dependent on

players’ actions
– completely in chess
– partially in poker
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Classification of Strategy Games

• Number of players (1, 2, 3, …, n)
• Zero-sum or non zero-sum
• Essential or inessential
• Perfect or imperfect information
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Zero-sum vs. Non Zero-sum

• Zero-sum: winnings of some is exactly
compensated by losses of others
– sum is zero for every set of strategies

• Non zero-sum:
– positive sum (mutual gain)
– negative sum (mutual loss)
– constant sum
– nonconstant sum (variable gain or loss)
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Essential vs. Inessential
• Essential: there is an advantage in forming

coalitions
– may involve agreements for payoffs,

cooperation, etc.
– can happen in zero-sum games only if n ≥ 3

(obviously!)
• Inessential: there is no such advantage

– “everyone for themselves”
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Perfect vs. Imperfect Information

• Perfect information: everyone has complete
information about all previous moves

• Imperfect information: some or all have
only partial information
– players need not have complete information

even about themselves (e.g. bridge)
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Strategies

• Strategy: a complete sequence of actions for a
player

• Pure strategy: the plan of action is completely
determined
– for each situation, a specific action is prescribed
– disclosing the strategy might or might not be

disadvantageous
• Mixed strategy: a probability is assigned to each

plan of action
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Von Neumann’s Solution for
Two-person Zero-sum Games
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Maximin Criterion

• Choose the strategy that maximizes the
minimum payoff

• Also called minimax: minimize the
maximum loss
– since it’s zero-sum, your loss is the negative of

your payoff
– pessimistic?
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Example
• Two mineral water companies competing for same

market
• Each has fixed cost of $5 000 (regardless of sales)
• Each company can charge $1 or $2 per bottle

– at price of $2 can sell 5 000 bottles, earning $10 000
– at price of $1 can sell 10 000 bottles, earning $10 000
– if they charge same price, they split market
– otherwise all sales are of lower priced water
– payoff = revenue – $5 000

Example from McCain’s Game Theory: An Introductory Sketch
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Payoff Matrix

0, 0–5000, 5000price = $2

5000, –50000, 0price = $1
Apollinaris

price = $2price = $1

Perrier

11/20/07 38

Maximin for A.

0, 0–5000, 5000price = $2

5000, –50000, 0price = $1
Apollinaris

price = $2price = $1

Perrierminimum at $1

minimum at $2

Maximin
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Maximin for P.

0, 0–5000, 5000price = $2

5000, –50000, 0price = $1
Apollinaris

price = $2price = $1

Perrier
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Maximin Equilibrium

0, 0–5000, 5000price = $2

5000, –50000, 0price = $1
Apollinaris

price = $2price = $1

Perrier
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Implications of the Equilibrium

• If both companies act “rationally,” they will
pick the equilibrium prices

• If either behaves “irrationally,” the other
will benefit (if it acts “rationally”)
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Matching Pennies

• Al and Barb each independently picks either
heads or tails

• If they are both heads or both tails, Al wins
• If they are different, Barb wins
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Payoff Matrix

+1, –1–1, +1tail

–1, +1+1, –1head
Al

tailhead

Barb
Minimum of each

pure strategy is the same
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Mixed Strategy

• Although we cannot use maximin to select a
pure strategy, we can use it to select a
mixed strategy

• Take the maximum of the minimum payoffs
over all assignments of probabilities

• von Neumann proved you can always find
an equilibrium if mixed strategies are
permitted
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Analysis

• Let PA = probability Al picks head
• and PB = probability Barb picks head
• Al’s expected payoff:

E{A} = PA PB – PA (1 – PB) – (1 – PA) PB
+ (1 – PA) (1 – PB)

= (2 PA – 1) (2 PB – 1)
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Al’s Expected Payoff
from Penny Game
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How Barb’s Behavior Affects
Al’s Expected Payoff
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How Barb’s Behavior Affects
Al’s Expected Payoff
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More General Analysis
(Differing Payoffs)

• Let A’s payoffs be:
H = HH, h = HT, t = TH, T = TT

• E{A} = PAPBH + PA(1 – PB)h + (1 – PA)PBt
+ (1 – PA)(1 – PB)T
= (H + T – h – t)PAPB + (h – T)PA + (t – T)PB + T

• To find saddle point set ∂E{A}/∂PA = 0 and ∂
E{A}/∂PB = 0 to get:

! 

P
A

=
T " t

H + T " h " t
, P

B
=

T " h

H + T " h " t
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Random Rationality

 “It seems difficult, at first, to accept the idea
that ‘rationality’ — which appears to
demand a clear, definite plan, a
deterministic resolution — should be
achieved by the use of probabilistic devices.
Yet precisely such is the case.”

—Morgenstern
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Probability in Games of Chance
and Strategy

• “In games of chance the task is to determine
and then to evaluate probabilities inherent in
the game;

• in games of strategy we introduce
probability in order to obtain the optimal
choice of strategy.”

— Morgenstern
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Review of von Neumann’s
Solution

• Every two-person zero-sum game has a
maximin solution, provided we allow mixed
strategies

• But— it applies only to two-person zero-
sum games

• Arguably, few “games” in real life are zero-
sum, except literal games (i.e., invented
games for amusement)
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Nonconstant Sum Games

• There is no agreed upon definition of
rationality for nonconstant sum games

• Two common criteria:
– dominant strategy equilibrium
– Nash equilibrium

11/20/07 54

Dominant Strategy Equilibrium

• Dominant strategy:
– consider each of opponents’ strategies, and

what your best strategy is in each situation
– if the same strategy is best in all situations, it is

the dominant strategy
• Dominant strategy equilibrium: occurs if

each player has a dominant strategy and
plays it
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Another Example

50, 5010, 90–20, 40p = 3

90, 1020, 20–10, 50p = 2

40, –2050, –100, 0p = 1

Alpha

p = 3p = 2p = 1

BetaPrice
Competition

There is no dominant strategy

Example from McCain’s Game Theory: An Introductory Sketch 11/20/07 56

Nash Equilibrium

• Developed by John Nash in 1950
• His 27-page PhD dissertation:

Non-Cooperative Games
• Received Nobel Prize in Economics for it in

1994
• Subject of A Beautiful Mind
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Definition of Nash Equilibrium

• A set of strategies with the property:
No player can benefit by changing actions
while others keep strategies unchanged

• Players are in equilibrium if any change of
strategy would lead to lower reward for that
player

• For mixed strategies, we consider expected
reward
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Another Example (Reconsidered)

50, 5010, 90–20, 40p = 3

90, 1020, 20–10, 50p = 2

40, –2050, –100, 0p = 1

Alpha

p = 3p = 2p = 1

BetaPrice
Competition

Not a Nash equilibrium
Example from McCain’s Game Theory: An Introductory Sketch

better for Alphabetter for Beta
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The Nash Equilibrium

50, 5010, 90–20, 40p = 3

90, 1020, 20–10, 50p = 2

40, –2050, –100, 0p = 1

Alpha

p = 3p = 2p = 1

BetaPrice
Competition

Example from McCain’s Game Theory: An Introductory Sketch

Nash equilibrium
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Extensions of the Concept of a
Rational Solution

• Every maximin solution is a dominant
strategy equilibrium

• Every dominant strategy equilibrium is a
Nash equilibrium
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Cooperation Better for Both:
A Dilemma

50, 5010, 90–20, 40p = 3

90, 1020, 20–10, 50p = 2

40, –2050, –100, 0p = 1

Alpha

p = 3p = 2p = 1

BetaPrice
Competition

Example from McCain’s Game Theory: An Introductory Sketch

Cooperation
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Dilemmas

• Dilemma: “A situation that requires  choice
between options that are or seem equally
unfavorable or mutually exclusive”

– Am. Her. Dict.
• In game theory: each player acts rationally,

but the result is undesirable (less reward)


