
Part 7: Neural Networks & Learning 11/28/07

1

11/28/07 1

Lecture 27

11/28/07 2

Spatial Effects
• Previous simulation assumes that each agent

is equally likely to interact with each other
• So strategy interactions are proportional to

fractions in population
• More realistically, interactions with

“neighbors” are more likely
– “Neighbor” can be defined in many ways

• Neighbors are more likely to use the same
strategy

11/28/07 3

Spatial Simulation

• Toroidal grid
• Agent interacts only with eight neighbors
• Agent adopts strategy of most successful

neighbor
• Ties favor current strategy

11/28/07 4

NetLogo Simulation of
Spatial IPD

Run SIPD.nlogo

11/28/07 5

Typical Simulation (t = 1)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D

11/28/07 6

Typical Simulation (t = 5)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D

Part 7: Neural Networks & Learning 11/28/07

2

11/28/07 7

Typical Simulation (t = 10)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D

11/28/07 8

Typical Simulation (t = 10)
Zooming In

11/28/07 9

Typical Simulation (t = 20)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D

11/28/07 10

Typical Simulation (t = 50)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D

11/28/07 11

Typical Simulation (t = 50)
Zoom In

11/28/07 12

SIPD Without Noise

Part 7: Neural Networks & Learning 11/28/07

3

11/28/07 13

Conclusions: Spatial IPD

• Small clusters of cooperators can exist in
hostile environment

• Parasitic agents can exist only in limited
numbers

• Stability of cooperation depends on
expectation of future interaction

• Adaptive cooperation/defection beats
unilateral cooperation or defection

11/28/07 14

Additional Bibliography
1. von Neumann, J., & Morgenstern, O. Theory of Games

and Economic Behavior, Princeton, 1944.
2. Morgenstern, O. “Game Theory,” in Dictionary of the

History of Ideas, Charles Scribners, 1973, vol. 2, pp.
263-75.

3. Axelrod, R. The Evolution of Cooperation. Basic
Books, 1984.

4. Axelrod, R., & Dion, D. “The Further Evolution of
Cooperation,” Science 242 (1988): 1385-90.

5. Poundstone, W. Prisoner’s Dilemma. Doubleday, 1992.

Part VII

11/28/07 15

VII. Neural Networks
and Learning

11/28/07 16

Supervised Learning

• Produce desired outputs for training inputs
• Generalize reasonably & appropriately to

other inputs
• Good example: pattern recognition
• Feedforward multilayer networks

11/28/07 17

Feedforward Network

. .
 .

. .
 . . .
 . . .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

11/28/07 18

Typical Artificial Neuron

inputs

connection
weights

threshold

output

Part 7: Neural Networks & Learning 11/28/07

4

11/28/07 19

Typical Artificial Neuron

linear
combination

net input
(local field)

activation
function

11/28/07 20

Equations

!

hi = wijs j
j=1

n

"

$
% %

&

'
(()*

h =Ws)*

Net input:

!

" s
i
=# h

i()

" s =# h()

Neuron output:

11/28/07 21

Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1

θ

!

h = w j x j

j=1

n

"

$
% %

&

'
(()*

=)* + w j x j

j=1

n

"

11/28/07 22

Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1
θ

!

h = w j x j

j=1

n

"

$
% %

&

'
(()*

=)* + w j x j

j=1

n

"

–1

!

h = w
0
x

0
+ w j x j =

j=1

n

" w j x j = ˜ w # ˜ x

j= 0

n

"

!

Let x
0

= "1 and w
0

= #

= w0

x0 =

11/28/07 23

Credit Assignment Problem

. .
 .

. .
 . . .
 . . .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

How do we adjust the weights of the hidden layers?

. . .

Desired
output

11/28/07 24

NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo

Part 7: Neural Networks & Learning 11/28/07

5

11/28/07 25

Adaptive System

S F

Pk PmP1 … …

System
Evaluation Function

(Fitness, Figure of Merit)

Control Parameters
C

Control
Algorithm

11/28/07 26

Gradient

!

"F

"P
k

 measures how F is altered by variation of P
k

!

"F =

#F
#P

1

M

#F
#P

k

M

#F
#P

m

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

!

"F points in direction of maximum increase in F

11/28/07 27

Gradient Ascent
on Fitness Surface

+
–

∇F

gradient ascent

11/28/07 28

Gradient Ascent
by Discrete Steps

+
–

∇F

11/28/07 29

Gradient Ascent is Local
But Not Shortest

+
–

11/28/07 30

Gradient Ascent Process

!

˙ P ="#F P()

!

Change in fitness :

˙ F =
dF

d t
=

"F

"P
k

dP
k

d tk=1

m

= $F()
k

˙ P
k

k=1

m

#

˙ F =$F % ˙ P

!

˙ F ="F #$"F =$ "F
2

% 0

Therefore gradient ascent increases fitness
(until reaches 0 gradient)

Part 7: Neural Networks & Learning 11/28/07

6

11/28/07 31

General Ascent in Fitness

!

Note that any adaptive process P t() will increase

 fitness provided :

0 < ˙ F ="F # ˙ P = "F ˙ P cos$

where $ is angle between "F and ˙ P

!

Hence we need cos" > 0

or " < 90
o

11/28/07 32

General Ascent
on Fitness Surface

+
–

∇F

11/28/07 33

Fitness as Minimum Error

!

Suppose for Q different inputs we have target outputs t1,K,tQ

!

Suppose for parameters P the corresponding actual outputs

 are y1,K,yQ

!

Suppose D t,y()" 0,#[) measures difference between

 target & actual outputs

!

Let E q = D tq ,yq() be error on qth sample

!

Let F P() = " E
q
P() = " D t

q
,y

q
P()[]

q=1

Q

#
q=1

Q

#

11/28/07 34

Gradient of Fitness

!

"F =" # E
q

q

$
%

&
' '

(

)
* * = # "E q

q

$

!

"Eq

"Pk
=

"

"Pk
D t

q
,y

q()

!

=
"D tq,yq()

"y j

q

j

#
"y j

q

"Pk

!

=
dD t

q
,y

q()
dy

q
"
#yq

#Pk

!

= "
y
qD t

q
,y

q() # $y
q

$Pk

11/28/07 35

Jacobian Matrix

!

Define Jacobian matrix J
q

=

"y
1

q

"P
1

L
"y

1

q

"Pm
M O M

"yn
q

"P
1

L
"yn

q

"Pm

$

%
%
%
%

&

'

(
(
(
(

!

Note J
q " #n$m

 and %D tq,yq()" #n$1

!

Since "E q()
k

=
#Eq

#Pk
=

#y j

q

#Pk

#D tq,yq()
#y j

q

j

$,

!

"#E
q = J

q()
T

#D t
q
,y

q()

11/28/07 36

Derivative of Squared Euclidean
Distance

!

Suppose D t,y() = t " y
2

= ti " yi()
2

i
#

!

"D t # y()
"y j

=
"

"y j

ti # yi()
2

i

$ =
" ti # yi()

2

"y ji

$

!

=
d t j " y j()

2

d y j

= "2 t j " y j()

!

"
dD t,y()
dy

= 2 y # t()

Part 7: Neural Networks & Learning 11/28/07

7

11/28/07 37

Gradient of Error on qth Input

!

"Eq

"Pk
=
dD t

q
,y

q()
dy

q
#
"yq

"Pk

= 2 yq $ tq() #
"yq

"Pk

= 2 y j

q $ t j
q()
"y j

q

"Pk
j

%

!

"E
q = 2 Jq()

T

y
q
t

q()

11/28/07 38

Recap

!

To know how to decrease the differences between

 actual & desired outputs,

we need to know elements of Jacobian,
"y j

q

"Pk
,

which says how jth output varies with kth parameter

(given the qth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network

!

˙ P =" J
q()

T

t
q # y

q()
q

$

