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Spatial Effects

Previous simulation assumes that each agent
is equally likely to interact with each other
So strategy interactions are proportional to
fractions in population

* More realistically, interactions with
“neighbors” are more likely

— “Neighbor” can be defined in many ways

* Neighbors are more likely to use the same
strategy
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Spatial Simulation

* Toroidal grid
» Agent interacts only with eight neighbors

» Agent adopts strategy of most successful
neighbor

* Ties favor current strategy
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NetLogo Simulation of
Spatial IPD

Run STPD.nlogo
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Typical Simulation (# = 1)
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Typical Simulation (¢ = 10)

lors:

ALL-C
TFT

PAV
ALL-D

11/28/07 7

11/28/07

Typical Simulation (¢ = 10)
Zooming In
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Typical Simulation (¢ = 20)
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Typical Simulation (¢ = 50)
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Typical Simulation (¢ = 50)
Zoom In
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hostile environment

numbers

Stability of cooperation depends on
expectation of future interaction

Adaptive cooperation/defection beats
unilateral cooperation or defection
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Conclusions: Spatial IPD
* Small clusters of cooperators can exist in

* Parasitic agents can exist only in limited
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VII. Neural Networks
and Learning
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Supervised Learning

* Produce desired outputs for training inputs

* Generalize reasonably & appropriately to
other inputs

* Good example: pattern recognition
* Feedforward multilayer networks
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Feedforward Network
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7 LY_I
input hidden output
layer layers layer

Typical Artificial Neuron

Y connection

weights

inputs < output

threshold
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Typical Artificial Neuron

linear activation
combination  function

v

O CT) S
net input
(local field)
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Equations
Net input: h; = i W,:,.Sj) -0
=1
h=Ws-0
Neuron output: s = o'(hi)
s'=o(h)
12807 2%

Treating Threshold as Weight
h= (Z w,.xl.) -0
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Treating Threshold as Weight

Letx,=—-land w, =0

" "
h=wgx, +2wixj =ijxl =w-X
j=1 Jj=0
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Credit Assignment Problem

How do we adjust the weights of the hidden layers?

Desired
output
input hidden output
layer layers layer
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NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo
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Adaptive System

Evaluation Function
System (Fitness, Figure of Merit)

Control
Algorithm

§od-d

'y
Control Parameters
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Gradient

JF " -
—— measures how F is altered by variation of P,

k

&%Pl
VF = "%Pk

F,
Var,

VF points in direction of maximum increase in F
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Gradient Ascent
on Fitness Surface
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Gradient Ascent
by Discrete Steps
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Gradient Ascent is Local
But Not Shortest
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Gradient Ascent Process
P =nVF(P)
Change in fitness:

. dF m JF dP m N
R e
F=VF-P
F =VF -nVF = VF| 20

Therefore gradient ascent increases fitness
(until reaches 0 gradient)
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General Ascent in Fitness
Note that any adaptive process P( t) will increase
fitness provided :
0<F=VF-P= HVFHHPHCOS(;)

where ¢ is angle between VF and P

Hence we need cosg >0

or |g| < 90°
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General Ascent
on Fitness Surface
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Fitness as Minimum Error

Suppose for Q different inputs we have target outputs t',...,t°

Suppose for parameters P the corresponding actual outputs
arey',...,y?

Suppose D(t,y) € [0,%) measures difference between

target & actual outputs

LetE? = D(t”,y”) be error on gth sample
0 0
Let F(P) ==Y E*(P) ==Y D[t',y*(P)]
g=1 g=1
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Gradient of Fitness

VF =V|

2

E’|= —EVE"
q

GE! 9 aD(t",y") dy"
9P, _TPkD(tq’yq) ET&P,

J

_4D(t'y) oy
T dy? 197

=V, .D(t"y’ ‘?y/
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Jacobian Matrix
! / .: &y,,
Note J* € R™" and VD(t",y") [Shike

IE' g oyt aD(t"y")
P, “oP, W

Define Jacobian matrix J? =

Since (VEq>k =

E9 = (Jq)TVD(t",y”)
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Derivative of Squared Euclidean
Distance

)=lt-3l = X (. -5y
M=i2(ti_yi)2=z‘9(li_)’i)z

Suppose D

%, ;5 NG
2
d(tj—y,)
- 2t -
dy, (t,-2,)

dD(ty)

=2(y-t
oy "2y
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Gradient of Error on ¢'" Input Recap
o T
gET  dD(t,y?) gy P=ny (1) (t'-y")
oP,  dy' P, ,
To know how to decrease the differences between
q
- 2(y" _tq). gy actual & desired outputs,
oP,

q
q we need to know elements of Jacobian, ﬁy/ s
_22 ( q _,4)% 9Py
Sea\i g,

vEr 21 (v )

which says how jth output varies with kth parameter
(given the gth input)
The Jacobian depends on the specific form of the system,

in this case, a feedforward neural network
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