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Spatial Effects
• Previous simulation assumes that each agent

is equally likely to interact with each other
• So strategy interactions are proportional to

fractions in population
• More realistically, interactions with

“neighbors” are more likely
– “Neighbor” can be defined in many ways

• Neighbors are more likely to use the same
strategy
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Spatial Simulation

• Toroidal grid
• Agent interacts only with eight neighbors
• Agent adopts strategy of most successful

neighbor
• Ties favor current strategy
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NetLogo Simulation of
Spatial IPD

Run SIPD.nlogo
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Typical Simulation (t = 1)

Colors:
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Typical Simulation (t = 5)

Colors:
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Typical Simulation (t = 10)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D

11/28/07 8

Typical Simulation (t = 10)
Zooming In
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Typical Simulation (t = 20)
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Typical Simulation (t = 50)

Colors:
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Typical Simulation (t = 50)
Zoom In
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SIPD Without Noise
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Conclusions: Spatial IPD

• Small clusters of cooperators can exist in
hostile environment

• Parasitic agents can exist only in limited
numbers

• Stability of cooperation depends on
expectation of future interaction

• Adaptive cooperation/defection beats
unilateral cooperation or defection
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VII. Neural Networks
and Learning
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Supervised Learning

• Produce desired outputs for training inputs
• Generalize reasonably & appropriately to

other inputs
• Good example: pattern recognition
• Feedforward multilayer networks
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Feedforward Network
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Typical Artificial Neuron
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connection
weights

threshold

output
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Typical Artificial Neuron

linear
combination

net input
(local field)

activation
function
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Equations
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Treating Threshold as Weight
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Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1
θ

! 

h = w j x j

j=1

n

"
# 

$ 
% % 

& 

' 
( ( )*

= )* + w j x j

j=1

n

"

–1

! 

h = w
0
x

0
+ w j x j =

j=1

n

" w j x j = ˜ w # ˜ x 

j= 0

n

"

! 

Let x
0

= "1 and w
0

= #

= w0

x0 =

11/28/07 23

Credit Assignment Problem
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output
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hidden
layers

How do we adjust the weights of the hidden layers?

. . .

Desired
output
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NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo
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Adaptive System
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System
Evaluation Function
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Gradient
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"F points in direction of maximum increase in F
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Gradient Ascent
on Fitness Surface
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Gradient Ascent
by Discrete Steps
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Gradient Ascent is Local
But Not Shortest
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Gradient Ascent Process
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General Ascent in Fitness

! 

Note that any adaptive process P t( ) will increase

 fitness provided :
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General Ascent
on Fitness Surface
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Fitness as Minimum Error
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Gradient of Fitness
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Jacobian Matrix
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Derivative of Squared Euclidean
Distance
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Gradient of Error on qth Input
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Recap

! 

To know how to decrease the differences between

 actual &  desired outputs,

we need to know elements of Jacobian, 
"y j

q

"Pk
,

which says how jth output varies with kth parameter

(given the qth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network
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