
A.

The Hopfield Network

9/16/08

Typical Artificial Neuron

9/16/08

Equations

$$
\begin{array}{ll}
\text { Net input: } & h_{i}=\left(\sum_{j=1}^{n} w_{i j} s_{j}\right)-\theta \\
& \mathbf{h}=\mathbf{W s}-\theta \\
\text { New neural state: } & \begin{array}{l}
s_{i}^{\prime}=\sigma\left(h_{i}\right) \\
\\
\mathbf{s}^{\prime}=\sigma(\mathbf{h})
\end{array}
\end{array}
$$

Hopfield Network

- Symmetric weights: $w_{i j}=w_{j i}$
- No self-action: $w_{i i}=0$
- Zero threshold: $\theta=0$
- Bipolar states: $s_{i} \in\{-1,+1\}$
- Discontinuous bipolar activation function:

$$
\sigma(h)=\operatorname{sgn}(h)= \begin{cases}-1, & h<0 \\ +1, & h>0\end{cases}
$$

9/16/08

What to do about $h=0$?

- There are several options:
- $\sigma(0)=+1$
- $\sigma(0)=-1$
- $\sigma(0)=-1$ or +1 with equal probability
- $h_{i}=0 \Rightarrow$ no state change ($s_{i}{ }^{\prime}=s_{i}$)
- Not much difference, but be consistent
- Last option is slightly preferable, since symmetric

9/16/08

Positive Coupling

- Positive sense (sign)
- Large strength

9/16/08

Negative Coupling

- Negative sense (sign)
- Large strength

9/16/08

Weak Coupling

- Either sense (sign)
- Little strength

State $=-1 \&$ Local Field <0

State $=-1 \&$ Local Field >0

State $=+1 \&$ Local Field <0

16

NetLogo Demonstration of
Hopfield State Updating
Run Hopfield-update.nlogo
9,008

Hopfield Net as Soft Constraint Satisfaction System

- States of neurons as yes/no decisions
- Weights represent soft constraints between decisions
- hard constraints must be respected
- soft constraints have degrees of importance
- Decisions change to better respect constraints
- Is there an optimal set of decisions that best respects all constraints?

Demonstration of Hopfield Net	
Dynamics I	
Run Hopfield-dynamics.nlogo	
9ו608	

Convergence

- Does such a system converge to a stable state?
- Under what conditions does it converge?
- There is a sense in which each step relaxes the "tension" in the system
- But could a relaxation of one neuron lead to greater tension in other places?

Quantifying "Tension"

- If $w_{i j}>0$, then s_{i} and s_{j} want to have the same sign $\left(s_{i} s_{j}=+1\right)$
- If $w_{i j}<0$, then s_{i} and s_{j} want to have opposite signs $\left(s_{i} s_{j}=-1\right)$
- If $w_{i j}=0$, their signs are independent
- Strength of interaction varies with $\left|w_{i j}\right|$
- Define disharmony ("tension") $D_{i j}$ between neurons i and j :
$D_{i j}=-s_{i} w_{i j} s_{j}$
$D_{i j}<0 \Rightarrow$ they are happy
$D_{i j}>0 \Rightarrow$ they are unhappy
9/16/08

Total Energy of System

The "energy" of the system is the total "tension" (disharmony) in it:

$$
\begin{aligned}
E\{\mathbf{s}\} & =\sum_{\langle i j\rangle} D_{i j}=-\sum_{\langle j\rangle} s_{i} w_{i j} s_{j} \\
& =-\frac{1}{2} \sum_{i} \sum_{j \neq i} s_{i} w_{i j} s_{j} \\
& =-\frac{1}{2} \sum_{i} \sum_{j} s_{i} w_{i j} s_{j} \\
& =-\frac{1}{2} \mathbf{s}^{\mathrm{T}} \mathbf{W} \mathbf{s}
\end{aligned}
$$

```
Review of Some Vector Notation
\(\mathbf{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right)^{\mathrm{T}}\)
    (column vectors)
    \(\mathbf{x}^{\mathrm{T}} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}=\mathbf{x} \cdot \mathbf{y}\)
    (inner product)
    \(\mathbf{x y}^{\mathrm{T}}=\left(\begin{array}{ccc}x_{1} y_{1} & \cdots & x_{1} y_{n} \\ \vdots & \ddots & \vdots \\ x_{m} y_{1} & \cdots & x_{m} y_{n}\end{array}\right) \quad\) (outer product)
    \(\mathbf{x}^{\mathrm{T}} \mathbf{M y}=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} M_{i j} y_{j} \quad\) (quadratic form)
9/1608
```


Another View of Energy

The energy measures the number of neurons whose states are in disharmony with their local fields (i.e. of opposite sign):

$$
\begin{aligned}
E\{s\} & =-\frac{1}{2} \sum_{i} \sum_{j} s_{i} w_{i j} s_{j} \\
& =-\frac{1}{2} \sum_{i} s_{i} \sum_{i} w_{i j} s_{j} \\
& =-\frac{1}{2} \sum_{j} s_{i} h_{i} \\
& =-\frac{1}{2} \mathbf{s}^{\top} \mathbf{h}
\end{aligned}
$$

Do State Changes Decrease Energy?

- Suppose that neuron k changes state
- Change of energy:

$$
\begin{aligned}
\Delta E & =E\left\{\mathbf{s}^{\prime}\right\}-E\{\mathbf{s}\} \\
& =-\sum_{\langle i j\rangle} s_{i}^{\prime} w_{i j} s_{j}^{\prime}+\sum_{\langle i j\rangle} s_{i} w_{i j} s_{j} \\
& =-\sum_{j \neq k} s_{k}^{\prime} w_{k j} s_{j}+\sum_{j \neq k} s_{k} w_{k j} s_{j} \\
& =-\left(s_{k}^{\prime}-s_{k}\right) \sum_{j \neq k} w_{k j} s_{j} \\
& =-\Delta s_{k} h_{k} \\
& <0
\end{aligned}
$$

9/16/08

Energy Does Not Increase

- In each step in which a neuron is considered

$$
<0
$$ for update: $E\{\mathbf{s}(t+1)\}-E\{\mathbf{s}(t)\} \leq 0$

- Energy cannot increase
- Energy decreases if any neuron changes
- Must it stop?

Proof of Convergence in Finite Time

- There is a minimum possible energy:
- The number of possible states $\mathbf{s} \in\{-1,+1\}^{n}$ is finite
- Hence $E_{\text {min }}=\min \left\{E(\mathbf{s}) \mid \mathbf{s} \in\{ \pm 1\}^{n}\right\}$ exists
- Must show it is reached in a finite number of steps

9/16/08

Conclusion

- If we do asynchronous updating, the Hopfield net must reach a stable, minimum energy state in a finite number of updates
- This does not imply that it is a global minimum

9/16/08 29

Steps are of a Certain Minimum Size
If $h_{k}>0$, then (let $h_{\min }=\min$ of possible positive h)
$h_{k} \geq \min \left\{h \mid h=\sum_{j \neq k} w_{k j} s_{j} \wedge \mathbf{s} \in\{ \pm \mathbf{1}\}^{n} \wedge h>0\right\}={ }_{\mathrm{df}} h_{\text {min }}$
$\Delta E=-\Delta s_{k} h_{k}=-2 h_{k} \leq-2 h_{\min }$
If $h_{k}<0$, then (let $h_{\max }=\max$ of possible negative h)
$h_{k} \geq \max \left\{h \mid h=\sum_{j \neq k} w_{k j} s_{j} \wedge \mathbf{s} \in\{ \pm \mathbf{1}\}^{n} \wedge h<0\right\}={ }_{\mathrm{df}} h_{\text {max }}$
$\Delta E=-\Delta s_{k} h_{k}=2 h_{k} \leq 2 h_{\max }$
9/16/08

Lyapunov Functions

- A way of showing the convergence of discreteor continuous-time dynamical systems
- For discrete-time system:
- need a Lyapunov function E ("energy" of the state)
$-E$ is bounded below $\left(E\{\mathbf{s}\}>E_{\text {min }}\right)$
$-\Delta E<(\Delta E)_{\max } \leq 0$ (energy decreases a certain minimum amount each step)
- then the system will converge in finite time
- Problem: finding a suitable Lyapunov function

Example Limit Cycle with Synchronous Updating

9/16/08 31

The Hopfield Energy Function is Even

- A function f is odd if $f(-x)=-f(x)$, for all x
- A function f is even if $f(-x)=f(x)$, for all x
- Observe:

$$
E\{-\mathbf{s}\}=-\frac{1}{2}(-\mathbf{s})^{\mathrm{T}} \mathbf{W}(-\mathbf{s})=-\frac{1}{2} \mathbf{s}^{\mathrm{T}} \mathbf{W} \mathbf{s}=E\{\mathbf{s}\}
$$

9/16/08

Example of Association

Hopfield Net for Optimization and for Associative Memory

- For optimization:
- we know the weights (couplings)
- we want to know the minima (solutions)
- For associative memory:
- we know the minima (retrieval states)
- we want to know the weights

Example of Hebbian Learning: Pattern Imprinted

Example of Hebbian Learning:

 Partial Pattern Reconstruction

Mathematical Model of Hebbian

Learning for One Pattern
Let $W_{i j}=\left\{\begin{array}{cc}x_{i} x_{j}, & \text { if } i \neq j \\ 0, & \text { if } i=j\end{array}\right.$
Since $x_{i} x_{i}=x_{i}^{2}=1, \quad \mathbf{W}=\mathbf{x} \mathbf{x}^{\mathrm{T}}-\mathbf{I}$
For simplicity, we will include self-coupling:

$$
\mathbf{W}=\mathbf{x x}^{\mathrm{T}}
$$

A Single Imprinted Pattern is a Stable State

- Suppose $\mathbf{W}=\mathbf{x x}^{\mathrm{T}}$
- Then $\mathbf{h}=\mathbf{W} \mathbf{x}=\mathbf{x x}^{\mathrm{T}} \mathbf{x}=n \mathbf{x}$ since

$$
\mathbf{x}^{\mathrm{T}} \mathbf{x}=\sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n}(\pm \mathbf{1})^{2}=n
$$

- Hence, if initial state is $\mathbf{s}=\mathbf{x}$, then new state is $\mathbf{s}^{\prime}=\operatorname{sgn}(n \mathbf{x})=\mathbf{x}$
- May be other stable states (e.g., $-\mathbf{x}$)

Imprinting Multiple Patterns

- Let $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{p}$ be patterns to be imprinted
- Define the sum-of-outer-products matrix:

$$
\begin{aligned}
W_{i j} & =\frac{1}{n} \sum_{k=1}^{p} x_{i}^{k} x_{j}^{k} \\
\mathbf{W} & =\frac{1}{n} \sum_{k=1}^{p} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}}
\end{aligned}
$$

9/16/08

Questions

- How big is the basin of attraction of the imprinted pattern?
- How many patterns can be imprinted?
- Are there unneeded spurious stable states?
- These issues will be addressed in the context of multiple imprinted patterns

Definition of Covariance

Consider samples $\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right), \ldots,\left(x^{N}, y^{N}\right)$
Let $\bar{x}=\left\langle x^{k}\right\rangle$ and $\bar{y}=\left\langle y^{k}\right\rangle$
Covariance of x and y values:

$$
\begin{aligned}
C_{x y} & =\left\langle\left(x^{k}-\bar{x}\right)\left(y^{k}-\bar{y}\right)\right\rangle \\
& =\left\langle x^{k} y^{k}-\bar{x} y^{k}-x^{k} \bar{y}+\bar{x} \cdot \bar{y}\right\rangle \\
& =\left\langle x^{k} y^{k}\right\rangle-\bar{x}\left\langle y^{k}\right\rangle-\left\langle x^{k}\right\rangle \bar{y}+\bar{x} \cdot \bar{y} \\
& =\left\langle x^{k} y^{k}\right\rangle-\bar{x} \cdot \bar{y}-\bar{x} \cdot \bar{y}+\bar{x} \cdot \bar{y} \\
C_{x y} & =\left\langle x^{k} y^{k}\right\rangle-\bar{x} \cdot \bar{y}
\end{aligned}
$$

9/16/08

Weights \& the Covariance Matrix
Sample pattern vectors: $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{p}$
Covariance of $i^{\text {th }}$ and $j^{\text {th }}$ components:

$$
C_{i j}=\left\langle x_{i}^{k} x_{j}^{k}\right\rangle-\overline{x_{i}} \cdot \overline{x_{j}}
$$

If $\forall i: \overline{x_{i}}=0 \quad(\pm 1$ equally likely in all positions $)$:

$$
\begin{aligned}
& C_{i j}=\left\langle x_{i}^{k} x_{j}^{k}\right\rangle=\frac{1}{p} \sum_{k=1}^{p} x_{i}^{k} y_{j}^{k} \\
& \therefore \mathbf{W}=\frac{p}{n} \mathbf{C}
\end{aligned}
$$

9/16/08

Stability of Imprinted Memories

- Suppose the state is one of the imprinted patterns \mathbf{x}^{m}
- Then: $\mathbf{h}=\mathbf{W} \mathbf{x}^{m}=\left[\frac{1}{n} \sum_{k} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}}\right] \mathbf{x}^{m}$

$$
=\frac{1}{n} \sum_{k} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}} \mathbf{x}^{m}
$$

$=\frac{1}{n} \mathbf{x}^{m}\left(\mathbf{x}^{m}\right)^{\mathrm{T}} \mathbf{x}^{m}+\frac{1}{n} \sum_{k \neq m} \mathbf{x}^{k}\left(\mathbf{x}^{k}\right)^{\mathrm{T}} \mathbf{x}^{m}$
$=\mathbf{x}^{m}+\frac{1}{n} \sum_{k \neq m}\left(\mathbf{x}^{k} \cdot \mathbf{x}^{m}\right) \mathbf{x}^{k}$
9/16/08

Cosines and Inner products

$\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta_{\mathrm{uv}}$

If \mathbf{u} is bipolar, then $\|\mathbf{u}\|^{2}=\mathbf{u} \cdot \mathbf{u}=n$

Hence, $\mathbf{u} \cdot \mathbf{v}=\sqrt{n} \sqrt{n} \cos \theta_{\mathbf{u v}}=n \cos \theta_{\mathbf{u v}}$

Characteristics of Hopfield Memory

- Distributed ("holographic")
- every pattern is stored in every location (weight)
- Robust
- correct retrieval in spite of noise or error in patterns
- correct operation in spite of considerable weight damage or noise

Interpretation of Inner Products

- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}=n$ if they are identical
- highly correlated
- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}=-n$ if they are complementary - highly correlated (reversed)
- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}=0$ if they are orthogonal - largely uncorrelated
- $\mathbf{x}^{k} \cdot \mathbf{x}^{m}$ measures the crosstalk between patterns k and m

Conditions for Stability

Stability of entire pattern:
$\mathbf{x}^{m}=\operatorname{sgn}\left(\mathbf{x}^{m}+\frac{1}{n} \sum_{k \neq m} \mathbf{x}^{k} \cos \theta_{k m}\right)$

Stability of a single bit :

$$
x_{i}^{m}=\operatorname{sgn}\left(x_{i}^{m}+\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m}\right)
$$

Sufficient Conditions for Instability (Case 1)

Suppose $x_{i}^{m}=-1$. Then unstable if :

$$
\begin{aligned}
(-1)+\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m} & >0 \\
\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m} & >1
\end{aligned}
$$

9/16/08

Sufficient Conditions for Instability (Case 2)

Suppose $x_{i}^{m}=+1$. Then unstable if :

$$
\begin{aligned}
(+1)+\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m} & <0 \\
\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m} & <-1
\end{aligned}
$$

Sufficient Conditions for Stability
 $$
\left|\frac{1}{n} \sum_{k \neq m} x_{i}^{k} \cos \theta_{k m}\right| \leq 1
$$

The crosstalk with the sought pattern must be sufficiently small

Single Bit Stability Analysis

- For simplicity, suppose \mathbf{x}^{k} are random
- Then $\mathbf{x}^{k} \cdot \mathbf{x}^{m}$ are sums of n random ± 1
- binomial distribution \approx Gaussian
- in range $-n, \ldots,+n$
- with mean $\mu=0$
- and variance $\sigma^{2}=n$

- Probability sum $>t$:

$$
\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{t}{\sqrt{2 n}}\right)\right]
$$

[See "Review of Gaussian (Normal) Distributions" on course website]
9/16/08

Approximation of Probability

Let crosstalk $C_{i}^{m}=\frac{1}{n} \sum_{k \neq m} x_{i}^{k}\left(\mathbf{x}^{k} \cdot \mathbf{x}^{m}\right)$
We want $\operatorname{Pr}\left\{C_{i}^{m}>1\right\}=\operatorname{Pr}\left\{n C_{i}^{m}>n\right\}$
Note: $n C_{i}^{m}=\sum_{\substack{k=1 \\ k \neq m}}^{p} \sum_{j=1}^{n} x_{i}^{k} x_{j}^{k} x_{j}^{m}$
A sum of $n(p-1) \approx n p$ random $\pm 1 \mathrm{~s}$
Variance $\sigma^{2}=n p$
9/16/08

Sabulated Probability of Single-Bit Instability	
$\qquad$$P_{\text {error }}$ 0.105 0.1% 0.138 1% 0.185 5% 0.37 10% 0.61	

Spurious Attractors

- Mixture states:
- sums or differences of odd numbers of retrieval states
- number increases combinatorially with p
- shallower, smaller basins
- basins of mixtures swamp basins of retrieval states \Rightarrow overload
- useful as combinatorial generalizations?
- self-coupling generates spurious attractors
- Spin-glass states:
- not correlated with any finite number of imprinted patterns
- occur beyond overload because weights effectively random

Number of Stable Imprints

$$
(n=100)
$$

9/16/08
(fig from Bar-Yam)
84

Summary of Capacity Results

- Absolute limit: $p_{\max }<\alpha_{c} n=0.138 n$
- If a small number of errors in each pattern permitted: $p_{\text {max }} \propto n$
- If all or most patterns must be recalled perfectly: $p_{\text {max }} \propto n / \log n$
- Recall: all this analysis is based on random patterns
- Unrealistic, but sometimes can be arranged

9/16/08

