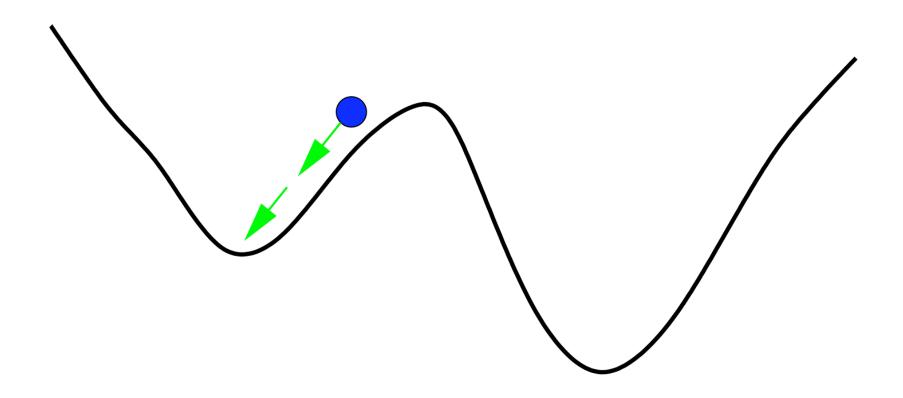
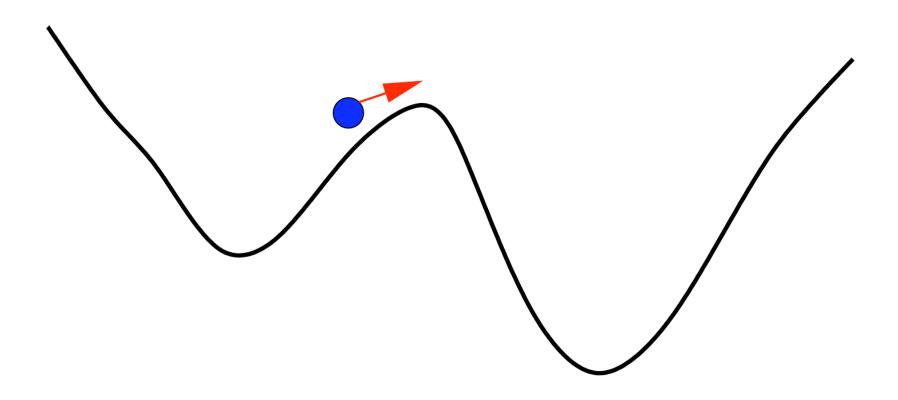
B. Stochastic Neural Networks

(in particular, the stochastic Hopfield network)

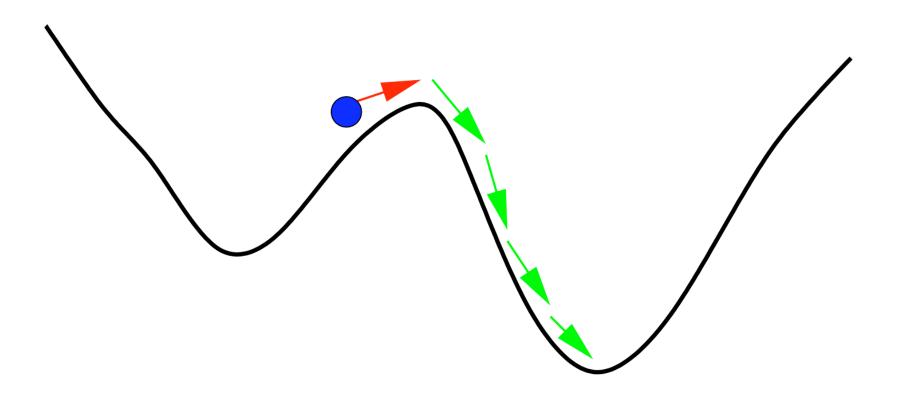
Trapping in Local Minimum



Escape from Local Minimum



Escape from Local Minimum



Motivation

- Idea: with low probability, go against the local field
 - move up the energy surface
 - make the "wrong" microdecision
- Potential value for optimization: escape from local optima
- Potential value for associative memory: escape from spurious states
 - because they have higher energy than imprinted states

The Stochastic Neuron

Deterministic neuron: $s'_i = \operatorname{sgn}(h_i)$

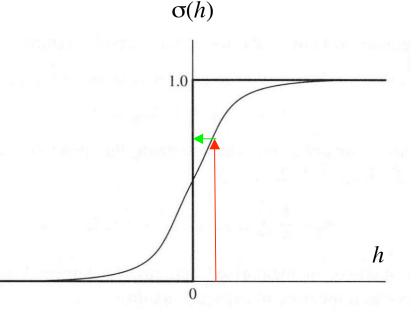
$$\Pr\{s_i' = +1\} = \Theta(h_i)$$

$$\Pr\{s_i' = -1\} = 1 - \Theta(h_i)$$

Stochastic neuron:

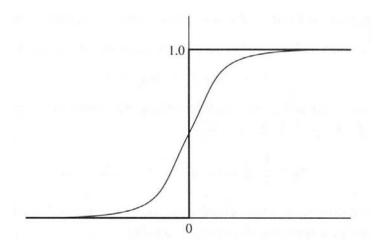
$$\Pr\{s_i' = +1\} = \sigma(h_i)$$

$$\Pr\{s_i' = -1\} = 1 - \sigma(h_i)$$



Logistic sigmoid:
$$\sigma(h) = \frac{1}{1 + \exp(-2h/T)}$$

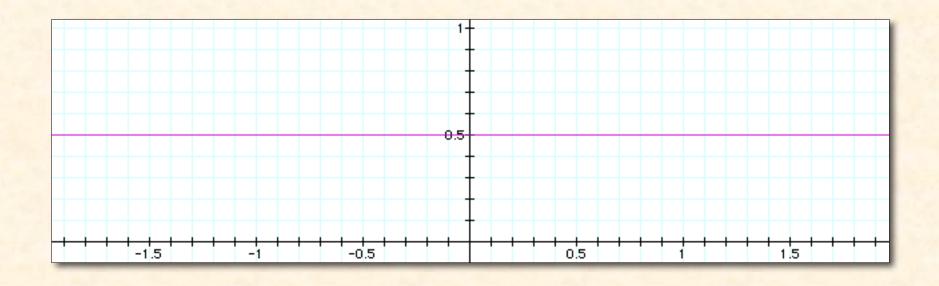
Properties of Logistic Sigmoid



$$\sigma(h) = \frac{1}{1 + e^{-2h/T}}$$

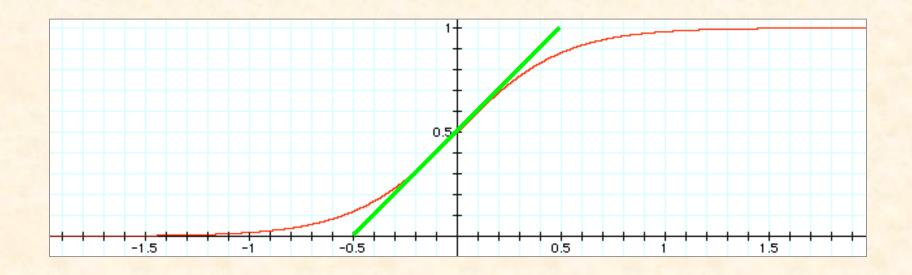
- As $h \to +\infty$, $\sigma(h) \to 1$
- As $h \to -\infty$, $\sigma(h) \to 0$
- $\sigma(0) = 1/2$

Logistic Sigmoid With Varying T



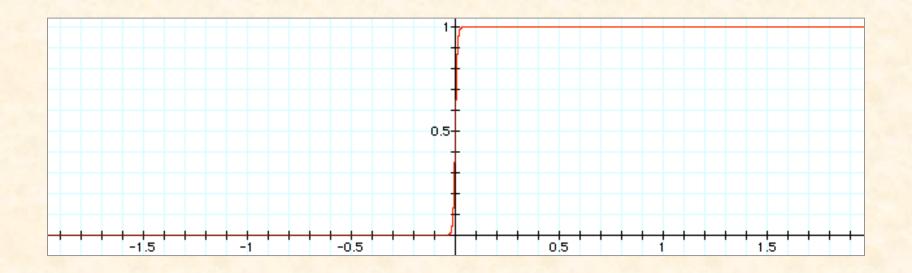
T varying from 0.05 to ∞ (1/T = β = 0, 1, 2, ..., 20)

Logistic Sigmoid T = 0.5

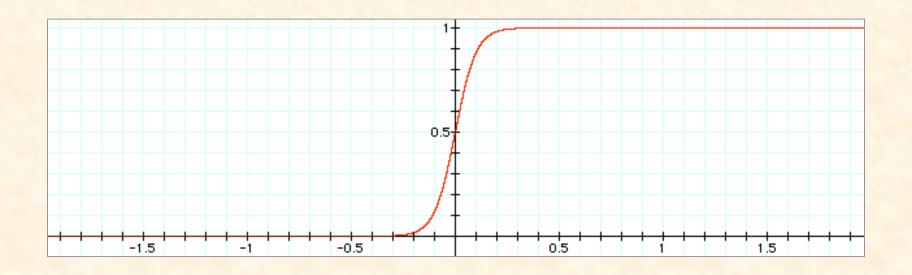


Slope at origin = 1/2T

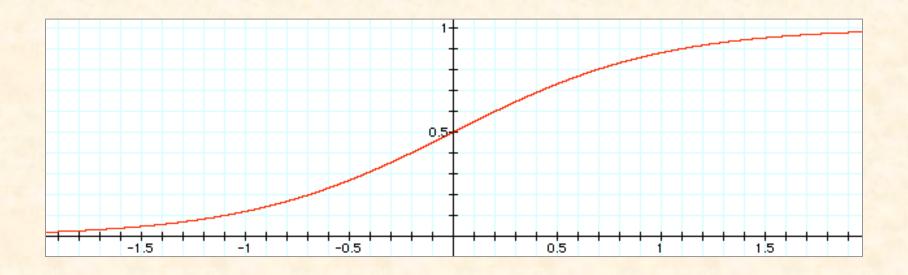
Logistic Sigmoid T = 0.01



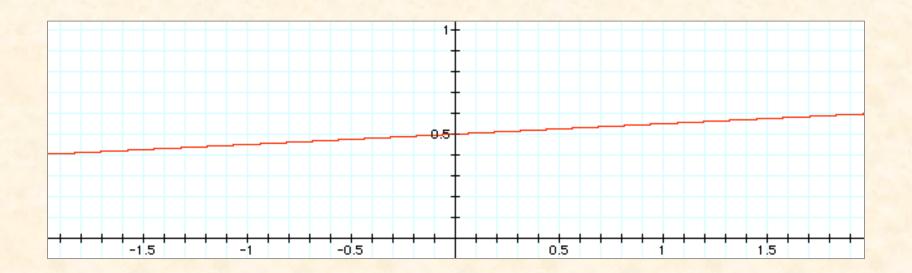
Logistic Sigmoid T = 0.1



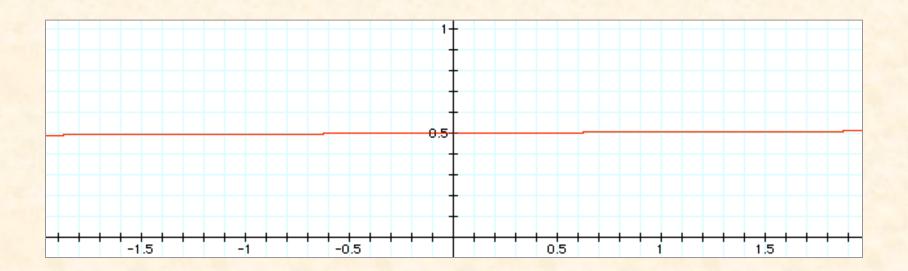
Logistic Sigmoid T = 1



Logistic Sigmoid T = 10



Logistic Sigmoid T = 100



Pseudo-Temperature

- Temperature = measure of thermal energy (heat)
- Thermal energy = vibrational energy of molecules
- A source of random motion
- Pseudo-temperature = a measure of nondirected (random) change
- Logistic sigmoid gives same equilibrium probabilities as Boltzmann-Gibbs distribution

Transition Probability

Recall, change in energy
$$\Delta E = -\Delta s_k h_k$$

= $2s_k h_k$

$$\Pr\{s'_k = \pm 1 | s_k = \mp 1\} = \sigma(\pm h_k) = \sigma(-s_k h_k)$$

$$\Pr\{s_k \to -s_k\} = \frac{1}{1 + \exp(2s_k h_k/T)}$$
$$= \frac{1}{1 + \exp(\Delta E/T)}$$

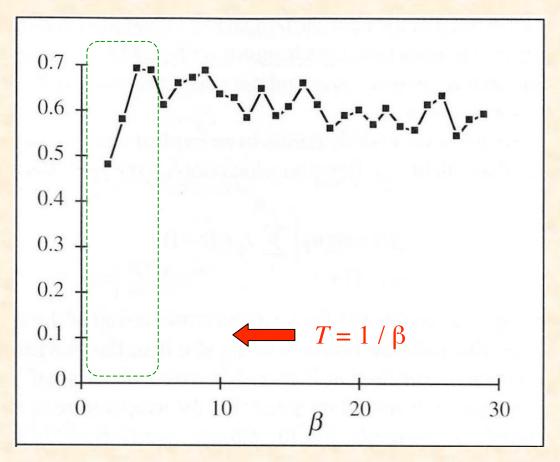
Stability

- Are stochastic Hopfield nets stable?
- Thermal noise prevents absolute stability
- But with symmetric weights: average values $\langle s_i \rangle$ become time invariant

Does "Thermal Noise" Improve Memory Performance?

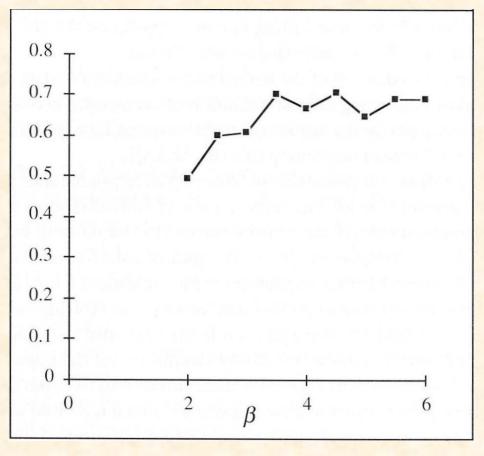
- Experiments by Bar-Yam (pp. 316-20):
 - n = 100
 - p = 8
- Random initial state
- To allow convergence, after 20 cycles set T = 0
- How often does it converge to an imprinted pattern?

Probability of Random State Converging on Imprinted State (*n*=100, *p*=8)



(fig. from Bar-Yam)

Probability of Random State Converging on Imprinted State (n=100, p=8)

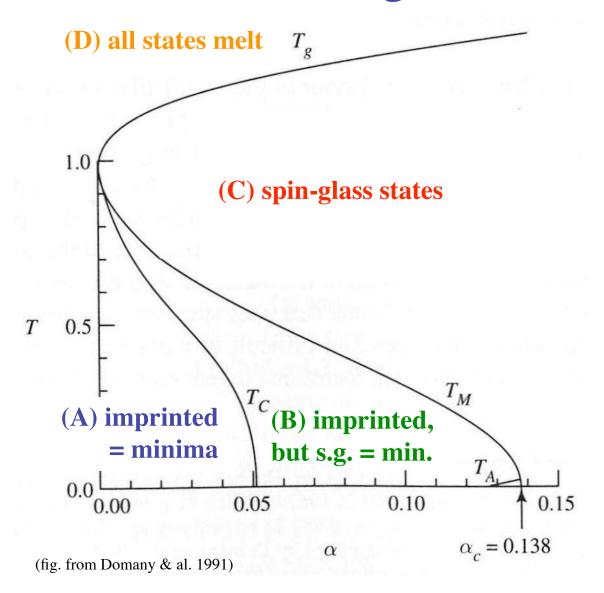


(fig. from Bar-Yam)

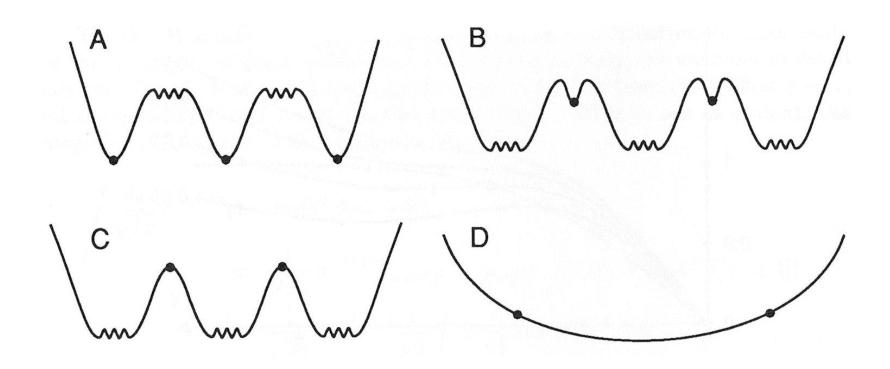
Analysis of Stochastic Hopfield Network

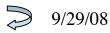
- Complete analysis by Daniel J. Amit & colleagues in mid-80s
- See D. J. Amit, *Modeling Brain Function:* The World of Attractor Neural Networks, Cambridge Univ. Press, 1989.
- The analysis is beyond the scope of this course

Phase Diagram

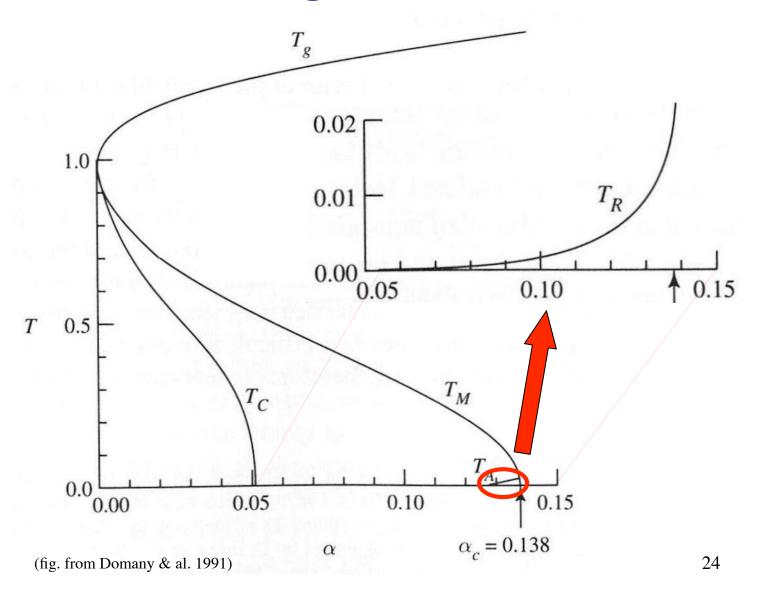


Conceptual Diagrams of Energy Landscape





Phase Diagram Detail



Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)

Dilemma

- In the early stages of search, we want a high temperature, so that we will explore the space and find the basins of the global minimum
- In the later stages we want a low temperature, so that we will relax into the global minimum and not wander away from it
- Solution: decrease the temperature gradually during search

Quenching vs. Annealing

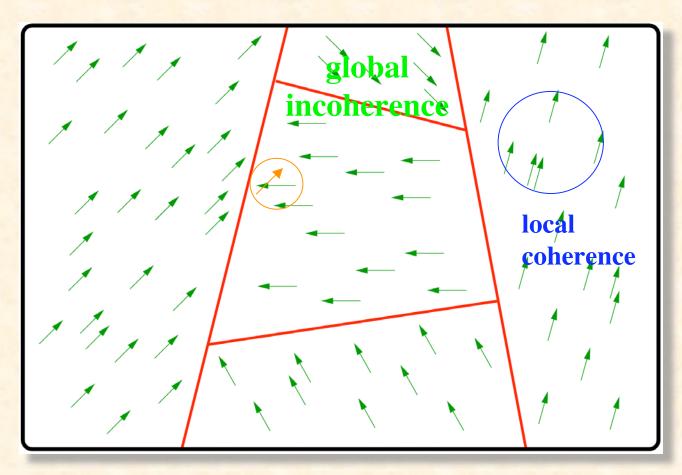
• Quenching:

- rapid cooling of a hot material
- may result in defects & brittleness
- local order but global disorder
- locally low-energy, globally frustrated

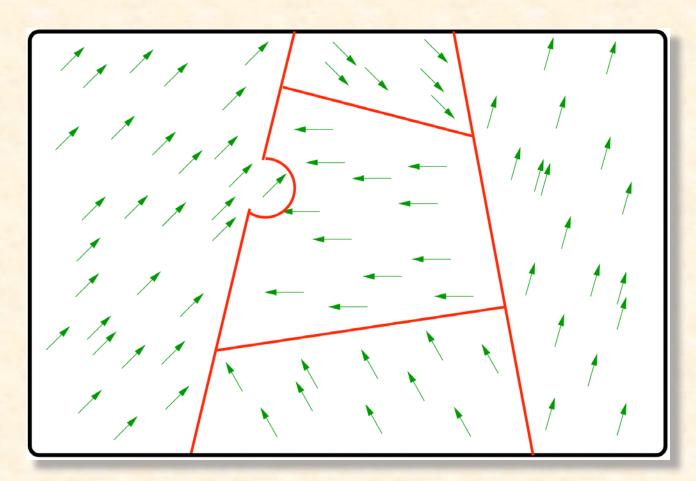
• Annealing:

- slow cooling (or alternate heating & cooling)
- reaches equilibrium at each temperature
- allows global order to emerge
- achieves global low-energy state

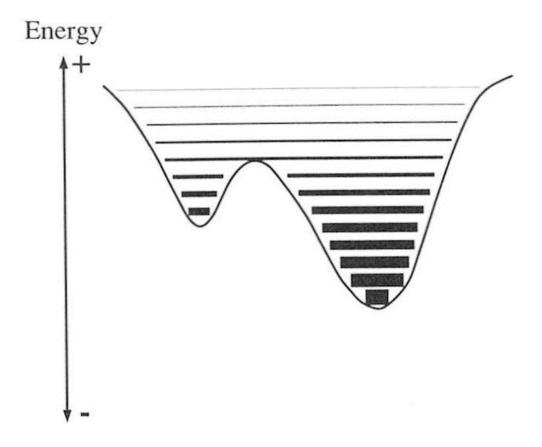
Multiple Domains



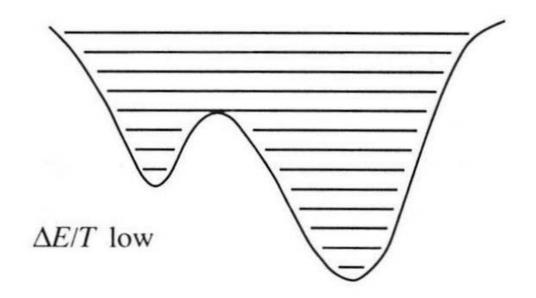
Moving Domain Boundaries



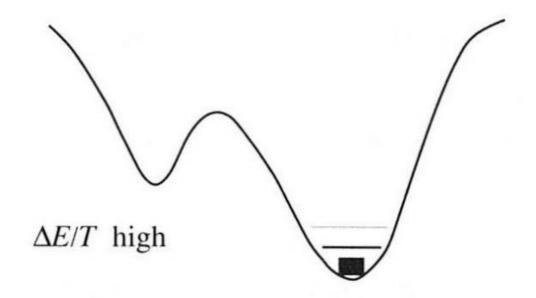
Effect of Moderate Temperature



Effect of High Temperature



Effect of Low Temperature



Annealing Schedule

- Controlled decrease of temperature
- Should be sufficiently slow to allow equilibrium to be reached at each temperature
- With sufficiently slow annealing, the global minimum will be found with probability 1
- Design of schedules is a topic of research

Typical Practical Annealing Schedule

- Initial temperature T_0 sufficiently high so all transitions allowed
- Exponential cooling: $T_{k+1} = \alpha T_k$
 - typical $0.8 < \alpha < 0.99$
 - at least 10 accepted transitions at each temp.
- Final temperature: three successive temperatures without required number of accepted transitions

Summary

- Non-directed change (random motion) permits escape from local optima and spurious states
- Pseudo-temperature can be controlled to adjust relative degree of exploration and exploitation

Additional Bibliography

- 1. Anderson, J.A. An Introduction to Neural Networks, MIT, 1995.
- 2. Arbib, M. (ed.) *Handbook of Brain Theory & Neural Networks*, MIT, 1995.
- 3. Hertz, J., Krogh, A., & Palmer, R. G. Introduction to the Theory of Neural Computation, Addison-Wesley, 1991.