VI
Autonomous Agents
&
Self-Organization

Part A
Nest Building

Autonomous Agent

- "a unit that interacts with its environment (which probably consists of other agents)
- but acts independently from all other agents in that it does not take commands from some seen or unseen leader,
- nor does an agent have some idea of a global plan that it should be following."
 Flake (p. 261)

//4/08

Nest Building by Termites (Natural and Artificial)

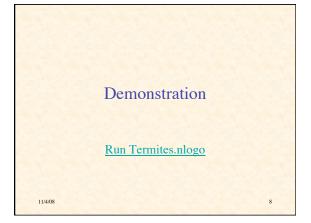
11/4/08

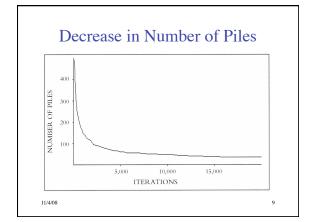
Resnick's Termites ("Turmites")

11/4/08 5

Basic procedure

- Wander randomly
- If you are not carrying anything and you bump into a wood chip, pick it up.
- If you are carrying a wood chip and you bump into another wood chip, put down the woodchip you are carrying


- Resnick, Turtles, Termites, and Traffic Jams


11/4/08

Microbehavior of Turmites

- 1. Search for wood chip:
 - a) If at chip, pick it up
 - b) otherwise wiggle, and go back to (a)
- 2. Find a wood pile:
 - a) If at chip, it's found
 - b) otherwise wiggle, and go back to (a)
- 3. Find an empty spot and put chip down:
 - a) If at empty spot, put chip down & jump away
 - b) otherwise, turn, take a step, and go to (a)

11/4/08

Why does the number of piles decrease?

- · A pile can grow or shrink
- But once the last chip is taken from a pile, it can never restart
- Is there any way the number of piles can increase?
- Yes, and existing pile can be broken into two

More Termites

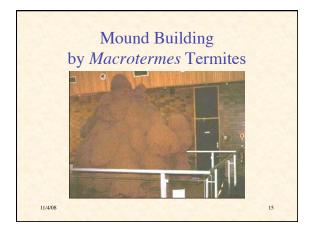
Termites	2000 steps		10 000 steps		
	num. piles	avg. size	num. piles	avg. size	chips in piles
1000	102	15	47	30	
4000	10		3	80	240

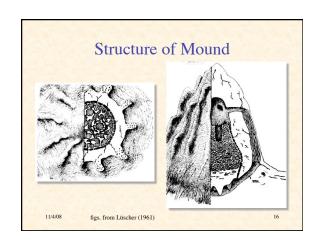
Termite-Mediated Condensation

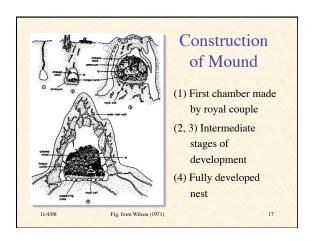
- Number of chips is conserved
- Chips do not move on own; movement is mediated by termites
- Chips preferentially condense into piles
- Increasing termites, increases number of chips in fluid (randomly moving) state
- Like temperature

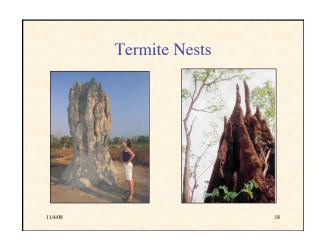
An Experiment to Make the Number Decrease More Quickly

- Problem: piles may grow or shrink
- Idea: protect "investment" in large piles
- Termites will not take chips from piles greater than a certain size
- Result: number decreases more quickly
- Most chips are in piles
- But never got less than 82 piles

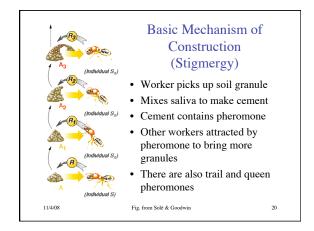

11/4/08

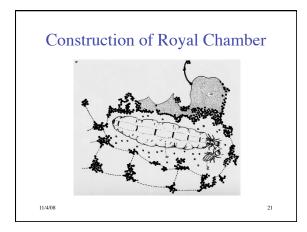

13

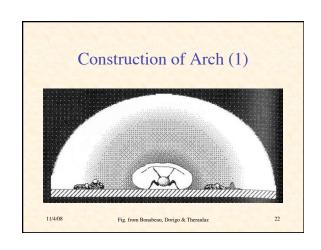

Conclusion

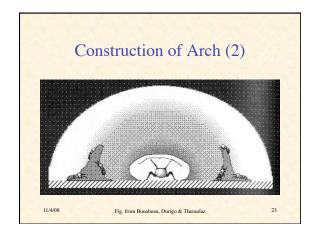

- In the long run, the "dumber" strategy is better
- Although it's slower, it achieves a better result
- By not protecting large piles, there is a small probability of any pile evaporating
- So the smaller "large piles" can evaporate and contribute to the larger "large piles"
- Even though this strategy makes occasional backward steps, it outperforms the attempt to protect accomplishments

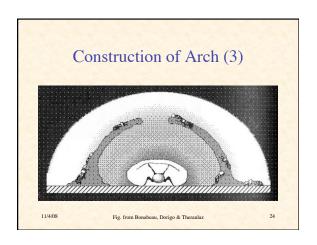
8






Alternatives to Self-Organization


- Leader
 - directs building activity of group
- Blueprint (image of completion)
 - compact representation of spatial/temporal relationships of parts
- Recipe (program)
 - sequential instructions specify spatial/temporal actions of individual
- Template
 - full-sized guide or mold that specifies final pattern


1/08

Basic Principles

- Continuous (quantitative) stigmergy
- · Positive feedback:
 - via pheromone deposition
- · Negative feedback:
 - depletion of soil granules & competition between pillars
 - pheromone decay

11/4/08

25

Deneubourg Model

- H(r, t) = concentration of cement pheromone in air at location r & time t
- P(r, t) = amount of deposited cement with still active pheromone at r, t
- C(r, t) = density of laden termites at r, t
- Φ = constant flow of laden termites into system

/08 26

Equation for *P* (Deposited Cement with Pheromone)

 $\partial_t P$ (rate of change of active cement) = $k_1 C$ (rate of cement deposition by termites) $-k_2 P$ (rate of pheromone loss to air)

$$\partial_t P = k_1 C - k_2 P$$

11/4/0

27

Equation for *H* (Concentration of Pheromone)

 $\partial_t H$ (rate of change of concentration) = $k_2 P$ (pheromone from deposited material)

 $-k_4H$ (pheromone decay)

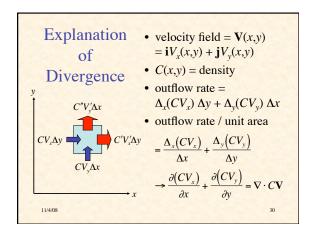
+ $D_H \nabla^2 H$ (pheromone diffusion)

$$\partial_t H = k_2 P - k_4 H + D_H \nabla^2 H$$

11/4/08

28

Equation for *C* (Density of Laden Termites)


 $\partial_t C$ (rate of change of concentration) =

- Φ (flux of laden termites)
- $-k_1 C$ (unloading of termites)
- + $D_C \nabla^2 C$ (random walk)
- $-\gamma \nabla \cdot (C\nabla H)$ (chemotaxis: response to pheromone gradient)

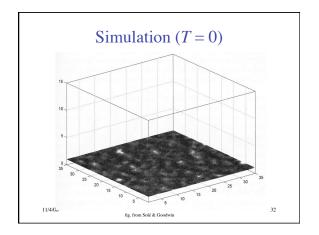
$$\partial_t C = \Phi - k_1 C + D_C \nabla^2 C - \gamma \nabla \cdot (C \nabla H)$$

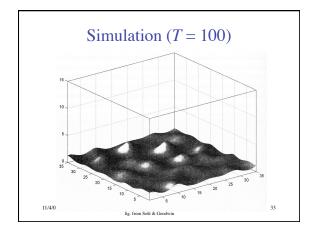
11/4/08

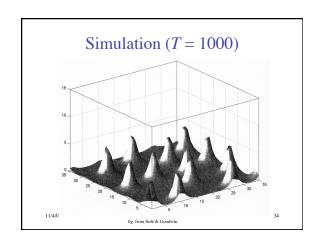
29

11/4/08

Explanation of Chemotaxis Term


- The termite flow *into* a region is the *negative* divergence of the flux through it
 - $-\nabla \cdot \mathbf{J} = -\left(\partial J_x / \partial x + \partial J_y / \partial y\right)$
- The flux velocity is proportional to the pheromone gradient
 - $\mathbf{J} \propto \nabla H$
- The flux density is proportional to the number of moving termites


 $\mathbf{J} \propto C$


• Hence, $-\gamma \nabla \cdot \mathbf{J} = -\gamma \nabla \cdot (C \nabla H)$

11/4/08

31

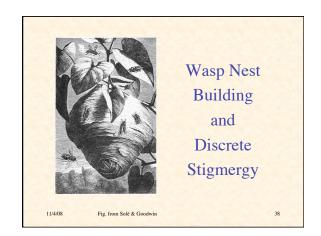
Conditions for Self-Organized Pillars

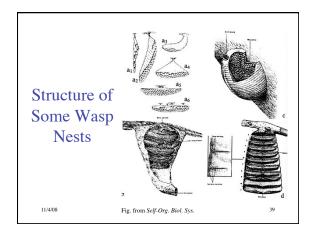
- Will not produce regularly spaced pillars if:
 - density of termites is too low
 - rate of deposition is too low
- A homogeneous stable state results

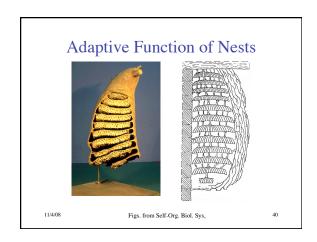
$$C_0 = \frac{\Phi}{k_1}, \qquad H_0 = \frac{\Phi}{k_4}, \qquad P_0 = \frac{\Phi}{k_2}$$

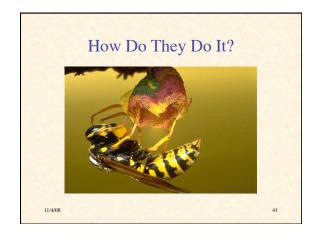
11/4/08

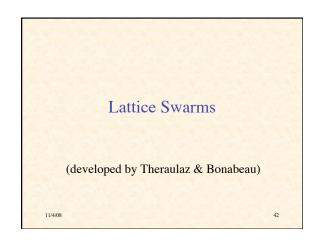
NetLogo Simulation of Deneubourg Model

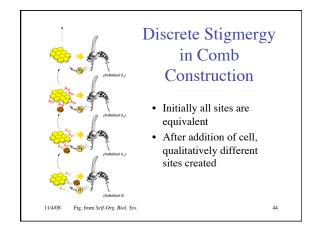

Run Pillars 3D.nlogo

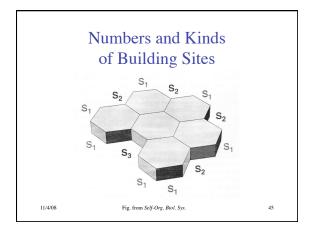

Interaction of Three Pheromones


- Queen pheromone governs size and shape of queen chamber (template)
- Cement pheromone governs construction and spacing of pillars & arches (stigmergy)
- Trail pheromone:
 - attracts workers to construction sites (stigmergy)
 - encourages soil pickup (stigmergy)
 - governs sizes of galleries (template)


11/4/08

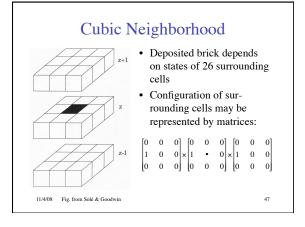

37

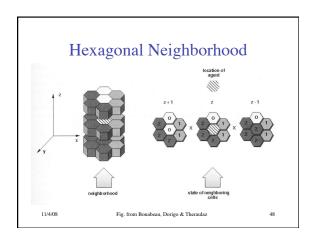


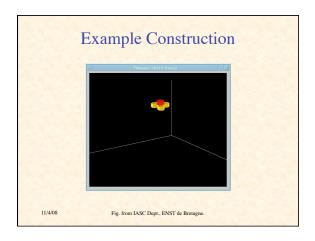


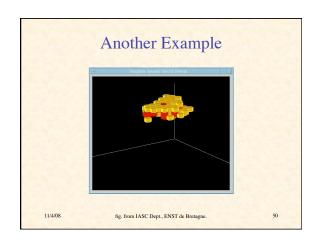
Discrete vs. Continuous Stigmergy

- Recall: *stigmergy* is the coordination of activities through the environment
- Continuous or quantitative stigmergy
 - quantitatively different stimuli trigger quantitatively different behaviors
- Discrete or qualitative stigmergy
 - stimuli are classified into distinct classes, which trigger distinct behaviors

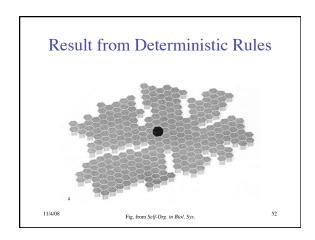

11/4/08 43

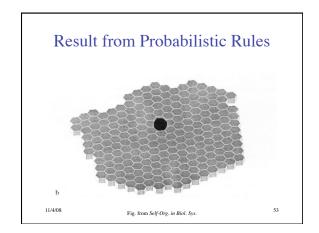


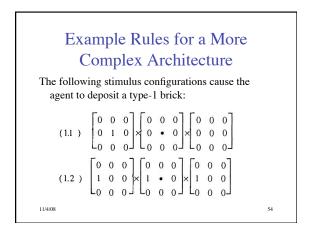


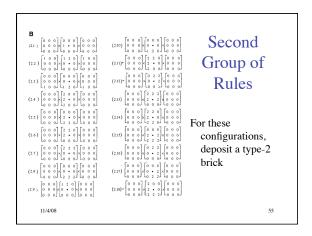

Lattice Swarm Model

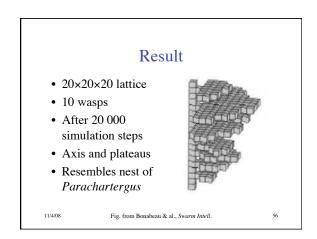
- Random movement by wasps in a 3D lattice
 cubic or hexagonal
- Wasps obey a 3D CA-like rule set
- Depending on configuration, wasp deposits one of several types of "bricks"
- Once deposited, it cannot be removed
- May be deterministic or probabilistic
- Start with a single brick

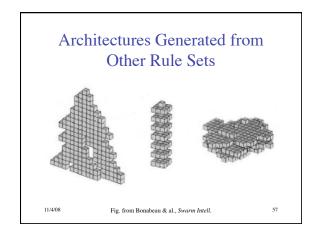


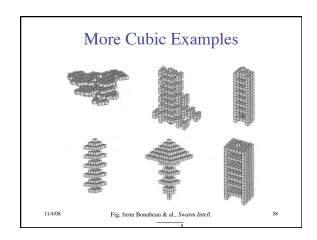


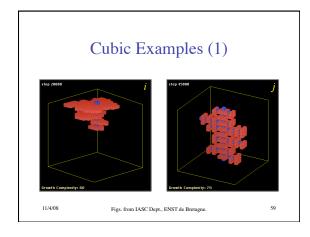


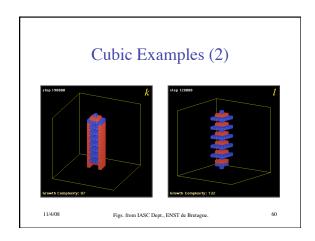


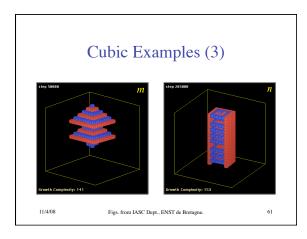


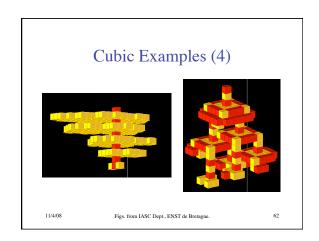


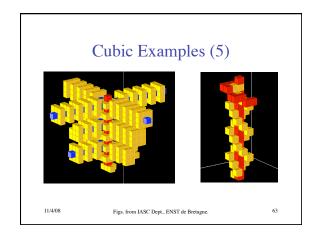


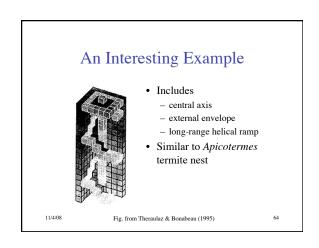


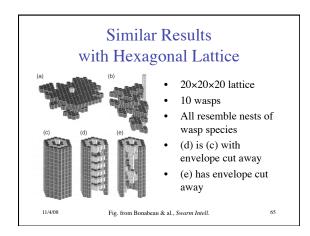


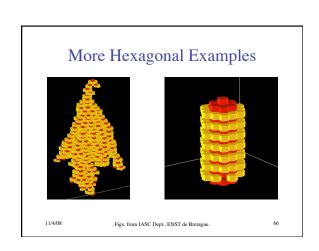


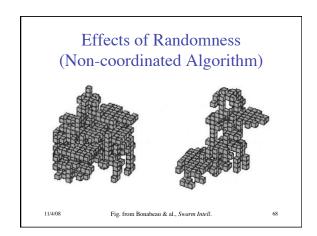












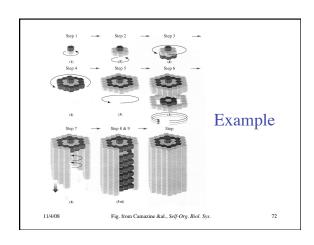
Effects of Randomness (Coordinated Algorithm) • Specifically different (i.e., different in details) • Generically the same (qualitatively identical) • Sometimes results are fully constrained Fig. from Bonabeau & al., Swarm Intell. 67

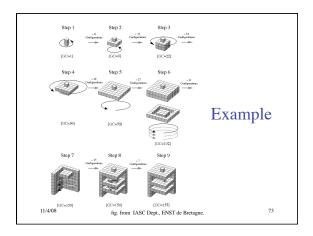
Non-coordinated Algorithms

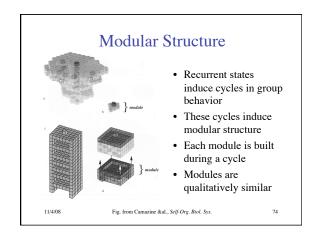
- Stimulating configurations are not ordered in time and space
- Many of them overlap
- · Architecture grows without any coherence
- May be convergent, but are still unstructured

4/08

Coordinated Algorithm


- Non-conflicting rules
 - can't prescribe two different actions for the same configuration
- Stimulating configurations for different building stages cannot overlap
- At each stage, "handshakes" and "interlocks" are required to prevent conflicts in parallel assembly


11/4/08 70

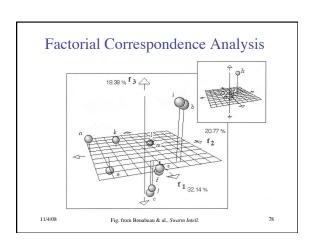

More Formally...

- Let $C = \{c_1, c_2, ..., c_n\}$ be the set of local stimulating configurations
- Let $(S_1, S_2, ..., S_m)$ be a sequence of assembly stages
- These stages partition C into mutually disjoint subsets C(S_n)
- Completion of S_p signaled by appearance of a configuration in C(S_{p+1})

/4/08

Possible Termination Mechanisms

- Qualitative
 - the assembly process leads to a configuration that is not stimulating
- Quantitative
 - a separate rule inhibiting building when nest a certain size relative to population
 - "empty cells rule": make new cells only when no empties available
 - growing nest may inhibit positive feedback mechanisms


108

Observations

- Random algorithms tend to lead to uninteresting structures
 - random or space-filling shapes
- Similar structured architectures tend to be generated by similar coordinated algorithms
- Algorithms that generate structured architectures seem to be confined to a small region of rule-space

76

Analysis • Define matrix M: • 12 columns for 12 sample structured architectures • 211 rows for stimulating configurations • $M_{ij} = 1$ if architecture j requires configuration i(n) (k) (l) (m) (b) (a) (c) (j) (d) (e) (h) (a) (e) (h) Fig. from Bonabean & al., Swarm Intell. 77

Conclusions

- Simple rules that exploit discrete (qualitative) stigmergy can be used by autonomous agents to assemble complex, 3D structures
- The rules must be non-conflicting and coordinated according to stage of assembly
- The rules corresponding to interesting structures occupy a comparatively small region in rule-space

.....

