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Differentiation�
& Pattern Formation

•  A central problem in 
development: How do cells 
differentiate to fulfill 
different purposes?

•  How do complex systems 
generate spatial & temporal 
structure?

•  CAs are natural models of 
intercellular communication

photos ©2000, S. Cazamine
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Zebra

figs. from Camazine & al.: Self-Org. Biol. Sys. 9/8/09 4

Vermiculated Rabbit Fish

figs. from Camazine & al.: Self-Org. Biol. Sys.
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Activation & Inhibition�
in Pattern Formation

•  Color patterns typically have a charac-
teristic length scale

•  Independent of cell size and animal size
•  Achieved by:

–  short-range activation ⇒ local uniformity
–  long-range inhibition ⇒ separation
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Interaction Parameters

•  R1 and R2 are the interaction ranges
•  J1 and J2 are the interaction strengths
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CA Activation/Inhibition Model

•  Let states si ∈ {–1, +1}
•  and h be a bias parameter
•  and rij be the distance between cells i and j
•  Then the state update rule is:

€ 

si t +1( ) = sign h + J1 s j t( )
rij <R1

∑ + J2 s j t( )
R1≤rij <R2

∑
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Example�
(R1=1, R2=6, J1=1, J2=–0.1, h=0)

figs. from Bar-Yam
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Effect of Bias�
(h = –6, –3, –1; 1, 3, 6)

figs. from Bar-Yam 9/8/09 10

Effect of Interaction Ranges

R2 = 6�
R1 = 1�
h = 0

R2 = 6�
R1 = 1.5�

h = 0

R2 = 8�
R1 = 1�
h = 0

R2 = 6�
R1 = 1.5�
h = –3

figs. from Bar-Yam
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Demonstration of NetLogo 
Program for Activation/Inhibition 

Pattern Formation:�
Fur

RunAICA.nlogo
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Differential Interaction Ranges
•  How can a system using strictly local 

interactions discriminate between states at 
long and short range?

•  E.g. cells in developing organism
•  Can use two different morphogens diffusing 

at two different rates
–  activator diffuses slowly (short range)
–  inhibitor diffuses rapidly (long range)
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Digression on Diffusion
•  Simple 2-D diffusion equation:�

•  Recall the 2-D Laplacian:�

•  The Laplacian (like 2nd derivative) is:
–  positive in a local minimum
–  negative in a local maximum

€ 

∇2A x,y( ) =
∂ 2A x,y( )
∂x 2

+
∂ 2A x,y( )
∂y 2€ 

˙ A x, y( ) = c∇2A x,y( )
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Reaction-Diffusion System
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reactiondiffusion
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Example:�
Activation-Inhibition System

•  Let σ be some kind of threshold function
•  Activator A and inhibitor I may diffuse at 

different rates in x and y directions
•  Cell is “on” if activator + bias exceeds 

inhibitor

€ 

∂A
∂t

= dAx
∂ 2A
∂x 2

+ dAy
∂ 2A
∂y 2

+ kAσ A + B − I( )A

∂I
∂t

= dIx
∂ 2I
∂x 2

+ dIy
∂ 2I
∂y 2

+ kIσ A + B − I( )I
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NetLogo Simulation of�
Reaction-Diffusion System

1.  Diffuse activator in X and Y directions
2.  Diffuse inhibitor in X and Y directions
3.  Each patch performs:

stimulation = bias + activator – inhibitor + noise
if stimulation > 0 then
set activator and inhibitor to 100

else
set activator and inhibitor to 0
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Demonstration of NetLogo 
Program for Activation/Inhibition 

Pattern Formation

Run Pattern.nlogo

Turing Patterns

•  Alan Turing studied the mathematics of 
reaction-diffusion systems

•  Turing, A. (1952). The chemical basis of 
morphogenesis. Philosophical Transactions 
of the Royal Society B 237: 37–72.

•  The resulting patterns are known as Turing 
patterns
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Abstract Activation/Inhibition 
Spaces

•  Consider two axes of cultural preference
–  E.g. hair length & interpersonal distance
–  Fictitious example!

•  Suppose there are no objective reasons for 
preferences

•  Suppose people approve/encourage those with 
similar preferences

•  Suppose people disapprove/discourage those with 
different preferences

•  What is the result?
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Emergent Regions of Acceptable 
Variation
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A Key Element of�
Self-Organization

•  Activation vs. Inhibition
•  Cooperation vs. Competition

•  Amplification vs. Stabilization

•  Growth vs. Limit

•  Positive Feedback vs. Negative Feedback
–  Positive feedback creates

–  Negative feedback shapes
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Reaction-Diffusion Computing

•  Has been used for image processing
–  diffusion ⇒ noise filtering
–  reaction ⇒ contrast enhancement

•  Depending on parameters, RD computing 
can:
–  restore broken contours
–  detect edges
–  improve contrast
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Image Processing in BZ Medium

•  (A) boundary detection, (B) contour enhancement, �
(C) shape enhancement, (D) feature enhancement

Image < Adamatzky, Comp. in Nonlinear Media & Autom. Coll. 9/8/09 24

Voronoi Diagrams

•  Given a set of 
generating points:

•  Construct polygon 
around each gen. point 
of set, so all points in 
poly. are closer to its 
generating point than 
to any other generating 
points.

Image < Adamatzky & al., Reaction-Diffusion Computers
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Some Uses of Voronoi Diagrams

•  Collision-free path planning
•  Determination of service areas for power 

substations
•  Nearest-neighbor pattern classification
•  Determination of largest empty figure
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Computation of Voronoi Diagram 
by Reaction-Diffusion Processor

Image < Adamatzky & al., Reaction-Diffusion Computers
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Mixed Cell Voronoi Diagram

Image < Adamatzky & al., Reaction-Diffusion Computers 9/8/09 28

Path Planning via BZ medium:�
No Obstacles

Image < Adamatzky & al., Reaction-Diffusion Computers
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Path Planning via BZ medium:�
Circular Obstacles

Image < Adamatzky & al., Reaction-Diffusion Computers 9/8/09 30

Mobile Robot with Onboard 
Chemical Reactor

Image < Adamatzky & al., Reaction-Diffusion Computers



Part 2B: Pattern Formation 9/8/09

6

9/8/09 31

Actual Path: Pd Processor

Image < Adamatzky & al., Reaction-Diffusion Computers 9/8/09 32

Actual Path: Pd Processor

Image < Adamatzky & al., Reaction-Diffusion Computers
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Actual Path: BZ Processor

Image < Adamatzky & al., Reaction-Diffusion Computers 9/8/09 34

Bibliography for�
Reaction-Diffusion Computing

1.  Adamatzky, Adam. Computing in Nonlinear 
Media and Automata Collectives. Bristol: Inst. 
of Physics Publ., 2001.

2.  Adamatzky, Adam, De Lacy Costello, Ben, & 
Asai, Tetsuya. Reaction Diffusion Computers. 
Amsterdam: Elsevier, 2005.
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Segmentation

(in embryological development)
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Vertebrae

•  Humans: 33, chickens: 55, mice: 65,�
corn snake: 315

•  Characteristic of species
•  How does an embryo “count” them?
•  “Clock and wavefront model” of Cooke & 

Zeeman (1976).
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NetLogo Simulation of�
Segmentation

Run Segmentation.nlogo
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Simulated Segmentation by�
Clock-and-Wavefront Process

9/8/09 43Run Segmentation-cells-3D.nlogo 

2D Simulation of�
Clock-and-Wavefront Process

9/8/09 44Run Segmentation-cells.nlogo 

Effect of�
Growth�

Rate

500

1000

2000

4000

5000
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