
10/25/09 1

IV. Neural Network Learning

10/25/09 2

A.�
Neural Network Learning

10/25/09 3

Supervised Learning

•  Produce desired outputs for training inputs
•  Generalize reasonably & appropriately to

other inputs
•  Good example: pattern recognition
•  Feedforward multilayer networks

10/25/09 4

Feedforward Network
. .

 .

. .
 . . .

 . . .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

10/25/09 5

Typical Artificial Neuron

inputs

connection�
weights

threshold

output

10/25/09 6

Typical Artificial Neuron

linear�
combination

net input�
(local field)

activation�
function

10/25/09 7

Equations

€

hi = wijs j
j=1

n

∑

 −θ

h =Ws−θ

Net input:

€

′ s i =σ hi()
′ s =σ h()

Neuron output:

10/25/09 8

Single-Layer Perceptron

. .
 . . .

 .

10/25/09 9

Variables

ΘΣxj

xn

x1

yh
wj

wn

w1

θ

10/25/09 10

Single Layer Perceptron
Equations

€

Binary threshold activation function :

σ h() =Θ h() =
1, if h > 0
0, if h ≤ 0

€

Hence, y =
1, if w j x j > θ

j∑
0, otherwise

=
1, if w ⋅ x > θ

0, if w ⋅ x ≤θ

10/25/09 11

2D Weight Vector

w

w1

w2
x

φ

€

w ⋅ x = w x cosφ

v

€

cosφ =
v
x

€

w ⋅ x = w v

€

w ⋅ x > θ

⇔ w v > θ

⇔ v > θ w

€

θ
w

+–

10/25/09 12

N-Dimensional Weight Vector

w

+

–

separating
hyperplane

normal
vector

10/25/09 13

Goal of Perceptron Learning

•  Suppose we have training patterns x1, x2,
…, xP with corresponding desired outputs
y1, y2, …, yP

•  where xp ∈ {0, 1}n, yp ∈ {0, 1}
•  We want to find w, θ such that�

yp = Θ(w⋅xp – θ) for p = 1, …, P

10/25/09 14

Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1

θ

€

h = w j x j
j=1

n

∑

 −θ

= −θ + w j x j
j=1

n

∑

10/25/09 15

Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1
θ

€

h = w j x j
j=1

n

∑

 −θ

= −θ + w j x j
j=1

n

∑

–1

€

h = w0x0 + w j x j =
j=1

n

∑ w j x j = ˜ w ⋅ ˜ x
j= 0

n

∑
€

Let x0 = −1 and w0 = θ

= w0

x0 =

10/25/09 16

Augmented Vectors

€

˜ w =

θ

w1

wn

€

˜ x p =

−1
x1
p

xn
p

€

We want y p =Θ ˜ w ⋅ ˜ x p(), p =1,…,P

10/25/09 17

Reformulation as Positive
Examples

€

We have positive (y p =1) and negative (y p = 0) examples

€

Want ˜ w ⋅ ˜ x p > 0 for positive, ˜ w ⋅ ˜ x p ≤ 0 for negative

€

Let z p = ˜ x p for positive, z p = − ˜ x p for negative

€

Want ˜ w ⋅ z p ≥ 0, for p =1,…,P

€

Hyperplane through origin with all z p on one side

10/25/09 18

Adjustment of Weight Vector

z10
z11

z1

z6

z7

z8

z4z3

z9

z5

z2

10/25/09 19

Outline of�
Perceptron Learning Algorithm

1.  initialize weight vector randomly

2.  until all patterns classified correctly, do:
a)  for p = 1, …, P do:

1)  if zp classified correctly, do nothing
2)  else adjust weight vector to be closer to correct

classification

10/25/09 20

Weight Adjustment

€

˜ w

€

z p

€

ηz p

€

˜ ′ w

€

ηz p

€

˜ ′ ′ w

10/25/09 21

Improvement in Performance

€

˜ ′ w ⋅ z p = ˜ w +ηz p() ⋅ z p

= ˜ w ⋅ z p +ηz p ⋅ z p

= ˜ w ⋅ z p +η z p 2

> ˜ w ⋅ z p

€

If ˜ w ⋅ z p < 0,

10/25/09 22

Perceptron Learning Theorem

•  If there is a set of weights that will solve the
problem,

•  then the PLA will eventually find it
•  (for a sufficiently small learning rate)
•  Note: only applies if positive & negative

examples are linearly separable

10/25/09 23

NetLogo Simulation of
Perceptron Learning

Run Perceptron-Geometry.nlogo

10/25/09 24

Classification Power of
Multilayer Perceptrons

•  Perceptrons can function as logic gates
•  Therefore MLP can form intersections,

unions, differences of linearly-separable
regions

•  Classes can be arbitrary hyperpolyhedra
•  Minsky & Papert criticism of perceptrons
•  No one succeeded in developing a MLP

learning algorithm

Hyperpolyhedral Classes

10/25/09 25

10/25/09 26

Credit Assignment Problem
. .

 .

. .
 . . .

 . . .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

How do we adjust the weights of the hidden layers?
. . .

Desired
output

10/25/09 27

NetLogo Demonstration of�
Back-Propagation Learning

Run Artificial Neural Net.nlogo

10/25/09 28

Adaptive System

S F

Pk PmP1 … …

System
Evaluation Function

(Fitness, Figure of Merit)

Control Parameters
C

Control
Algorithm

10/25/09 29

Gradient

€

∂F
∂Pk

 measures how F is altered by variation of Pk

€

∇F =

∂F
∂P1

∂F
∂Pk

∂F
∂Pm

€

∇F points in direction of maximum local increase in F

10/25/09 30

Gradient Ascent�
on Fitness Surface

+
–

∇F

gradient ascent

10/25/09 31

Gradient Ascent�
by Discrete Steps

+
–

∇F

10/25/09 32

Gradient Ascent is Local�
But Not Shortest

+
–

10/25/09 33

Gradient Ascent Process

€

˙ P =η∇F P()

€

Change in fitness :

˙ F = d F
d t

=
∂F
∂Pk

dPk

d tk=1

m
∑ = ∇F()k

˙ P kk=1

m
∑

˙ F =∇F ⋅ ˙ P

€

˙ F =∇F ⋅η∇F =η ∇F 2
≥ 0

Therefore gradient ascent increases fitness
(until reaches 0 gradient)

10/25/09 34

General Ascent in Fitness

€

Note that any adaptive process P t() will increase
 fitness provided :

0 < ˙ F =∇F ⋅ ˙ P = ∇F ˙ P cosϕ

where ϕ is angle between ∇F and ˙ P

€

Hence we need cosϕ > 0
or ϕ < 90

10/25/09 35

General Ascent�
on Fitness Surface

+
–

∇F

10/25/09 36

Fitness as Minimum Error

€

Suppose for Q different inputs we have target outputs t1,…,tQ

€

Suppose for parameters P the corresponding actual outputs
 are y1,…,yQ

€

Suppose D t,y()∈ 0,∞[) measures difference between
 target & actual outputs

€

Let E q = D tq ,yq() be error on qth sample

€

Let F P() = − E q P() = − D tq ,yq P()[]
q=1

Q

∑
q=1

Q

∑

10/25/09 37

Gradient of Fitness

€

∇F =∇ − E q

q
∑

 = − ∇E q

q
∑

€

∂Eq

∂Pk
=

∂
∂Pk

D tq ,yq()

€

=
∂D tq,yq()

∂y j
q

j
∑

∂y j
q

∂Pk

€

=
dD tq,yq()
dyq

⋅
∂yq

∂Pk

€

=∇y qD t
q,yq() ⋅ ∂y

q

∂Pk

10/25/09 38

Jacobian Matrix

€

Define Jacobian matrix Jq =

∂y1
q

∂P1

∂y1
q

∂Pm

∂yn
q

∂P1

∂yn
q

∂Pm

€

Note Jq ∈ ℜn×m and ∇D tq,yq()∈ ℜn×1

€

Since ∇E q()k =
∂Eq

∂Pk
=

∂y j
q

∂Pk

∂D tq,yq()
∂y j

q
j
∑ ,

€

∴∇Eq = Jq()
T
∇D tq,yq()

10/25/09 39

Derivative of Squared Euclidean
Distance

€

Suppose D t,y() = t − y 2
= ti − yi()2

i∑

€

∂D t − y()
∂y j

=
∂
∂y j

ti − yi()2
i
∑ =

∂ ti − yi()2

∂y ji
∑

€

=
d t j − y j()

2

d y j

= −2 t j − y j()

€

∴
dD t,y()
dy

= 2 y − t()

10/25/09 40

Gradient of Error on qth Input

€

∂Eq

∂Pk
=
dD tq,yq()
dyq

⋅
∂yq

∂Pk

= 2 yq − tq() ⋅ ∂y
q

∂Pk

= 2 y j
q − t j

q()
∂y j

q

∂Pkj∑

€

∇Eq = 2 Jq()
T
yq − tq()

10/25/09 41

Recap

€

To know how to decrease the differences between
 actual & desired outputs,

we need to know elements of Jacobian, ∂y j
q

∂Pk
,

which says how jth output varies with kth parameter
(given the qth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network

€

˙ P =η Jq()
T

tq − yq()q∑

10/25/09 42

Multilayer Notation

W1 W2 WL–2 WL–1

s1 s2 sL–1 sL

xq yq

10/25/09 43

Notation
•  L layers of neurons labeled 1, …, L
•  Nl neurons in layer l
•  sl = vector of outputs from neurons in layer l
•  input layer s1 = xq (the input pattern)
•  output layer sL = yq (the actual output)
•  Wl = weights between layers l and l+1
•  Problem: find how outputs yi

q vary with
weights Wjk

l (l = 1, …, L–1)

10/25/09 44

Typical Neuron

σΣsj
l–1

sN
l–1

s1
l–1

si
lhi

lWij
l–1

WiN
l–1

Wi1
l–1

10/25/09 45

Error Back-Propagation

€

We will compute ∂E
q

∂Wij
l starting with last layer (l = L −1)

and working back to earlier layers (l = L − 2,…,1)

10/25/09 46

Delta Values

€

Convenient to break derivatives by chain rule :
∂Eq

∂Wij
l−1 =

∂Eq

∂hi
l
∂hi

l

∂Wij
l−1

Let δi
l =

∂Eq

∂hi
l

So ∂E
q

∂Wij
l−1 = δi

l ∂hi
l

∂Wij
l−1

10/25/09 47

Output-Layer Neuron

σΣsj
L–1

sN
L–1

s1
L–1

si
L = yi

qhi
LWij

L–1

WiN
L–1

Wi1
L–1

ti
q

Eq

10/25/09 48

Output-Layer Derivatives (1)

€

δi
L =

∂Eq

∂hi
L =

∂
∂hi

L sk
L − tk

q()2k
∑

=
d si

L − ti
q()
2

dhi
L = 2 si

L − ti
q() d si

L

dhi
L

= 2 si
L − ti

q() ′ σ hi
L()

10/25/09 49

Output-Layer Derivatives (2)

€

∂hi
L

∂Wij
L−1 =

∂
∂Wij

L−1 Wik
L−1sk

L−1

k
∑ = s j

L−1

€

∴
∂Eq

∂Wij
L−1 = δi

Ls j
L−1

 where δi
L = 2 si

L − ti
q() ′ σ hi

L()

10/25/09 50

Hidden-Layer Neuron

σΣsj
l–1

sN
l–1

s1
l–1

si
lhi

lWij
l–1

WiN
l–1

Wi1
l–1

sk
l+1

sN
l+1

s1
l+1

W1i
l

Wki
l

WNi
l

s1
l

sN
l

Eq

10/25/09 51

Hidden-Layer Derivatives (1)

€

Recall ∂E
q

∂Wij
l−1 = δi

l ∂hi
l

∂Wij
l−1

€

δi
l =

∂Eq

∂hi
l =

∂Eq

∂hk
l+1
∂hk

l+1

∂hi
l

k
∑ = δk

l+1 ∂hk
l+1

∂hi
l

k
∑

€

∂hk
l+1

∂hi
l =

∂ Wkm
l sm

l

m
∑
∂hi

l =
∂Wki

l si
l

∂hi
l =Wki

l dσ hi
l()

dhi
l =Wki

l ′ σ hi
l()

€

∴δi
l = δk

l+1Wki
l ′ σ hi

l()
k
∑ = ′ σ hi

l() δk
l+1Wki

l

k
∑

10/25/09 52

Hidden-Layer Derivatives (2)

€

∂hi
l

∂Wij
l−1 =

∂
∂Wij

l−1 Wik
l−1sk

l−1

k
∑ =

dWij
l−1s j

l−1

dWij
l−1 = s j

l−1

€

∴
∂Eq

∂Wij
l−1 = δi

l s j
l−1

 where δi
l = ′ σ hi

l() δk
l+1Wki

l

k
∑

10/25/09 53

Derivative of Sigmoid

€

Suppose s =σ h() =
1

1+ exp −αh()
 (logistic sigmoid)

€

Dh s =Dh 1+ exp −αh()[]−1 = − 1+ exp −αh()[]−2 Dh 1+ e−αh()

= − 1+ e−αh()−2 −αe−αh() =α
e−αh

1+ e−αh()
2

=α
1

1+ e−αh
e−αh

1+ e−αh
=αs 1+ e−αh

1+ e−αh
−

1
1+ e−αh

=αs(1− s)

10/25/09 54

Summary of Back-Propagation
Algorithm

€

Output layer :δi
L = 2αsi

L 1− si
L() siL − tiq()

∂Eq

∂Wij
L−1 = δi

Ls j
L−1

€

Hidden layers : δi
l =αsi

l 1− si
l() δk

l+1Wki
l

k
∑

∂Eq

∂Wij
l−1 = δi

l s j
l−1

10/25/09 55

Output-Layer Computation

σΣsj
L–1

sN
L–1

s1
L–1

si
L = yi

qhi
LWij

L–1

WiN
L–1

Wi1
L–1

ti
q–

δi
L ×

2α

1–

€

δi
L = 2αsi

L 1− si
L() tiq − siL()

× η

ΔWij
L–1

€

ΔWij
L−1 =ηδi

Ls j
L−1

10/25/09 56

Hidden-Layer Computation

σΣsj
l–1

sN
l–1

s1
l–1

si
lhi

lWij
l–1

WiN
l–1

Wi1
l–1

sk
l+1

sN
l+1

s1
l+1

W1i
l

Wki
l

WNi
l

Eq

δ1
l+1

δk
l+1

δN
l+1δi

l ×

α

1–

×

Σ

€

δi
l =αsi

l 1− si
l() δk

l+1Wki
l

k
∑

× η

ΔWij
l–1

€

ΔWij
l−1 =ηδi

l s j
l−1

10/25/09 57

Training Procedures
•  Batch Learning

–  on each epoch (pass through all the training pairs),
–  weight changes for all patterns accumulated
–  weight matrices updated at end of epoch
–  accurate computation of gradient

•  Online Learning
–  weight are updated after back-prop of each training pair
–  usually randomize order for each epoch
–  approximation of gradient

•  Doesn’t make much difference

10/25/09 58

Summation of Error Surfaces

E1

E2

E

10/25/09 59

Gradient Computation�
in Batch Learning

E1

E2

E

10/25/09 60

Gradient Computation�
in Online Learning

E1

E2

E

10/25/09 61

Testing Generalization

Domain
Available

Data

Training
Data

Test
Data

10/25/09 62

Problem of Rote Learning
error

epoch

error on
training

data

error on
test data

stop training here

10/25/09 63

Improving Generalization

Domain
Available

Data

Training
Data

Test Data

Validation Data

10/25/09 64

A Few Random Tips
•  Too few neurons and the ANN may not be able to

decrease the error enough
•  Too many neurons can lead to rote learning
•  Preprocess data to:

–  standardize
–  eliminate irrelevant information
–  capture invariances
–  keep relevant information

•  If stuck in local min., restart with different random
weights

Run Example BP Learning

10/25/09 65

Beyond Back-Propagation

•  Adaptive Learning Rate
•  Adaptive Architecture

– Add/delete hidden neurons
– Add/delete hidden layers

•  Radial Basis Function Networks
•  Recurrent BP
•  Etc., etc., etc.…
10/25/09 66

What is the Power of�
Artificial Neural Networks?

•  With respect to Turing machines?

•  As function approximators?

10/25/09 67

Can ANNs Exceed the “Turing Limit”?
•  There are many results, which depend sensitively on

assumptions; for example:
•  Finite NNs with real-valued weights have super-Turing

power (Siegelmann & Sontag ‘94)
•  Recurrent nets with Gaussian noise have sub-Turing power

(Maass & Sontag ‘99)
•  Finite recurrent nets with real weights can recognize all

languages, and thus are super-Turing (Siegelmann ‘99)
•  Stochastic nets with rational weights have super-Turing

power (but only P/POLY, BPP/log*) (Siegelmann ‘99)
•  But computing classes of functions is not a very relevant

way to evaluate the capabilities of neural computation
10/25/09 68

A Universal Approximation Theorem

10/25/09 69

€

Suppose f is a continuous function on 0,1[]n

€

Suppose σ is a nonconstant, bounded,
 monotone increasing real function on ℜ.

€

For any ε > 0, there is an m such that
 ∃a ∈ ℜm , b∈ ℜn, W ∈ ℜm×n such that if

€

F x1,…,xn() = aiσ Wij x j + b j
j=1

n

∑

i=1

m

∑

€

i.e., F x() = a ⋅σ Wx + b()[]

€

then F x() − f x() < ε for all x ∈ 0,1[]n

(see, e.g., Haykin, N.Nets 2/e, 208–9)

One Hidden Layer is Sufficient
•  Conclusion: One hidden layer is sufficient

to approximate any continuous function
arbitrarily closely

10/25/09 70

Σσ

Σσ

Σσ

Σ

1

x1

xn

a1

am

a2

b1

Wmn

10/25/09 71

The Golden Rule of Neural Nets

Neural Networks are the
second-best way
to do everything!

IVB

