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IV. Neural Network Learning
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A.�
Neural Network Learning
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Supervised Learning

•  Produce desired outputs for training inputs
•  Generalize reasonably & appropriately to 

other inputs
•  Good example: pattern recognition
•  Feedforward multilayer networks
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Feedforward Network
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Typical Artificial Neuron

inputs

connection�
weights

threshold

output



10/25/09 6

Typical Artificial Neuron

linear�
combination

net input�
(local field)

activation�
function
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Equations

€ 

hi = wijs j
j=1

n

∑
 

 
  

 

 
  −θ

h =Ws−θ

Net input:

€ 

′ s i =σ hi( )
′ s =σ h( )

Neuron output:
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Single-Layer Perceptron

. .
 . . .

 .
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Variables

ΘΣxj

xn

x1

yh
wj

wn

w1

θ
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Single Layer Perceptron 
Equations

€ 

Binary threshold activation function :  

σ h( ) =Θ h( ) =
1, if h > 0
0, if h ≤ 0
 
 
 

€ 

Hence, y =
1, if w j x j > θ

j∑
0, otherwise

 
 
 

=
1, if w ⋅ x > θ

0, if w ⋅ x ≤θ
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2D Weight Vector

w

w1

w2
x

φ

€ 

w ⋅ x = w x cosφ

v

€ 

cosφ =
v
x

€ 

w ⋅ x = w v

€ 

w ⋅ x > θ

⇔ w v > θ

⇔ v > θ w

€ 

θ
w

+–
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N-Dimensional Weight Vector

w

+

–

separating
hyperplane

normal
vector
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Goal of Perceptron Learning

•  Suppose we have training patterns x1, x2, 
…, xP with corresponding desired outputs 
y1, y2, …, yP 

•  where xp ∈ {0, 1}n, yp ∈ {0, 1}
•  We want to find w, θ such that�

yp = Θ(w⋅xp – θ) for p = 1, …, P 
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Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1

θ

€ 

h = w j x j
j=1

n

∑
 

 
  

 

 
  −θ

= −θ + w j x j
j=1

n

∑
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Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1
θ

€ 

h = w j x j
j=1

n

∑
 

 
  

 

 
  −θ

= −θ + w j x j
j=1

n

∑

–1

€ 

h = w0x0 + w j x j =
j=1

n

∑ w j x j = ˜ w ⋅ ˜ x 
j= 0

n

∑
€ 

Let x0 = −1 and w0 = θ

= w0

x0 =
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Augmented Vectors

  

€ 

˜ w =

θ

w1



wn

 

 

 
 
 
 

 

 

 
 
 
 

  

€ 

˜ x p =

−1
x1
p



xn
p

 

 

 
 
 
 

 

 

 
 
 
 

  

€ 

We want y p =Θ ˜ w ⋅ ˜ x p( ),   p =1,…,P
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Reformulation as Positive 
Examples

€ 

We have positive (y p =1) and negative (y p = 0) examples

€ 

Want ˜ w ⋅ ˜ x p > 0 for positive, ˜ w ⋅ ˜ x p ≤ 0 for negative

€ 

Let z p = ˜ x p  for positive, z p = − ˜ x p  for negative

  

€ 

Want ˜ w ⋅ z p ≥ 0, for p =1,…,P

€ 

Hyperplane through origin with all z p  on one side
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Adjustment of Weight Vector

z10
z11

z1

z6

z7

z8

z4z3

z9

z5

z2
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Outline of�
Perceptron Learning Algorithm

1.  initialize weight vector randomly

2.  until all patterns classified correctly, do:
a)  for p = 1, …, P do:

1)  if zp classified correctly, do nothing
2)  else adjust weight vector to be closer to correct 

classification
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Weight Adjustment

€ 

˜ w 

€ 

z p

€ 

ηz p

€ 

˜ ′ w 

€ 

ηz p

€ 

˜ ′ ′ w 
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Improvement in Performance

€ 

˜ ′ w ⋅ z p = ˜ w +ηz p( ) ⋅ z p

= ˜ w ⋅ z p +ηz p ⋅ z p

= ˜ w ⋅ z p +η z p 2

> ˜ w ⋅ z p

€ 

If ˜ w ⋅ z p < 0,
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Perceptron Learning Theorem

•  If there is a set of weights that will solve the 
problem,

•  then the PLA will eventually find it
•  (for a sufficiently small learning rate)
•  Note: only applies if positive & negative 

examples are linearly separable
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NetLogo Simulation of 
Perceptron Learning

Run Perceptron-Geometry.nlogo



10/25/09 24

Classification Power of 
Multilayer Perceptrons

•  Perceptrons can function as logic gates
•  Therefore MLP can form intersections, 

unions, differences of linearly-separable 
regions

•  Classes can be arbitrary hyperpolyhedra
•  Minsky & Papert criticism of perceptrons
•  No one succeeded in developing a MLP 

learning algorithm



Hyperpolyhedral Classes
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Credit Assignment Problem
. .

 .

. .
 . . .

 . . .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

How do we adjust the weights of the hidden layers?
. . .

Desired
output
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NetLogo Demonstration of�
Back-Propagation Learning

Run Artificial Neural Net.nlogo
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Adaptive System

S F

Pk PmP1 … …

System
Evaluation Function

(Fitness, Figure of Merit)

Control Parameters
C

Control
Algorithm
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Gradient

€ 

∂F
∂Pk

 measures how F is altered by variation of Pk

  

€ 

∇F =

∂F
∂P1


∂F
∂Pk


∂F
∂Pm

 

 

 
 
 
 
 
  

 

 

 
 
 
 
 
  

€ 

∇F points in direction of maximum local increase in F
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Gradient Ascent�
on Fitness Surface

+
–

∇F

gradient ascent
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Gradient Ascent�
by Discrete Steps

+
–

∇F
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Gradient Ascent is Local�
But Not Shortest

+
–
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Gradient Ascent Process

€ 

˙ P =η∇F P( )

€ 

Change in fitness :

˙ F = d F
d t

=
∂F
∂Pk

dPk

d tk=1

m
∑ = ∇F( )k

˙ P kk=1

m
∑

˙ F =∇F ⋅ ˙ P 

€ 

˙ F =∇F ⋅η∇F =η ∇F 2
≥ 0

Therefore gradient ascent increases fitness
(until reaches 0 gradient)
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General Ascent in Fitness

€ 

Note that any adaptive process P t( ) will increase
 fitness provided :

0 < ˙ F =∇F ⋅ ˙ P = ∇F ˙ P cosϕ

where ϕ is angle between ∇F and ˙ P 

  

€ 

Hence we need cosϕ > 0
or ϕ < 90
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General Ascent�
on Fitness Surface

+
–

∇F
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Fitness as Minimum Error

  

€ 

Suppose for Q different inputs we have target outputs t1,…,tQ

  

€ 

Suppose for parameters P the corresponding actual outputs
 are y1,…,yQ

€ 

Suppose D t,y( )∈ 0,∞[ ) measures difference between
 target &  actual outputs

€ 

Let E q = D tq ,yq( ) be error on qth sample

€ 

Let F P( ) = − E q P( ) = − D tq ,yq P( )[ ]
q=1

Q

∑
q=1

Q

∑
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Gradient of Fitness

€ 

∇F =∇ − E q

q
∑

 

 
  

 

 
  = − ∇E q

q
∑

€ 

∂Eq

∂Pk
=

∂
∂Pk

D tq ,yq( )

€ 

=
∂D tq,yq( )

∂y j
q

j
∑

∂y j
q

∂Pk

€ 

=
dD tq,yq( )
dyq

⋅
∂yq

∂Pk

€ 

=∇y qD t
q,yq( ) ⋅ ∂y

q

∂Pk
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Jacobian Matrix

  

€ 

Define Jacobian matrix Jq =

∂y1
q

∂P1


∂y1
q

∂Pm
  

∂yn
q

∂P1


∂yn
q

∂Pm

 

 

 
 
 
 

 

 

 
 
 
 

€ 

Note Jq ∈ ℜn×m  and ∇D tq,yq( )∈ ℜn×1

€ 

Since ∇E q( )k =
∂Eq

∂Pk
=

∂y j
q

∂Pk

∂D tq,yq( )
∂y j

q
j
∑ ,

€ 

∴∇Eq = Jq( )
T
∇D tq,yq( )
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Derivative of Squared Euclidean 
Distance

€ 

Suppose D t,y( ) = t − y 2
= ti − yi( )2

i∑

€ 

∂D t − y( )
∂y j

=
∂
∂y j

ti − yi( )2
i
∑ =

∂ ti − yi( )2

∂y ji
∑

€ 

=
d t j − y j( )

2

d y j

= −2 t j − y j( )

€ 

∴
dD t,y( )
dy

= 2 y − t( )
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Gradient of Error on qth Input

€ 

∂Eq

∂Pk
=
dD tq,yq( )
dyq

⋅
∂yq

∂Pk

= 2 yq − tq( ) ⋅ ∂y
q

∂Pk

= 2 y j
q − t j

q( )
∂y j

q

∂Pkj∑

€ 

∇Eq = 2 Jq( )
T
yq − tq( )
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Recap

€ 

To know how to decrease the differences between
 actual &  desired outputs,

we need to know elements of Jacobian, ∂y j
q

∂Pk
,

which says how jth output varies with kth parameter
(given the qth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network

€ 

˙ P =η Jq( )
T

tq − yq( )q∑
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Multilayer Notation

W1 W2 WL–2 WL–1

s1 s2 sL–1 sL

xq yq
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Notation
•  L layers of neurons labeled 1, …, L 
•  Nl neurons in layer l 
•  sl = vector of outputs from neurons in layer l 
•  input layer s1 = xq (the input pattern)
•  output layer sL = yq (the actual output)
•  Wl = weights between layers l and l+1
•  Problem: find how outputs yi

q vary with 
weights Wjk

l (l = 1, …, L–1)
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Typical Neuron

σΣsj
l–1

sN
l–1

s1
l–1

si
lhi

lWij
l–1

WiN
l–1

Wi1
l–1
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Error Back-Propagation

  

€ 

We will compute ∂E
q

∂Wij
l  starting with last layer (l = L −1)

and working back to earlier layers (l = L − 2,…,1)
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Delta Values

€ 

Convenient to break derivatives by chain rule :
∂Eq

∂Wij
l−1 =

∂Eq

∂hi
l
∂hi

l

∂Wij
l−1

Let δi
l =

∂Eq

∂hi
l

So ∂E
q

∂Wij
l−1 = δi

l ∂hi
l

∂Wij
l−1
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Output-Layer Neuron

σΣsj
L–1

sN
L–1

s1
L–1

si
L = yi

qhi
LWij

L–1

WiN
L–1

Wi1
L–1

ti
q

Eq
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Output-Layer Derivatives (1)

€ 

δi
L =

∂Eq

∂hi
L =

∂
∂hi

L sk
L − tk

q( )2k
∑

=
d si

L − ti
q( )
2

dhi
L = 2 si

L − ti
q( ) d si

L

dhi
L

= 2 si
L − ti

q( ) ′ σ hi
L( )
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Output-Layer Derivatives (2)

€ 

∂hi
L

∂Wij
L−1 =

∂
∂Wij

L−1 Wik
L−1sk

L−1

k
∑ = s j

L−1

€ 

∴
∂Eq

∂Wij
L−1 = δi

Ls j
L−1

    where δi
L = 2 si

L − ti
q( ) ′ σ hi

L( )
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Hidden-Layer Neuron

σΣsj
l–1

sN
l–1

s1
l–1

si
lhi

lWij
l–1

WiN
l–1

Wi1
l–1

sk
l+1

sN
l+1

s1
l+1

W1i
l

Wki
l

WNi
l

s1
l

sN
l

Eq
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Hidden-Layer Derivatives (1)

€ 

Recall ∂E
q

∂Wij
l−1 = δi

l ∂hi
l

∂Wij
l−1

€ 

δi
l =

∂Eq

∂hi
l =

∂Eq

∂hk
l+1
∂hk

l+1

∂hi
l

k
∑ = δk

l+1 ∂hk
l+1

∂hi
l

k
∑

€ 

∂hk
l+1

∂hi
l =

∂ Wkm
l sm

l

m
∑
∂hi

l =
∂Wki

l si
l

∂hi
l =Wki

l dσ hi
l( )

dhi
l =Wki

l ′ σ hi
l( )

€ 

∴δi
l = δk

l+1Wki
l ′ σ hi

l( )
k
∑ = ′ σ hi

l( ) δk
l+1Wki

l

k
∑
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Hidden-Layer Derivatives (2)

€ 

∂hi
l

∂Wij
l−1 =

∂
∂Wij

l−1 Wik
l−1sk

l−1

k
∑ =

dWij
l−1s j

l−1

dWij
l−1 = s j

l−1

€ 

∴
∂Eq

∂Wij
l−1 = δi

l s j
l−1

    where δi
l = ′ σ hi

l( ) δk
l+1Wki

l

k
∑
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Derivative of Sigmoid

€ 

Suppose s =σ h( ) =
1

1+ exp −αh( )
 (logistic sigmoid)

€ 

Dh s =Dh 1+ exp −αh( )[ ]−1 = − 1+ exp −αh( )[ ]−2 Dh 1+ e−αh( )

= − 1+ e−αh( )−2 −αe−αh( ) =α
e−αh

1+ e−αh( )
2

=α
1

1+ e−αh
e−αh

1+ e−αh
=αs 1+ e−αh

1+ e−αh
−

1
1+ e−αh

 

 
 

 

 
 

=αs(1− s)
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Summary of Back-Propagation 
Algorithm

€ 

Output layer :δi
L = 2αsi

L 1− si
L( ) siL − tiq( )

∂Eq

∂Wij
L−1 = δi

Ls j
L−1

€ 

Hidden layers :  δi
l =αsi

l 1− si
l( ) δk

l+1Wki
l

k
∑

∂Eq

∂Wij
l−1 = δi

l s j
l−1
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Output-Layer Computation

σΣsj
L–1

sN
L–1

s1
L–1

si
L = yi

qhi
LWij

L–1

WiN
L–1

Wi1
L–1

ti
q–

δi
L ×

2α

1–

€ 

δi
L = 2αsi

L 1− si
L( ) tiq − siL( )

× η

ΔWij
L–1

€ 

ΔWij
L−1 =ηδi

Ls j
L−1
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Hidden-Layer Computation

σΣsj
l–1

sN
l–1

s1
l–1

si
lhi

lWij
l–1

WiN
l–1

Wi1
l–1

sk
l+1

sN
l+1

s1
l+1

W1i
l

Wki
l

WNi
l

Eq

δ1
l+1

δk
l+1

δN
l+1δi

l ×

α

1–

×

Σ

€ 

δi
l =αsi

l 1− si
l( ) δk

l+1Wki
l

k
∑

× η

ΔWij
l–1

€ 

ΔWij
l−1 =ηδi

l s j
l−1
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Training Procedures
•  Batch Learning

–  on each epoch (pass through all the training pairs),
–  weight changes for all patterns accumulated
–  weight matrices updated at end of epoch
–  accurate computation of gradient

•  Online Learning
–  weight are updated after back-prop of each training pair
–  usually randomize order for each epoch
–  approximation of gradient

•  Doesn’t make much difference
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Summation of Error Surfaces

E1

E2

E
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Gradient Computation�
in Batch Learning

E1

E2

E



10/25/09 60

Gradient Computation�
in Online Learning

E1

E2

E
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Testing Generalization

Domain
Available

Data

Training
Data

Test
Data
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Problem of Rote Learning
error

epoch

error on
training

data

error on
test data

stop training here
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Improving Generalization

Domain
Available

Data

Training
Data

Test Data

Validation Data
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A Few Random Tips
•  Too few neurons and the ANN may not be able to 

decrease the error enough
•  Too many neurons can lead to rote learning
•  Preprocess data to:

–  standardize
–  eliminate irrelevant information
–  capture invariances
–  keep relevant information

•  If stuck in local min., restart with different random 
weights



Run Example BP Learning
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Beyond Back-Propagation

•  Adaptive Learning Rate
•  Adaptive Architecture

– Add/delete hidden neurons
– Add/delete hidden layers

•  Radial Basis Function Networks
•  Recurrent BP
•  Etc., etc., etc.…
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What is the Power of�
Artificial Neural Networks?

•  With respect to Turing machines?

•  As function approximators?
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Can ANNs Exceed the “Turing Limit”?
•  There are many results, which depend sensitively on 

assumptions; for example:
•  Finite NNs with real-valued weights have super-Turing 

power (Siegelmann & Sontag ‘94)
•  Recurrent nets with Gaussian noise have sub-Turing power 

(Maass & Sontag ‘99)
•  Finite recurrent nets with real weights can recognize all 

languages, and thus are super-Turing (Siegelmann ‘99)
•  Stochastic nets with rational weights have super-Turing 

power (but only P/POLY, BPP/log*) (Siegelmann ‘99)
•  But computing classes of functions is not a very relevant 

way to evaluate the capabilities of neural computation
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A Universal Approximation Theorem
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€ 

Suppose f is a continuous function on 0,1[ ]n

€ 

Suppose σ is a nonconstant, bounded, 
    monotone increasing real function on ℜ.

€ 

For any ε > 0, there is an m such that
     ∃a ∈ ℜm ,  b∈ ℜn,  W ∈ ℜm×n  such that if

  

€ 

F x1,…,xn( ) = aiσ Wij x j + b j
j=1

n

∑
 

 
  

 

 
  

i=1

m

∑

€ 

i.e.,  F x( ) = a ⋅σ Wx + b( )[ ]

€ 

then F x( ) − f x( ) < ε for all x ∈ 0,1[ ]n

(see, e.g., Haykin, N.Nets 2/e, 208–9)



One Hidden Layer is Sufficient
•  Conclusion: One hidden layer is sufficient 

to approximate any continuous function 
arbitrarily closely
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Σσ

Σσ

Σσ

Σ

1

x1

xn

a1

am

a2

b1

Wmn
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The Golden Rule of Neural Nets

Neural Networks are the
second-best way
to do everything!

IVB


