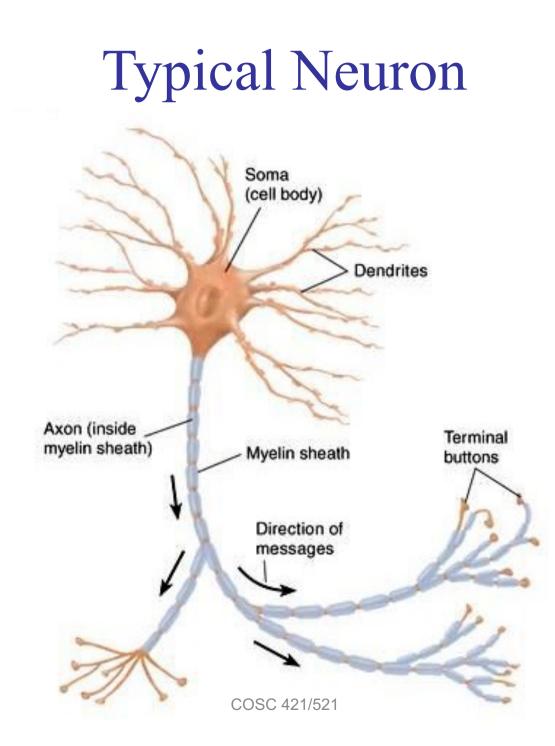
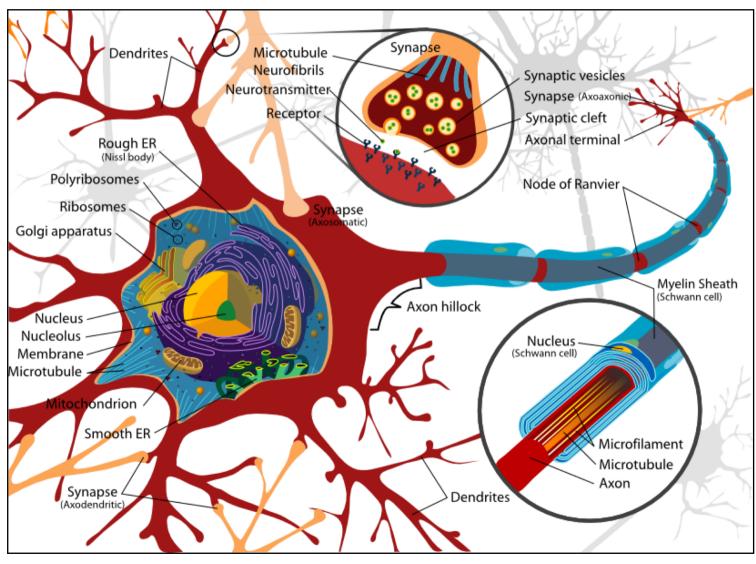
### 2. Neurons



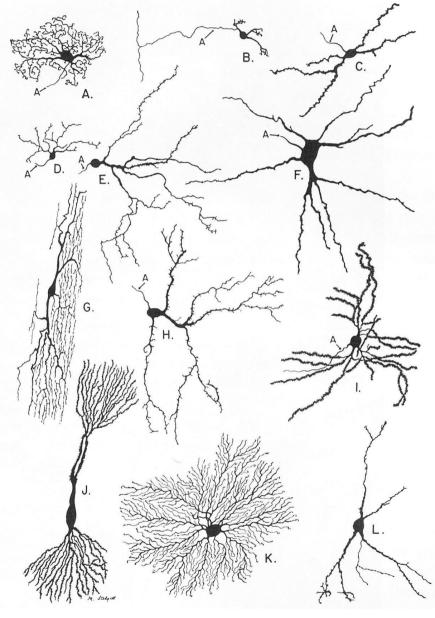
1/15/20

## Typical Neuron



1/15/20

## Dendritic Trees of Some Neurons



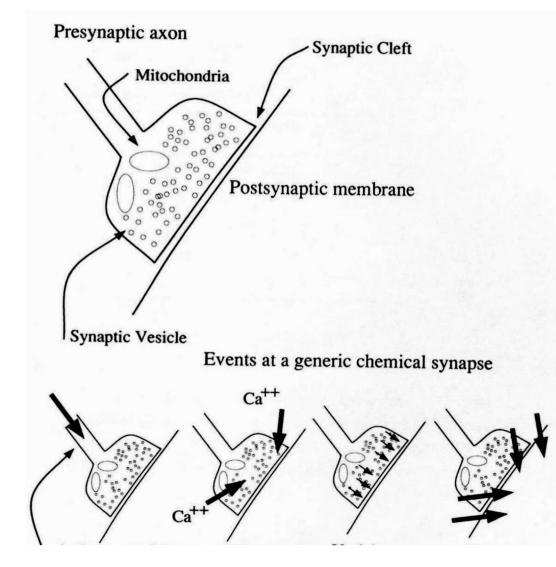
- A. inferior olivary nucleus
- B. granule cell of cerebellar cortex
- C. small cell of reticular formation
- D. small gelatinosa cell of spinal trigeminal nucleus
- E. ovoid cell, nucleus of tractus solitarius
- F. large cell of reticular formation
- G. spindle-shaped cell, substantia gelatinosa of spinal chord
- H. large cell of spinal trigeminal nucleus
- I. putamen of lenticular nucleus
- J. double pyramidal cell, Ammon's horn of hippocampal cortex
- K. thalamic nucleus
- L. globus pallidus of lenticular nucleus

1/15/20



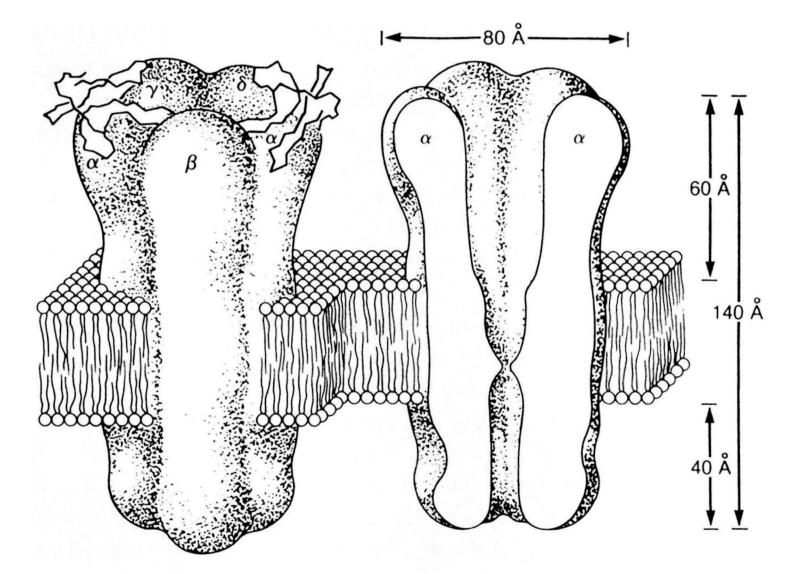
# Animation of synapses: Hurd Studios Nicotine.flv

# Chemical Synapse



- 1. Action potential arrives at synapse
- Opens Ca ion channels and Ca<sup>++</sup> ions enter cell
- 3. Vesicles move to membrane, release neurotransmitter
- 4. Transmitter crosses cleft, causes postsynaptic voltage change

### **Typical Receptor**



### Synapse with Receptors

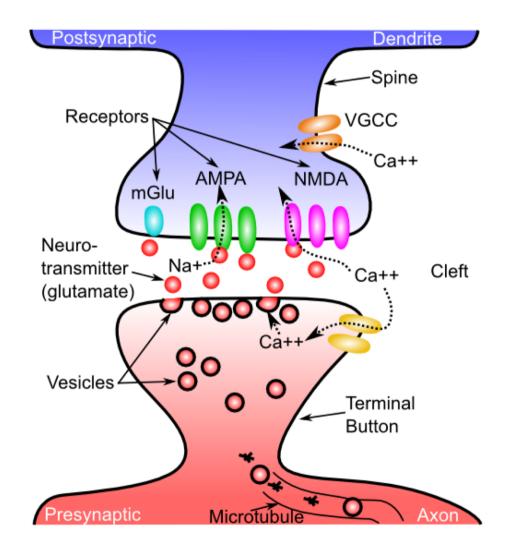


Fig. 3 Activity-dependent modulation of pre-, post-, and trans-synaptic components.



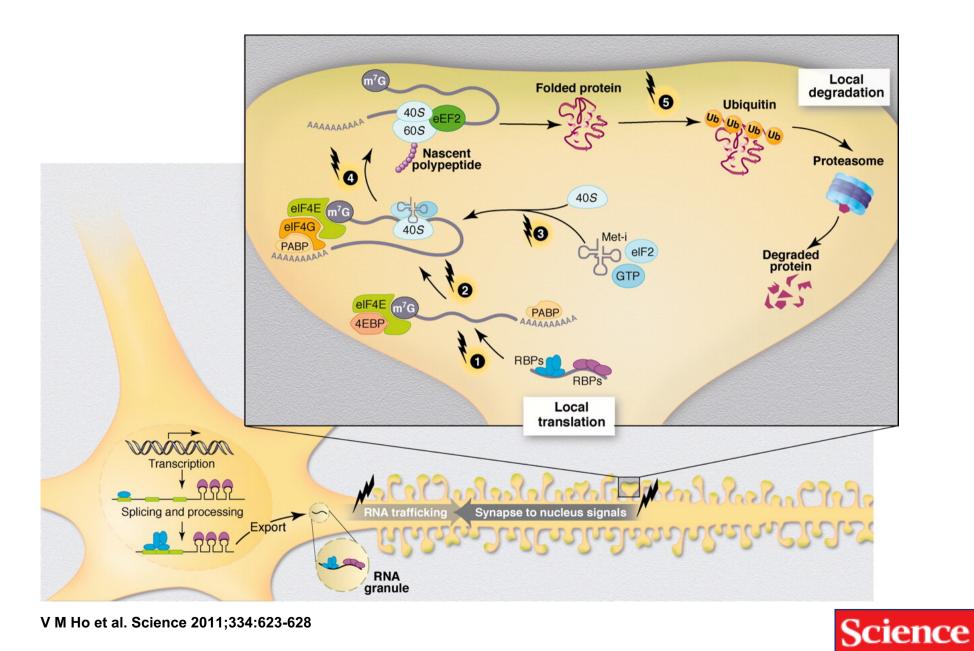
V M Ho et al. Science 2011;334:623-628

1/15/20

× The picture can't be displayed.



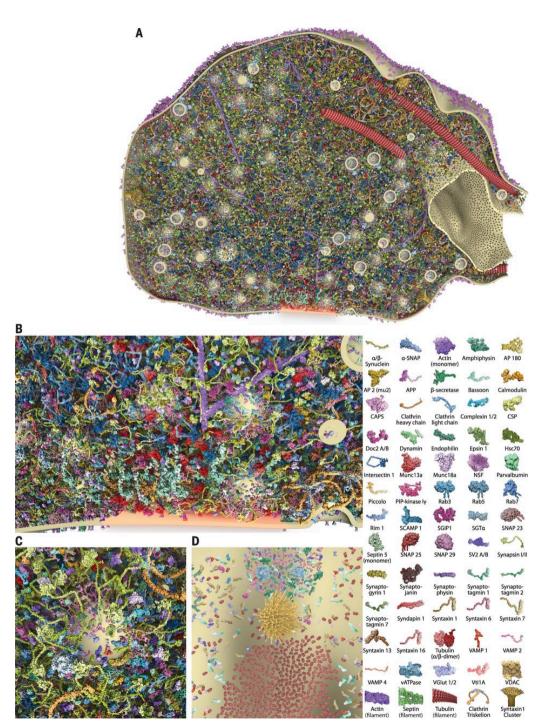
Fig. 4 Local regulation of the synaptic proteome.



1/15/20

× The picture can't be displayed.

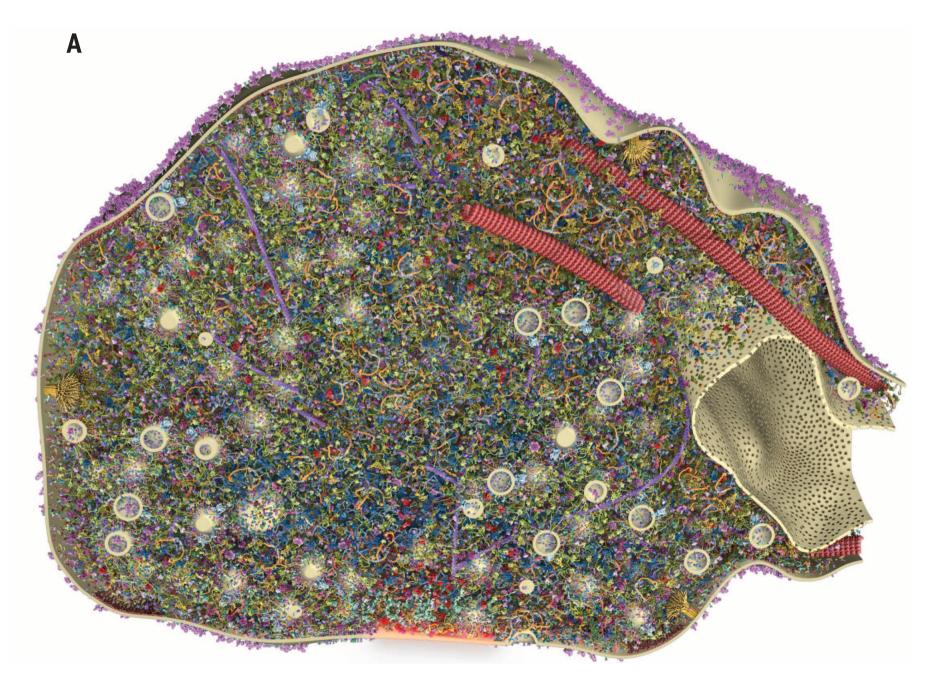
MAAAS



#### Fig. 3: A 3D model of synaptic architecture.

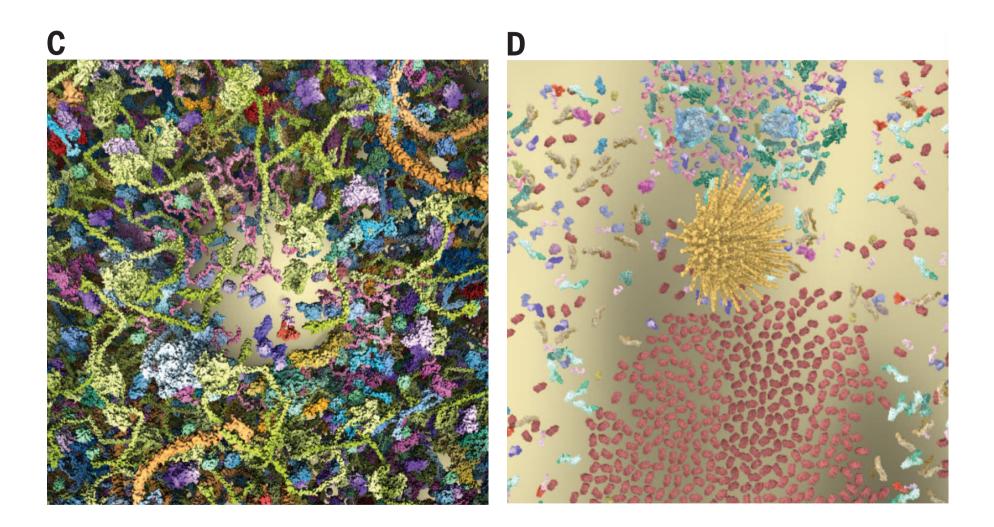
- A section through the synaptic bouton, indicating 60 proteins.
- High-zoom view of the active zone area.
- High-zoom view of one vesicle within the vesicle cluster.
- High-zoom view of a section of the plasma membrane in the vicinity of the active zone. Clusters of syntaxin (yellow) and SNAP 25 (red) are visible, as well as a recently fused synaptic vesicle (top). The graphical legend indicates the different proteins (right). Displayed synaptic vesicles have a diameter of 42 nm.



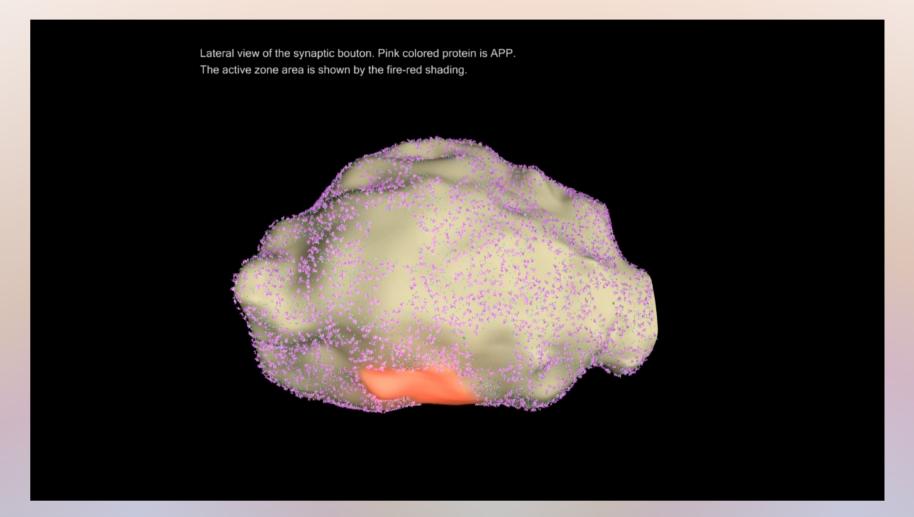




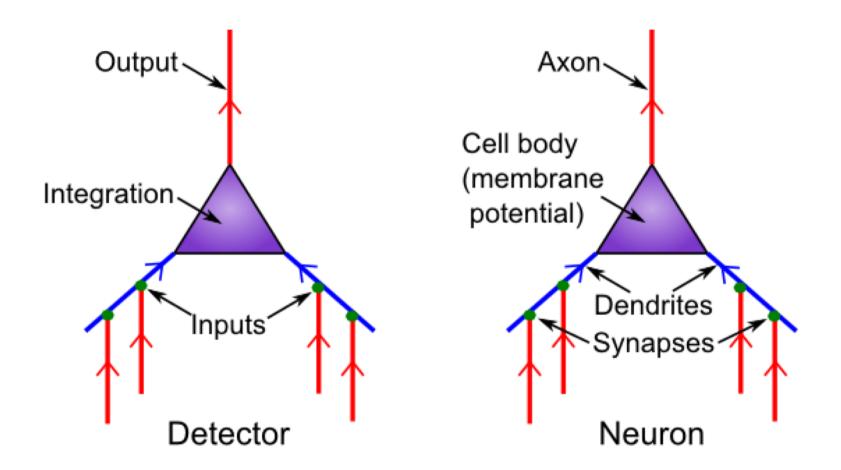
13



### Video of 3D Model



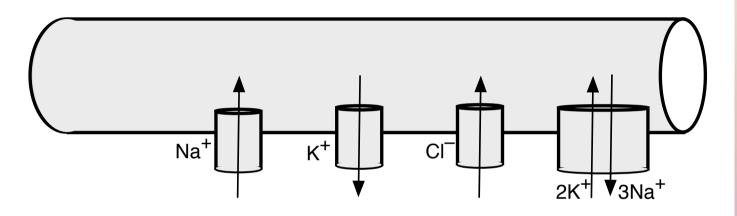
#### Detector Model



### **Overall Strategy**

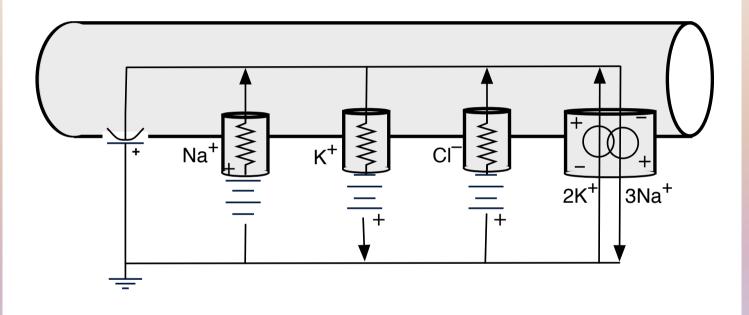
- Neurons are electrical systems and can be described using basic electrical equations.
- Use these equations to simulate on a computer.
- Need a fair bit of math to get a full working model (more here than most chapters), but you only really need to understand conceptually.

### Membrane Potential: Channels



- Na-K pump  $\Rightarrow$  intracellular negative
- Na<sup>+</sup>, K<sup>+</sup>, Cl<sup>-</sup> diffusing through their channels
- create potentials across channels

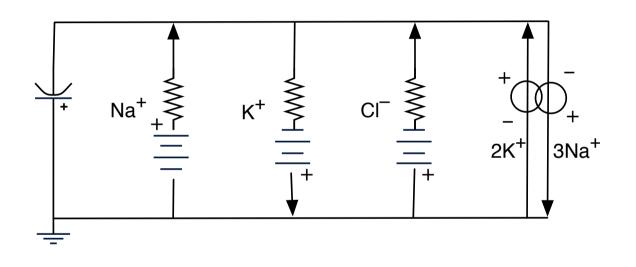
### Membrane Potential: Channels & Equivalent Circuit



- Open channels define resistance to ion flow
- Membrane acts like insulator

• Ion pump charges membrane capacitance

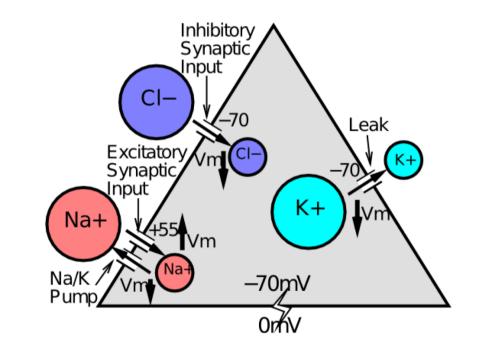
Membrane Potential: Equivalent Circuit



- Ion pump is constant
- Change in conductance of channels
- $\Rightarrow$  change in membrane potential

### Neurophysiology of Membrane

- Na-K pump pumps Na<sup>+</sup> out of the neuron and pumps a lesser amount of K<sup>+</sup> into the neuron
- Creates negative resting potential (-70 mV)
- Na<sup>+</sup> wants in (can't, due to closed channels)
- Cl<sup>-</sup> is in balance (diffusion pushes in, electrical pushes out)
- K<sup>+</sup> is in balance (diffusion pushes out, electrical pushes in)



### Ions Summary

- Excitatory synaptic input boosts the membrane potential by allowing Na<sup>+</sup> ions to enter the neuron (depolarization)
- Inhibitory synaptic input serves to counteract this increase in membrane potential by allowing Cl<sup>-</sup> ions to enter the neuron
- The leak current (K<sup>+</sup> flowing out of the neuron through open channels) acts as a drag on the membrane potential. Functionally speaking, it makes it harder for excitatory input to increase the membrane potential.

# Input Signals

- Excitatory
  - about 85% of inputs
  - AMPA channels, opened
    by glutamate
- Inhibitory
  - about 15% of inputs
  - GABA channels, opened by GABA
- produced by inhibitory interneurons

#### • Leakage

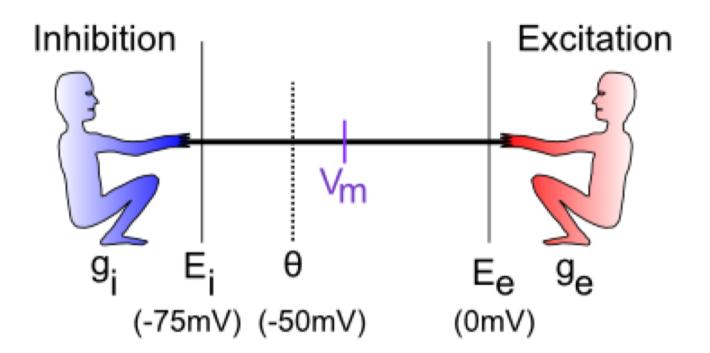
- potassium channels
- Synaptic efficacy (weight) is net effect of:
  - presynaptic neuron to produce
    neurotransmitter
  - postsynaptic channels to bind it

23

### Membrane Potential (Variables)

- $g_e = \text{excitatory conductance}$
- $E_e = \text{excitatory potential} (\sim 0 \text{ mV})$
- $g_i$  = inhibitory conductance
- $E_i = \text{inhibitory potential } (-70 \text{ mV})$
- $g_l = \text{leakage conductance}$
- $E_l =$ leakage potential
- $V_m$  = membrane potential
- $\theta =$ threshold

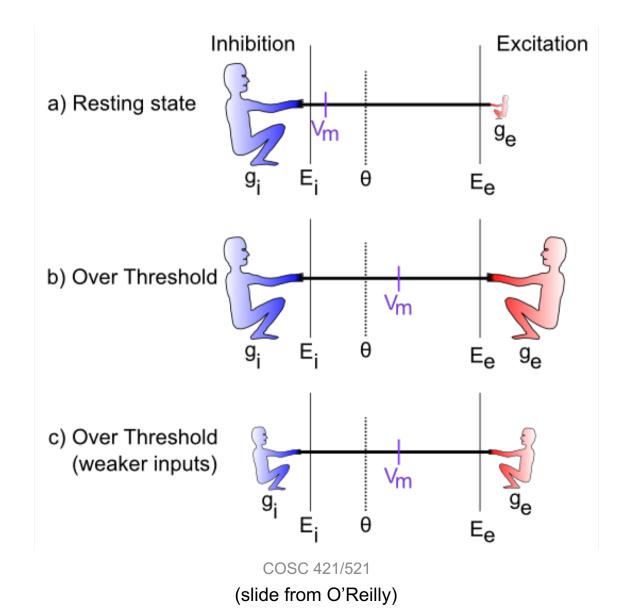
### The Tug-of-War



How strongly each guy pulls:  $I = g (E - V_m)$  g = how many input channels are open E = driving potential (pull down for inhibition, up for excitation)  $V_m =$  the "flag" – reflects net balance between two sides

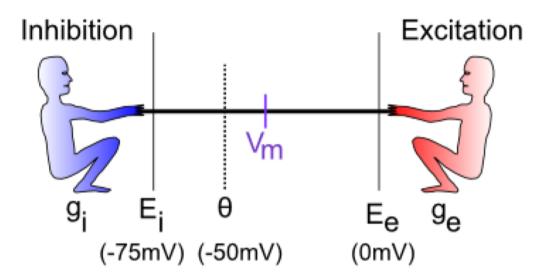
1/15/20

#### **Relative Balance**



1/15/20

#### Equations



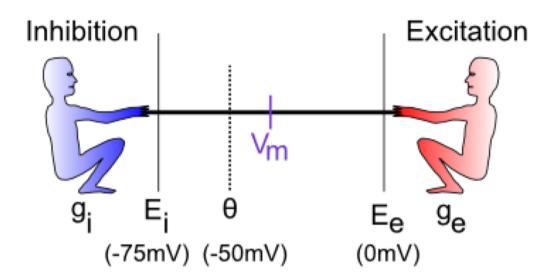
$$I_{net} = I_e + I_i + I_l = g_e (E_e - V_m) + g_i (E_i - V_m) + g_l (E_l - V_m)$$
$$V_m (t) = V_m (t - 1) + dt_{vm} I_{net}$$
$$V_m (t) = V_m (t - 1) + dt_{vm} [g_e (E_e - V_m) + g_i (E_i - V_m) + g_l (E_l - V_m)]$$

1/15/20

COSC 421/521

(slide from O'Reilly)

### Equilibrium



$$V_m = \frac{g_e}{g_e + g_i + g_l} E_e + \frac{g_i}{g_e + g_i + g_l} E_i + \frac{g_l}{g_e + g_i + g_l} E_l$$

#### This is just the balance of forces

COSC 421/521 (slide from O'Reilly)

### Input Conductances and Weights

• Just add them up (and take the average)

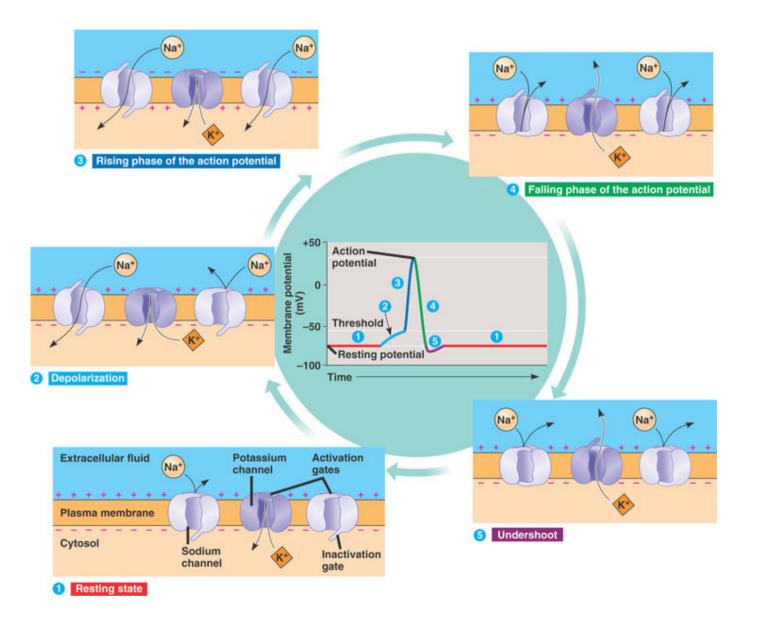
$$g_e(t) = \frac{1}{n} \sum_i x_i w_i$$

- Key concept is *weight:* how much unit listens to given input
- Weights determine what the neuron detects
- Everything you know is encoded in your weights

### Generating Output

- If  $V_m$  gets over threshold, neuron fires a spike
- Spike resets membrane potential back to rest
- Has to climb back up to threshold to spike again

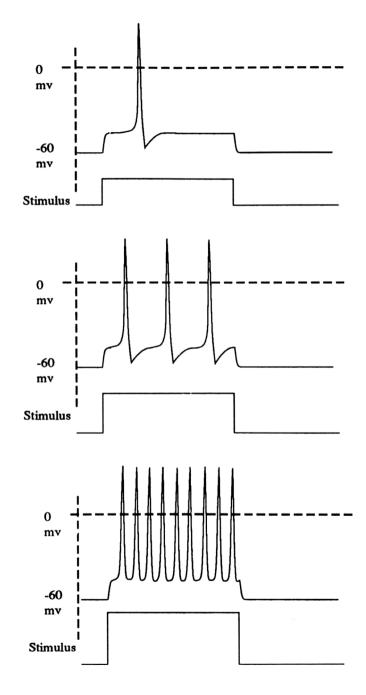
### Action Potential Generation



#### Action Potential Generation

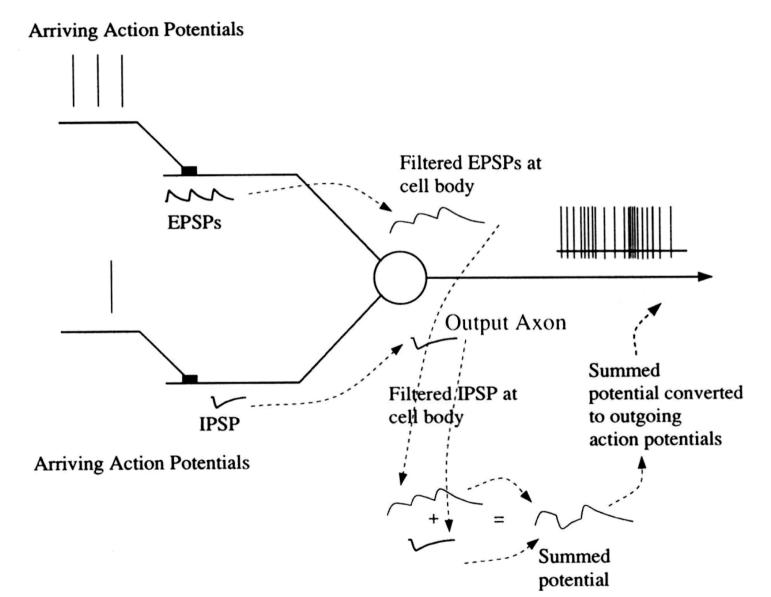
- From Algonquin College
- https://www.youtube.com/watch?v=plFOiU7sTO4

# Frequency Coding



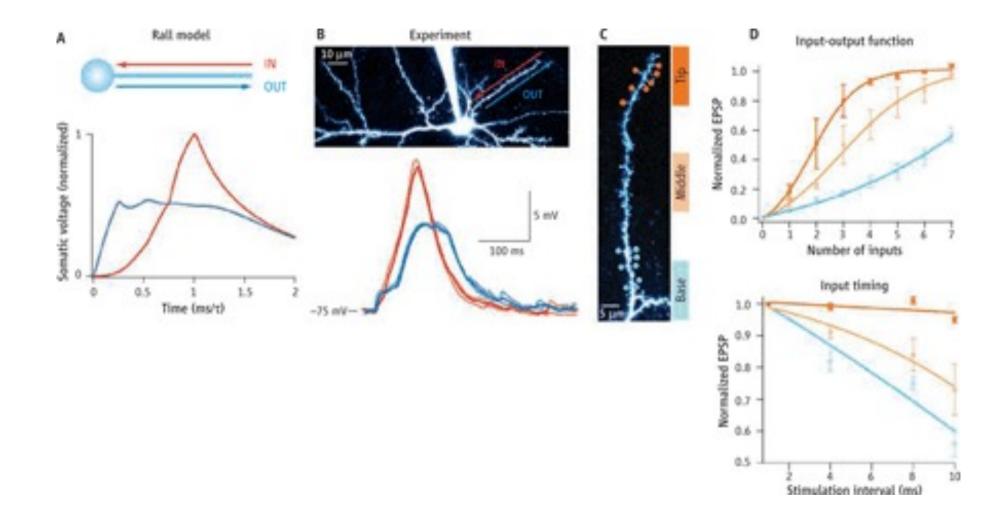
(fig. from Anderson, Intr. Neur. Nets)

### Slow Potential Neuron



(fig. < Anderson, *Intr. Neur. Nets*)

Dendritic computation in pyramidal cells.

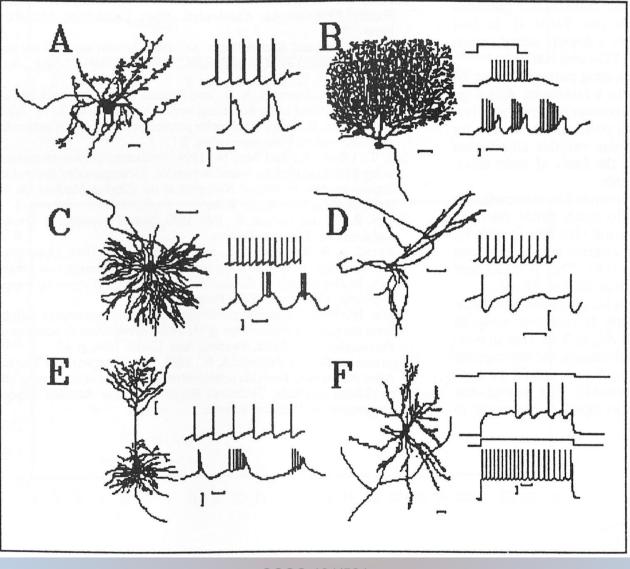




T Branco Science 2011;334:615-616

Published by AAAS

### Variations in Spiking Behavior



1/15/20

## **Computational Formulation**

#### Membrane Potential

Currents: 
$$I_x = g_x (E_x - V_m), x = e, i, l$$

Net current: 
$$I_{net} = I_e + I_i + I_l$$

Change in membrane potential:  $\dot{V}_m = C^{-1}I_{net}$  ( $C^{-1}$  is rate constant)

$$\dot{V}_m = C^{-1} [g_e (E_e - V_m) + g_i (E_i - V_m) + g_l (E_l - V_m)]$$
  
Equilibrium  $V_m = \frac{g_e E_e + g_i E_i + g_l E_l}{g_e + g_i + g_l}$ 

#### Relative vs. Absolute Conductances

- Previously,  $g_x$  was absolute conductance (measured in nanosiemens)
- More convenient to represent as product  $\bar{g}_x g_x(t)$ 
  - where  $\bar{g}_x$  is the absolute maximum conductance (all channels open)
  - and  $g_x(t)$  is the relative conductance at a given time,  $0 \le g_x(t) \le 1$

$$V_m = \frac{\bar{g}_e g_e(t)}{\bar{g}_e g_e(t) + \bar{g}_i g_i(t) + \bar{g}_l} E_e + \frac{\bar{g}_i g_i(t)}{\bar{g}_e g_e(t) + \bar{g}_i g_i(t) + \bar{g}_l} E_i + \frac{\bar{g}_l}{\bar{g}_e g_e(t) + \bar{g}_i g_i(t) + \bar{g}_l} E_l$$

### Discrete Spiking

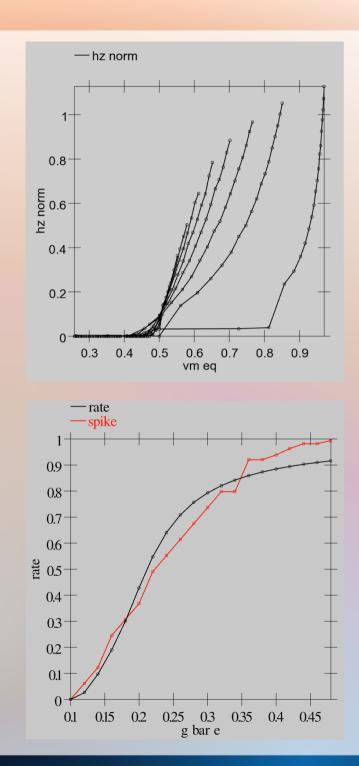
### Rate Code Approximation

- Brain likes spikes, but rates are more convenient
  - Instantaneous and steady smaller, faster models
  - But definitely lose several important things
  - Solution: do it both ways, and see the differences
- Goal: equation that makes good approximation of actual spiking rate for same sets of inputs

### Rate Code Approximation

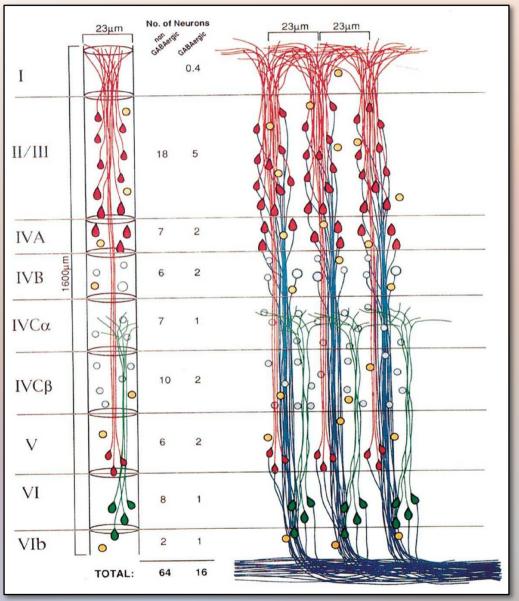
- Rate-coded (simulated) neurons:
  - short-time avg spike frequency  $\approx$
  - avg behavior of minicolumn (~100 neurons) with similar inputs and output behavior
- Rate not predicted well by  $V_m$
- Predicted better by  $g_e$  relative to a threshold value  $g_e^{\theta}$

COSC 421/521



42

#### Minicolumn

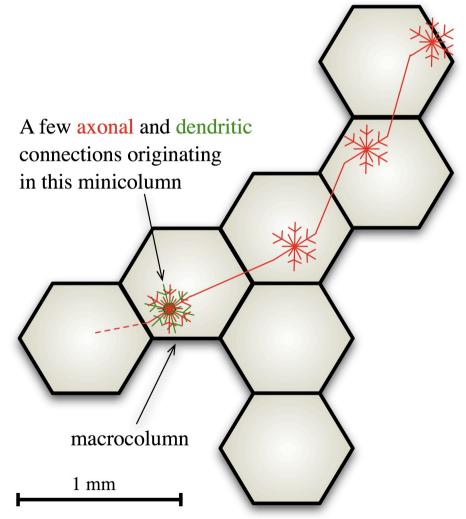


Up to ~100 neurons 75–80% pyramidal 20–25% interneurons 20–50µ diameter Length: 0.8 (mouse) to 3mm (human) ~  $6 \times 10^5$  synapses 75–90% synapses outside minicolumn Interacts with 1.2×10<sup>5</sup> other minicolumns Mutually excitable Also called *microcolumn* 

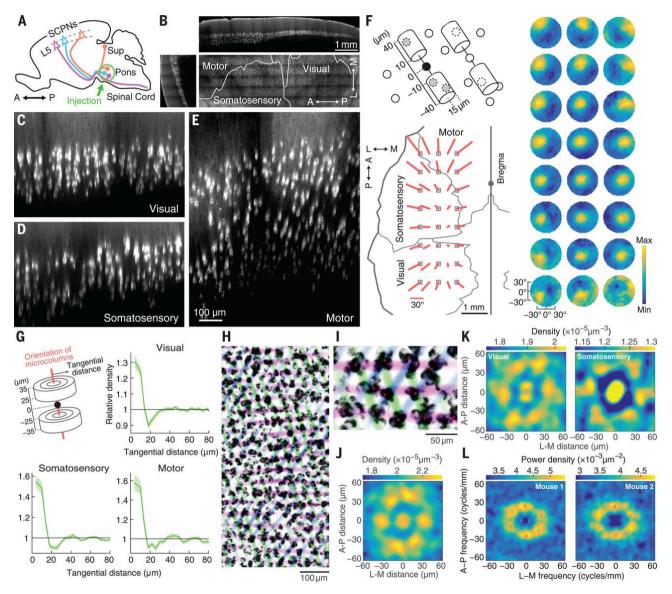
### Intracortical Connections

Dendrites extend 2–4 minicol. diameters

- Axons extend 5× (or even 30–40× minicol. diameter
- Periodic spacing of axon terminal clusters causes entrainment
- ~ 2×10<sup>7</sup> connections to macrocolumn



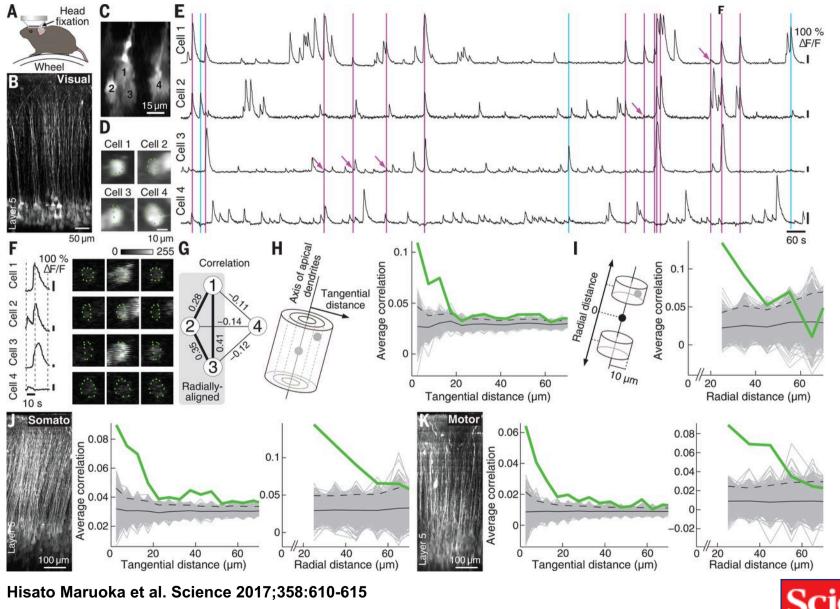
#### Fig. 1 Lattice organization of SCPN microcolumns.



Hisato Maruoka et al. Science 2017;358:610-615

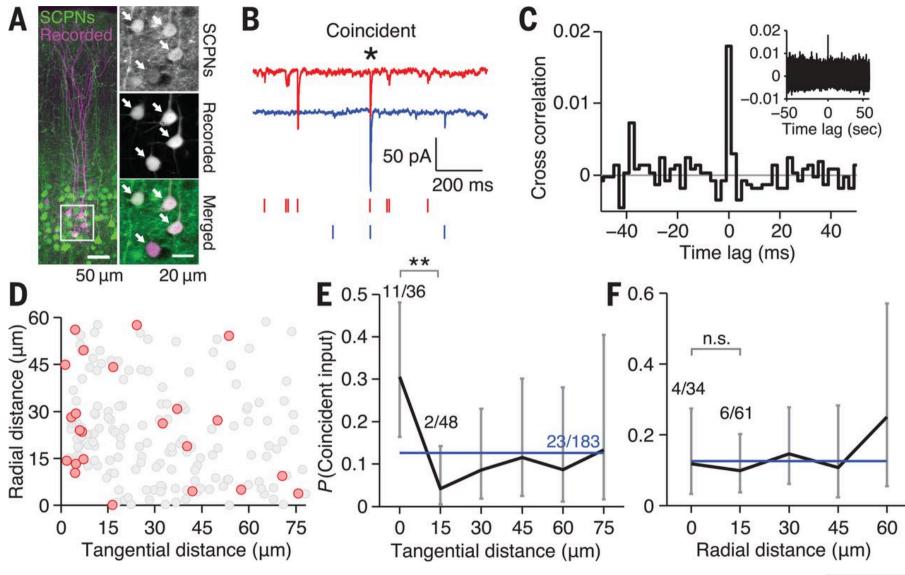


#### Fig. 3 Synchronized activity in SCPN microcolumns.





#### Fig. 5 Convergent strong inputs to SCPN microcolumns.



Hisato Maruoka et al. Science 2017;358:610-615



#### Rate Code Approximation

- $g_e^{\theta}$  is the conductance when  $V_m = \theta$
- Rate is a nonlinear function of relative conductance
- What is f?

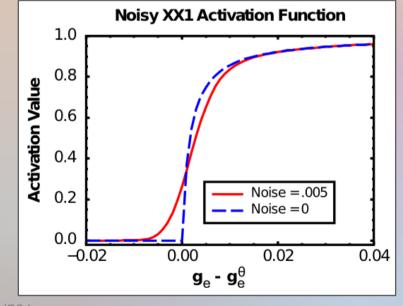
$$\theta = \frac{g_e^{\theta} E_e + g_i E_i + g_l E_l}{g_e^{\theta} + g_i + g_l}$$
$$g_e^{\theta} = \frac{g_i (E_i - \theta) + g_l (E_l - \theta)}{\theta - E_e}$$
$$y = f(g_e - g_e^{\theta})$$

### Activation Function

- Desired properties:
  - threshold (~0 below threshold)
  - saturation
  - smooth
- Smooth by convolution with Gaussian to account for noise
- Activity update:

$$y_{t+1} = y_t + C(y - y_t)$$

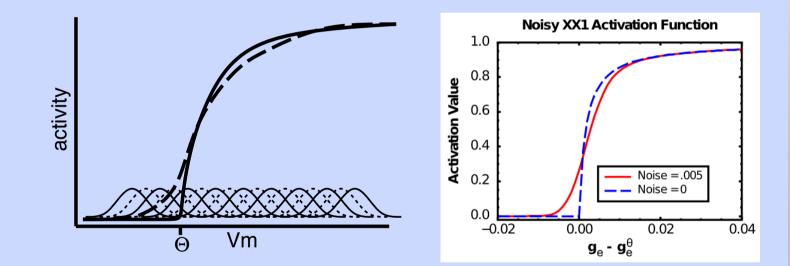
$$y = \frac{x}{x+1} \text{ where } x = \eta \left[ g_e - g_e^{\theta} \right]^+$$
$$y = \frac{1}{1 + \frac{1}{\eta \left[ g_e - g_e^{\theta} \right]^+}}$$



#### **Gaussian Smoothing**

X-over-X-plus-1 has a very sharp threshold

Smooth by *convolve* with noise (like "blurring" or "smoothing"):



$$y^*(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-z^2/(2\sigma^2)} y(x-z) dz$$

(slide based on Frank) COSC 421/521

#### **Approximating Continuous Dynamics**

- $V_m$  changes gradually when input changes
- Firing rate *y*(*t*) should also change gradually (subject to a time constant)
- Discrete-time update equation:

 $y(t) = y(t-1) + dt_{vm} \left( y^*(x) - y(t-1) \right)$ 

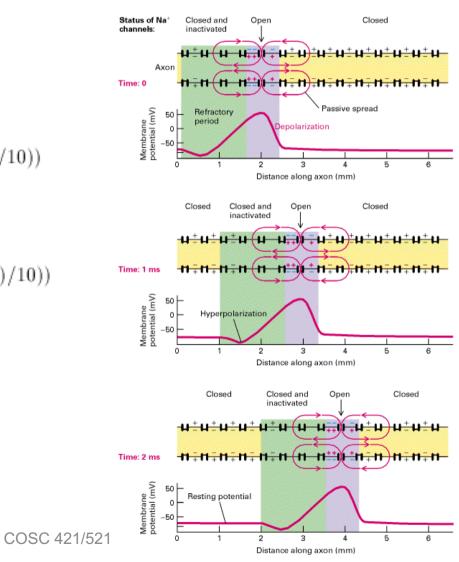
3

## emergent demonstration: Neuron

# Supplementary: Mathematics of Action Potentials

#### Neural Impulse Propagation

Hodgkin-Huxley equations



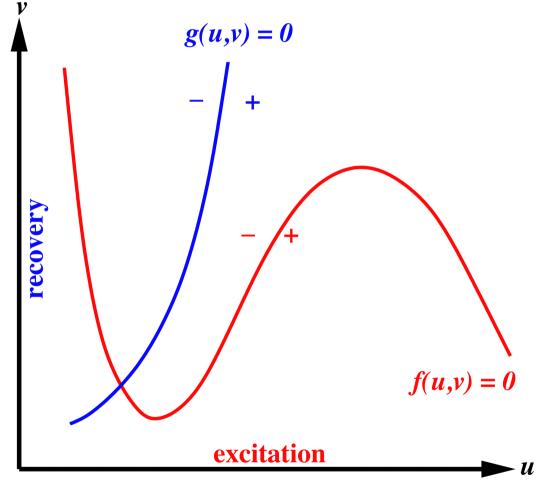
54

#### FitzHugh-Nagumo Model

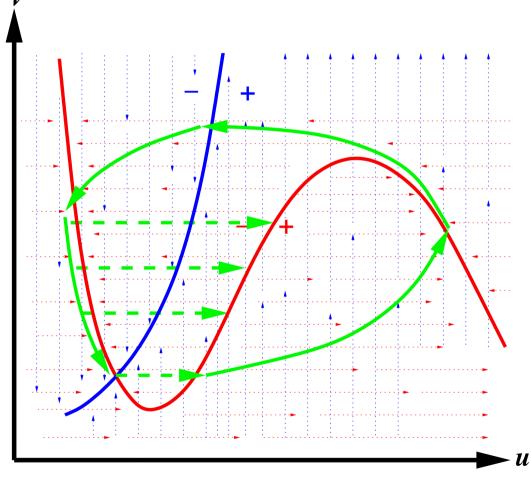
- A simplified model of action potential generation in neurons
- The neuronal membrane is an excitable medium
- *B* is the input bias:

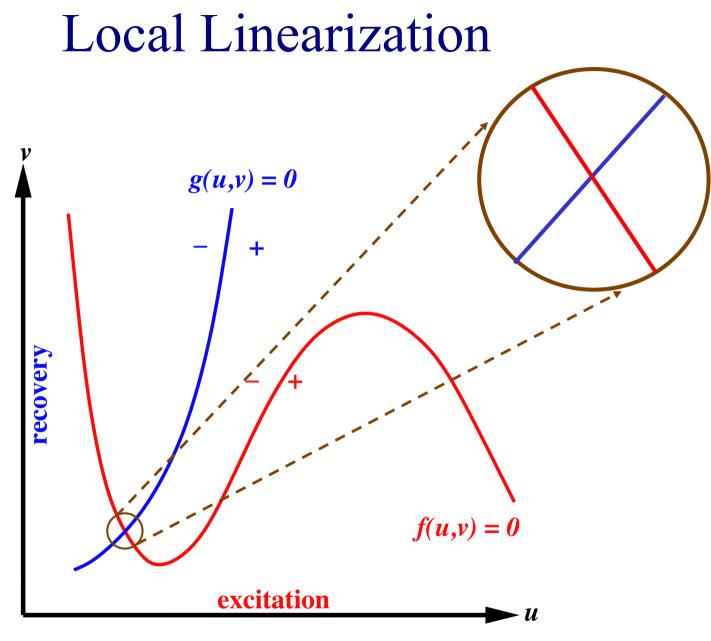
$$\dot{u} = u - \frac{u^3}{3} - v + B$$
$$\dot{v} = \varepsilon (b_0 + b_1 u - v)$$

#### Nullclines

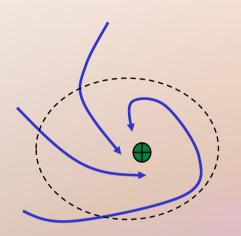


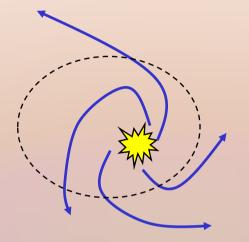
#### Elevated Thresholds During Recovery

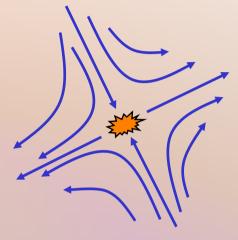




#### Fixed Points & Eigenvalues





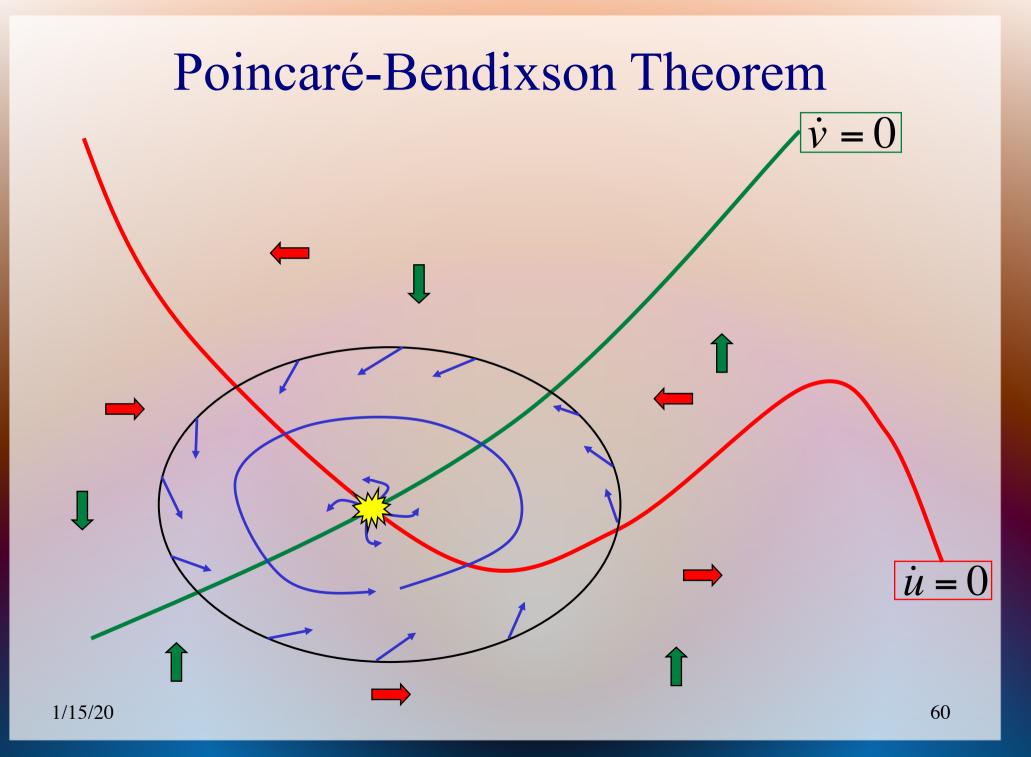


stable fixed point

real parts of eigenvalues are negative unstable fixed point

real parts of eigenvalues are positive saddle point

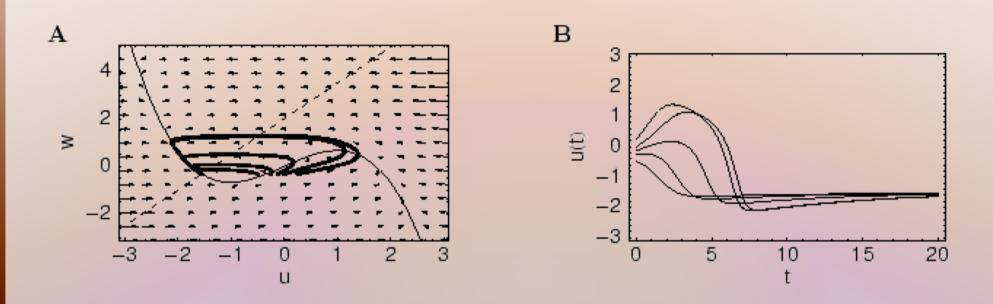
one positive real & one negative real eigenvalue



NetLogo Simulation of Excitable Medium in 2D Phase Space

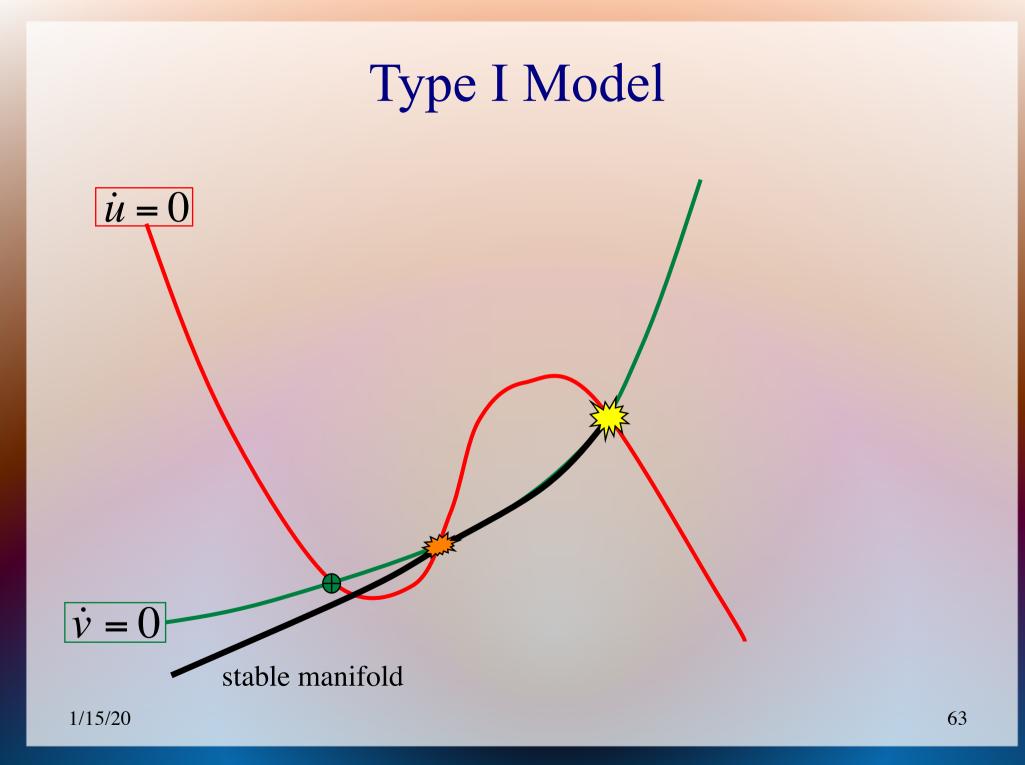
(EM-Phase-Plane.nlogo)

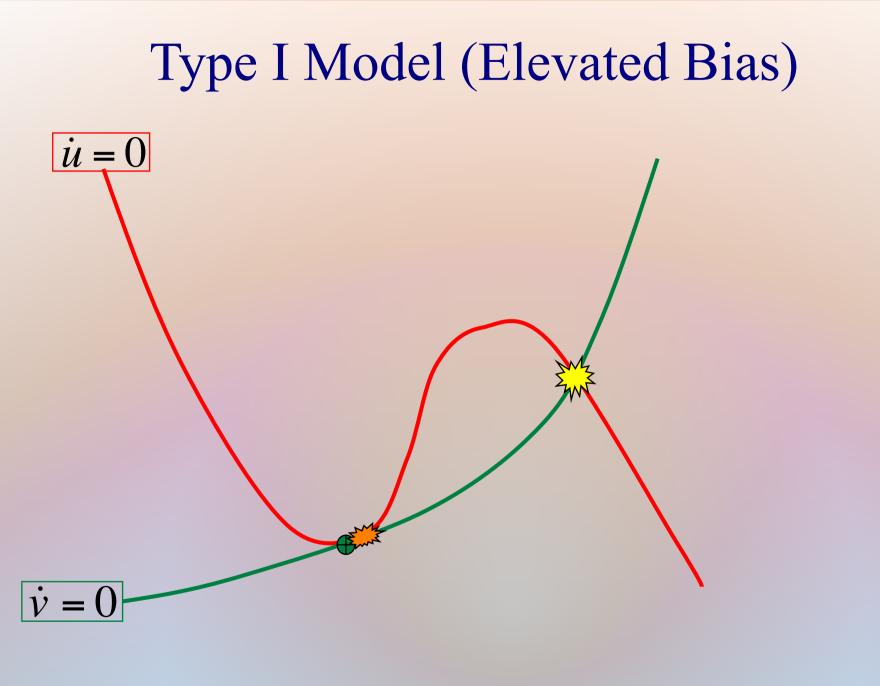
#### Type II Model

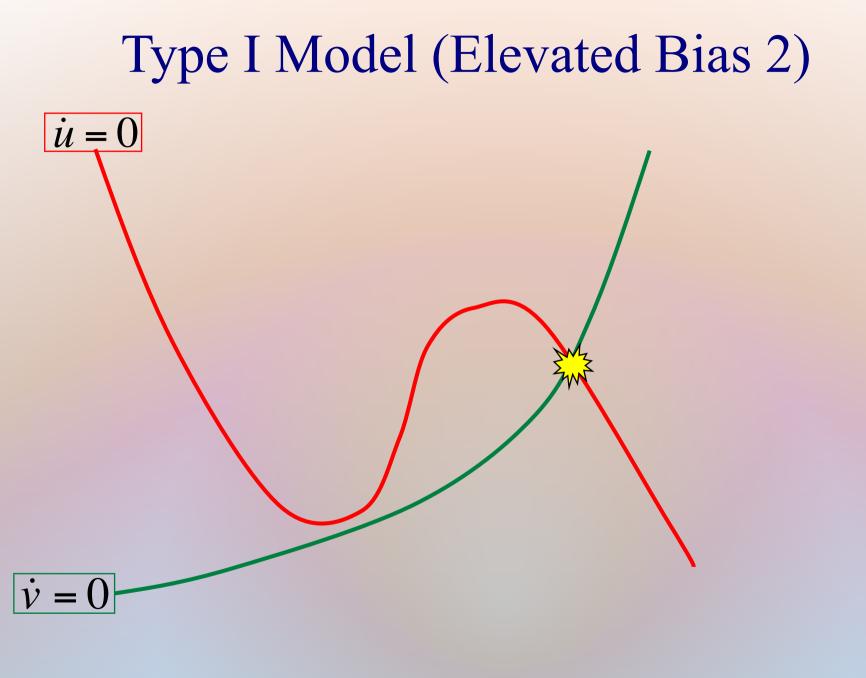


- Soft threshold with critical regime
- Bias can destabilize fixed point

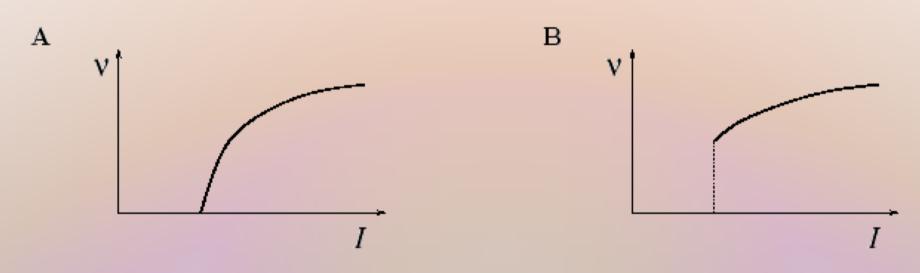
(figs. < Gerstner & Kistler)







#### Type I vs. Type II



- Continuous vs. threshold behavior of frequency
- Slow-spiking vs. fast-spiking neurons

3