7. Motor Control and Reinforcement Learning

Outline

- A. Action Selection and Reinforcement
- B. Temporal Difference Reinforcement Learning
- C. PVLV Model
- D. Cerebellum and Error-driven Learning

Sensory-Motor Loop

- Why animals have nervous systems but plants do not: *animals move*
 - a nervous system is needed to coordinate the movement of an animal's body
 - movement is fundamental to understanding cognition
- Perception conditions action
- Action conditions perception
 - profound effect of action on structuring perception is often neglected

Overview

- Subcortical areas:
 - o basal ganglia
 - reinforcement learning (reward/punishment)
 - > connections to "what" pathway
 - o cerebellum
 - > error-driven learning
 - > connections to "how" pathway
 - disinhibitory output dynamic

- Cortical areas:
 - o frontal cortex
 - connections to basal ganglia & cerebellum
 - o parietal cortex
 - maps sensory information to motor outputs
 - connections to cerebellum

Learning Rules Across the Brain

	Learning Signal			Dynamics		
Area	Reward	Error	Self Org	Separator	Integrator	Attractor
Primitive Basal Ganglia	+++			++	-	
Cerebellum		+++		+++		
Advanced Hippocampus	+	+	+++	+++		+++
Neocortex	++	+++	++		+++	+++

```
- = has to some extent ... = defining characteristic – definitely has

- = not likely to have ... --- = definitely does not have
```

Primitive, Basic Learning...

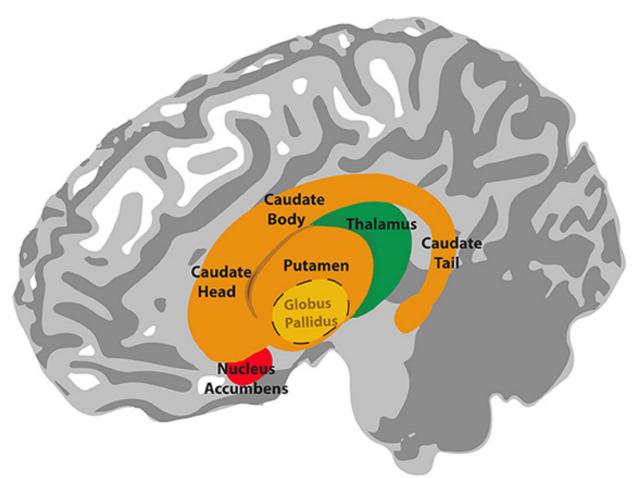
	Lea	arning Si	gnal	Dynamics		
Area	Reward	Error	Self Org	Separator	Integrator	Attractor
Primitive						
Basal Ganglia	+++			++	-	
Cerebellum		+++		+++		

- Reward & Error = most basic learning signals (self organized learning is a luxury...)
- Simplest general solution to any learning problem is a lookup table = separator dynamics

3/4/20 COSC 421/521

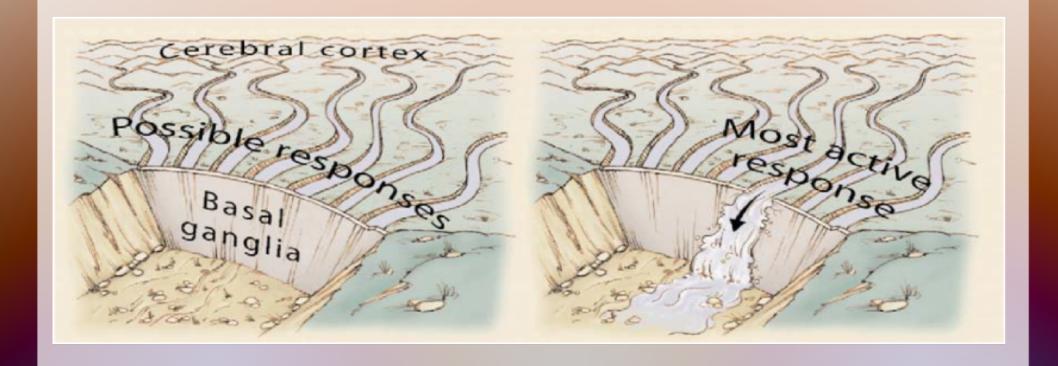
A. Action Selection and Reinforcement

Anatomy of Basal Ganglia



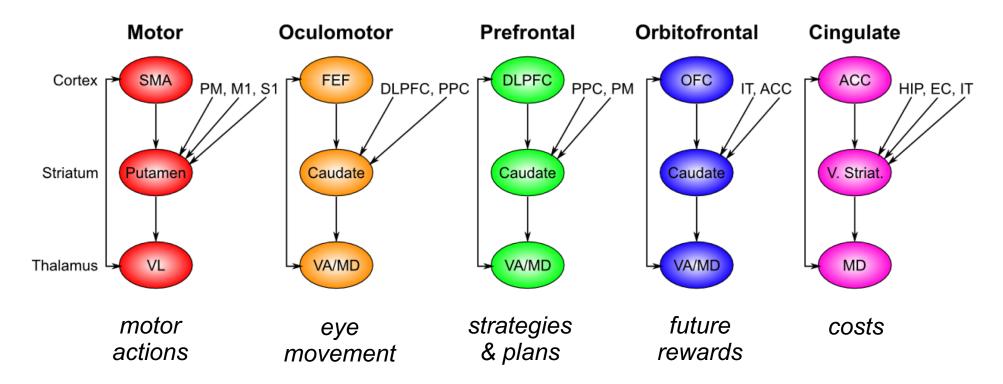
Lim S-J, Fiez JA and Holt LL - Lim S-J, Fiez JA and Holt LL (2014) How may the basal ganglia contribute to auditory categorization and speech perception? *Front. Neurosci.* 8:230. doi: 10.3389/fnins.2014.00230 http://journal.frontiersin.org/article/10.3389/fnins.2014.00230/full

Basal Ganglia and Action Selection



3/4/20 COSC 421/521

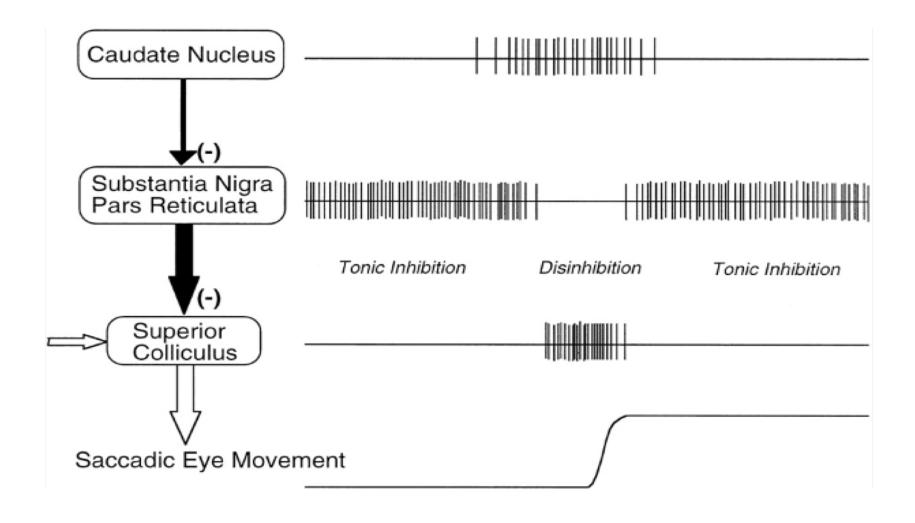
Basal Ganglia: Action Selection



• Parallel circuits select motor actions and "cognitive" actions across frontal areas

3/4/20 COSC 421/521 10

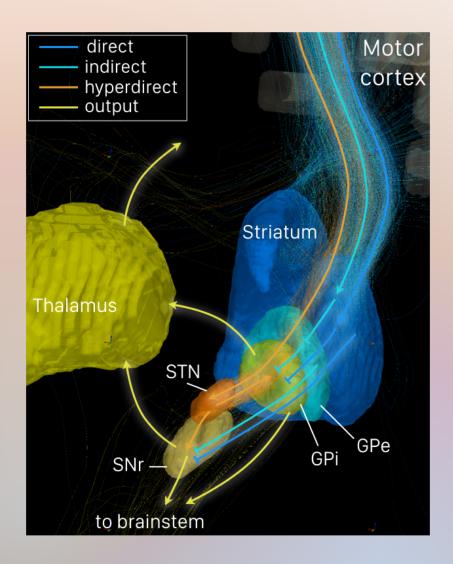
Release from Inhibition



3/4/20 COSC 421/521 (slide < O'Reilly)

Motor Loop Pathways

- <u>Direct</u>: striatum inhibits GPi (and SNr)
- <u>Indirect</u>: striatum inhibits GPe, which inhibits GPi (and SNr)
- Hyperdirect: cortex excites STN, which diffusely excites GPi (and SNr)
- GPi inhibits thalamus, which opens motor loops



Basal Ganglia System

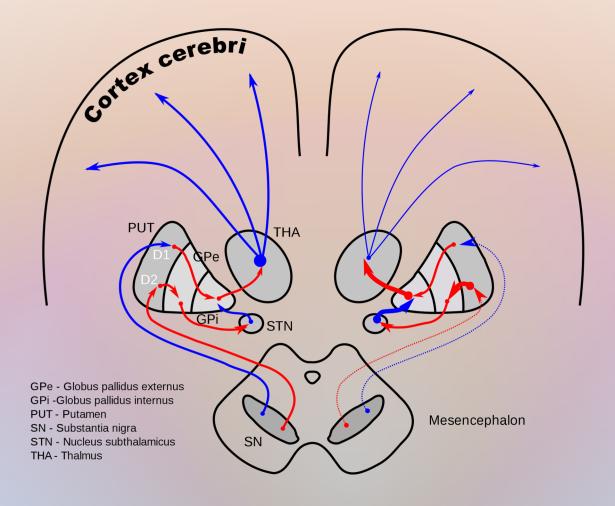
- Striatum
 - matrix clusters (inhib.)
 - direct (Go) pathway → GPi
 - indirect (NoGo) path → GPe
 - patch clusters
 - to dopaminergic system
- Globus pallidus, int. segment (GPi)*
 - tonically active
 - inhibit thalamic cells
- Globus pallidus, ext. segment (GPe)
 - tonically active
 - inhibits corresponding GPi neurons

- Thalamus*
 - cells fire when both:
 - excited (cortex)
 - disinhibited (GPi)
 - disinhibits FC deep layers
- Substantia nigra pars compacta (SNc)
 - releases dopamine (DA) into striatum
 - excites D1 receptors (Go)
 - inhibits D2 receptors (NoGo)
- Subthalamic nucleus (STN)
 - hyperdirect pathway
 - input from cortex
 - diffuse excitatory output to GPi
 - global NoGo delays decision

*and superior colliculus (SC)

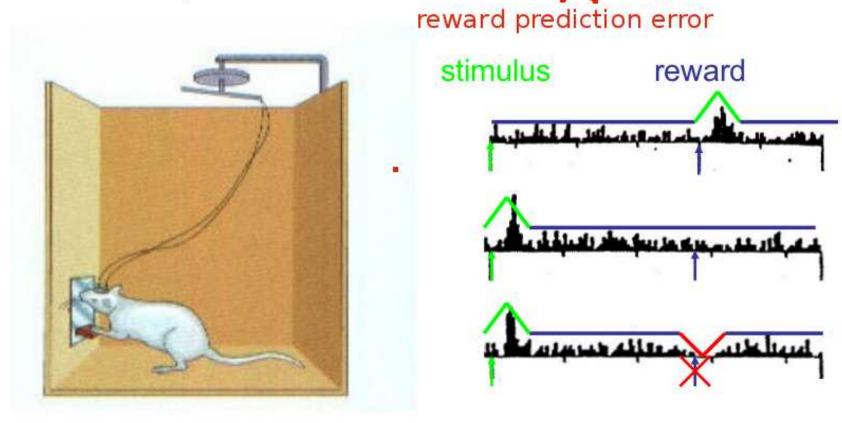
^{*}and substantia nigra pars reticulata (SNr)

Dopamine System



What is Dopamine Doing?

Dopamine carries the brain's revard signal

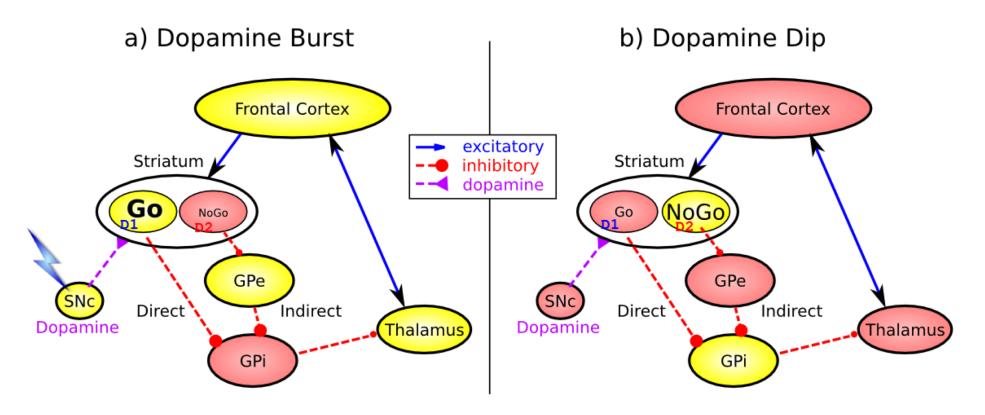


Wise & Romper, 89

Schultz et. al, 98

Basal Ganglia Reward Learning

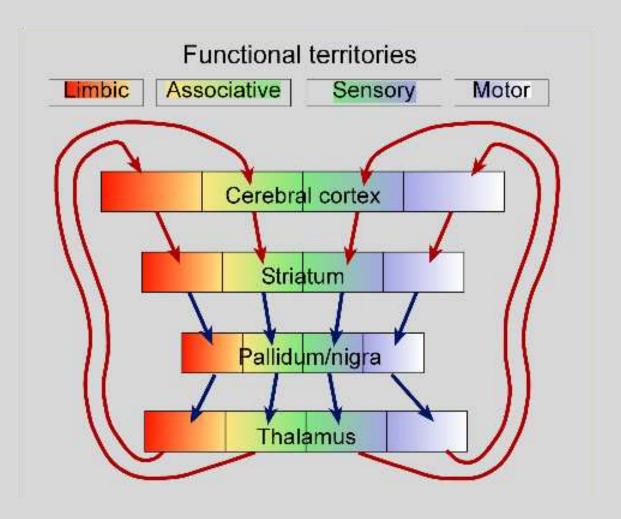
(Frank, 2005...; O'Reilly & Frank 2006)



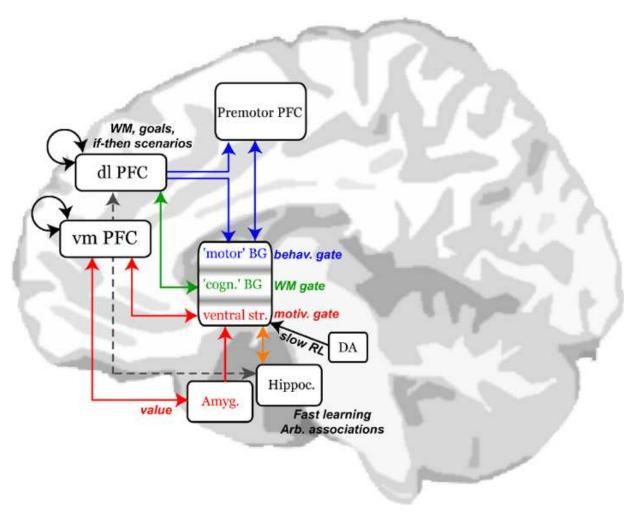
- Feedforward, modulatory (disinhibition) on cortex/motor (same as cerebellum)
- Co-opted for higher level cognitive control → PFC

3/4/20 COSC 421/521 16

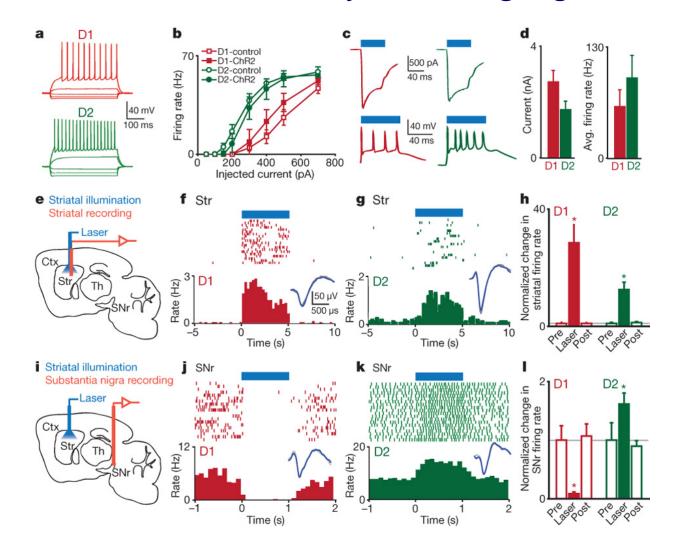
Basal Ganglia Architecture: Cortically-based Loops



Fronto-basal Ganglia Circuits in Motivation, Action, & Cognition



ChR2-mediated excitation of direct- and indirect-pathway MSNs *in vivo* drives activity in basal ganglia circuitry



nature 19

Human Probabilistic Reinforcement Learning

- Patients with
 Parkinson's disease
 (PD) are impaired in cognitive tasks that require learning from positive and negative feedback
- Likely due to depleted dopamine
- But dopamine medication actually worsens performance in some cognitive tasks, despite improving it in others

Frank, Seeberger & O'Reilly (2004)

Train

A (80/20) B (20/80)

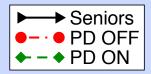
C (70/30) D (30/70)

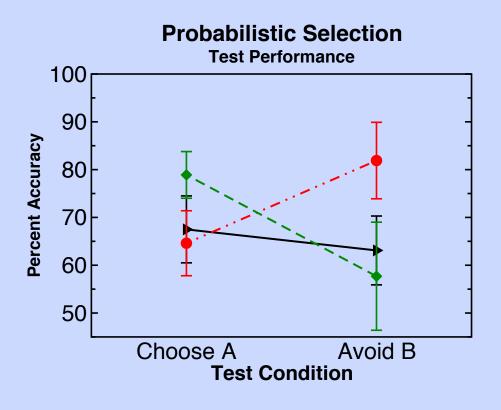
E (60/40) F (40/60)

Test

3/4/20 COSC 421/521 20

Testing the Model: Parkinson's and Medication Effects

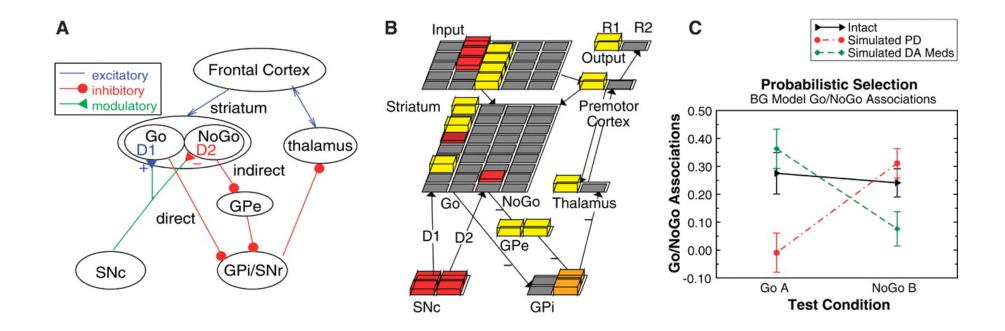




Frank, Seeberger & O'Reilly (2004)

COSC 421/521 21 (slide < Frank)

BG Model: DA Modulates Learning from Positive/Negative Reinforcement



- (A) The corticostriato-thalamo-cortical loops, including the direct (Go) and indirect (NoGo) pathways of the basal ganglia.
- (B) M. Frank's neural network model of this circuit.
- (C) Predictions from the model for the probabilistic selection task

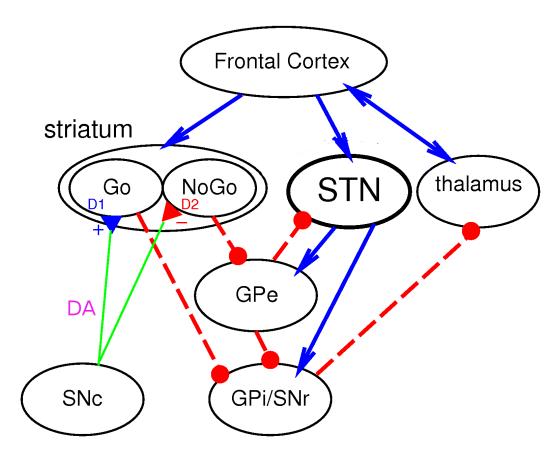
3/4/20 Michael J. Frank et al. Science 2004;306:1940-1943

COSC 421/521

emergent Demonstration: BG

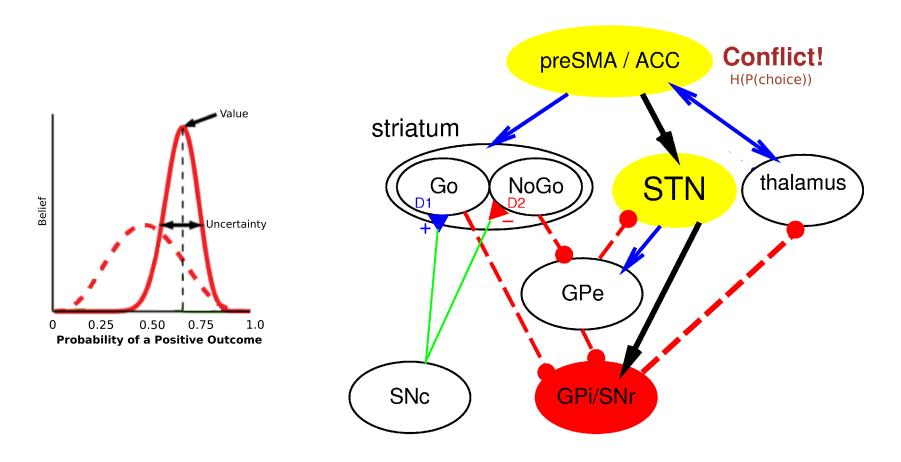
A simplified model compared to Frank, Seeberger, & O'Reilly (2004)

Anatomy of BG Gating Including Subthalamic Nucleus (STN)



PFC-STN provides an override mechanism

Subthalamic Nucleus: Dynamic Modulation of Decision Threshold



Conflict (entropy) in choice prob ⇒ delay decision!

B. Temporal Difference Reinforcement Learning

Classical Conditioning

Forward conditioning

- unconditioned stimulus (US): doesn't depend on experience
- leads to unconditioned response (UR)
- preceding conditioned stimulus (CS) becomes associated with US
- leads to conditioned response (CR)

Extinction

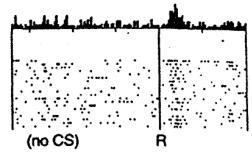
- after CS established, CS is presented repeatedly without US
- CR frequency falls to pre-conditioning levels

Second-order conditioning

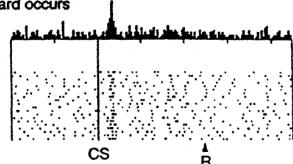
- CS1 associated with US through conditioning
- CS2 associated with CS1 through conditioning, leads to CR

Reinforcement Learning: Dopamine

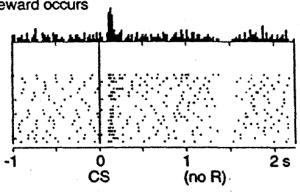
No prediction Reward occurs



Reward predicted Reward occurs



Reward predicted No reward occurs



Rescorla-Wagner / Delta Rule:

•
$$\delta = r - \hat{r}$$

•
$$\delta = r - \sum xw$$

But no CS-onset firing – need to anticipate the future!

•
$$\delta = (r+f) - \hat{r}$$

CS-onset = future reward = f

COSC 421/521

(slide < O'Reilly)

Temporal Differences Learning

•
$$V(t) = r(t) + \gamma^1 r(t+1) + \gamma^2 r(t+2) + \cdots$$

= $r(t) + \gamma [r(t+1) + \gamma^1 r(t+2) + \cdots]$

•
$$\hat{V}(t) = r(t) + \gamma \hat{V}(t+1)$$

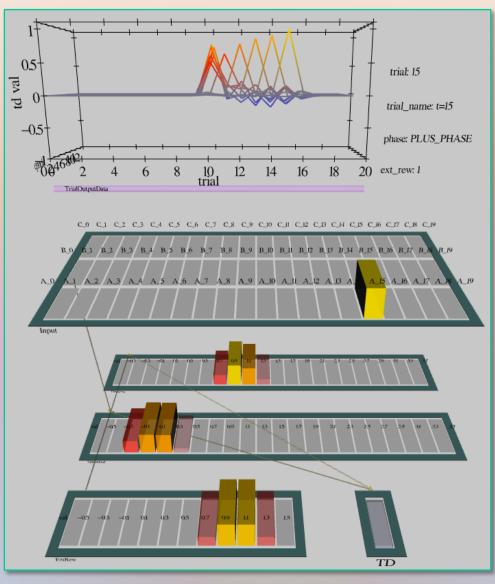
•
$$0 = (r(t) + \gamma \hat{V}(t+1)) - \hat{V}(t)$$

•
$$\delta = (r(t) + \gamma \hat{V}(t+1)) - \hat{V}(t)$$

• $f = \gamma \hat{V}(t+1)$ which is the future!

3/4/20 COSC 421/521 29

Network Implementation



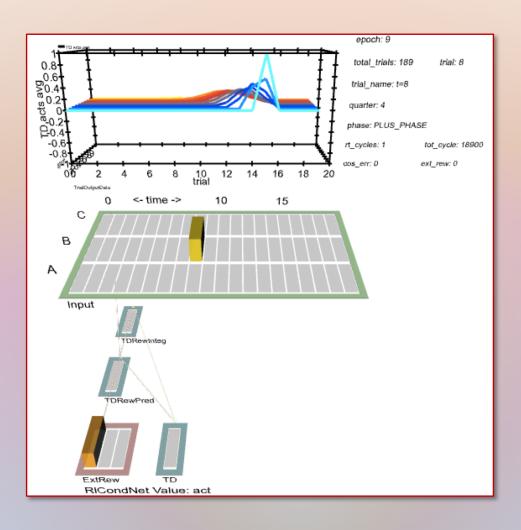
The RL-cond Model

- ExtRew: external reward r(t) (based on input)
- TDRewPred: learns to predict reward value
 - minus phase = prediction V(t) from previous trial
 - plus phase = predicted V(t+1) based on Input
- TDRewInteg: Integrates ExtRew and TDRewPred
 - minus phase = V(t) from previous trial
 - plus phase = V(t+1) + r(t)
- TD: computes temporal dif. delta value ≈ dopamine signal
 - compute plus minus from TDRewInteg

CSC Experiment

- A <u>serial-compound stimulus</u> has a series of distinguishable components
- A <u>complete serial-compound (CSC) stimulus</u> has a component for every small segment of time before, during, and after the US
 - Richard S. Sutton & Andrew G. Barto, "Time-Derivative Models of Pavlovian Reinforcement," *Learning and Computational Neuroscience: Foundations of Adaptive Networks*, M. Gabriel and J. Moore, Eds., pp. 497–537. MIT Press, 1990
- RL-cond.proj implements this form of conditioning
 - somewhat unrealistic, since the stimulus or some trace of it must persist until the US

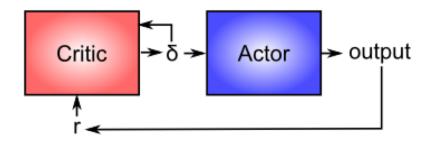
RL-cond.proj

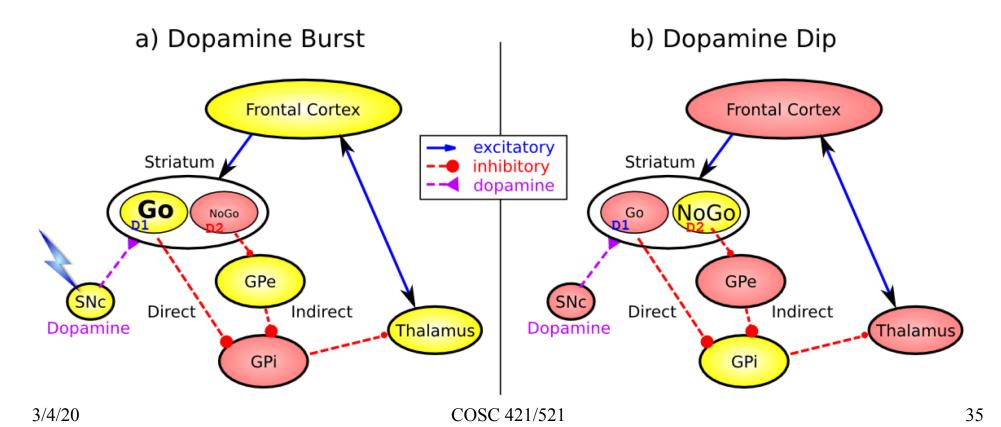


emergent Demonstration: RL

A simplified model of temporal difference reinforcement learning

Actor - Critic

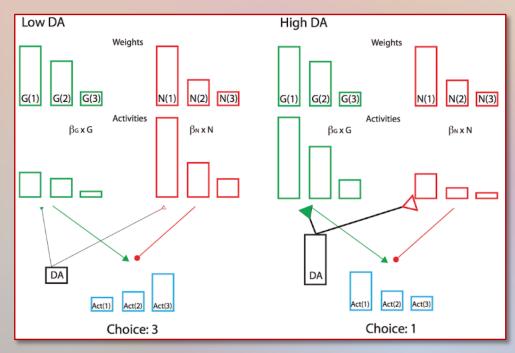




(slide < O'Reilly)

Opponent-Actor Learning (OpAL)

- Actor has independent G and N weights
- Scaled by dopamine (DA) levels during choice
- Choice based on relative activation levels
- Low DA: costs amplified,
 benefits diminished ⇒ choice 1
- High DA: benefits amplified, costs diminished ⇒ choice 3
- Moderate DA \Rightarrow choice 2
- Accounts for differing costs & benefits



C. PVLV Model of DA Biology

A model of dopamine firing in the brain

Brain Areas Involved in Reward Prediction

- <u>Lateral hypothalamus</u> (LHA): provides a primary reward signal for basic rewards like food, water etc.
- Patch-like neurons in ventral striatum (VS-patch)
 - have direct inhibitory connections onto dopamine neurons in VTA and SNc
 - likely role in canceling influence of primary reward signals when they're successfully predicted
- Central nucleus of amygdala (CNA)
 - important for driving dopamine firing at the onset of conditioned stimuli
 - receives input broadly from cortex
 - projects directly and indirectly (via VS-patch) to the VTA and SNc (DA neurons)
 - neurons in the CNA exhibit CS-related firing

PVLV Model of Dopamine Firing

- Two distinct systems: <u>Primary Value</u> (PV) and <u>Learned Value</u> (LV)
- DA signal at time of external reward (US):

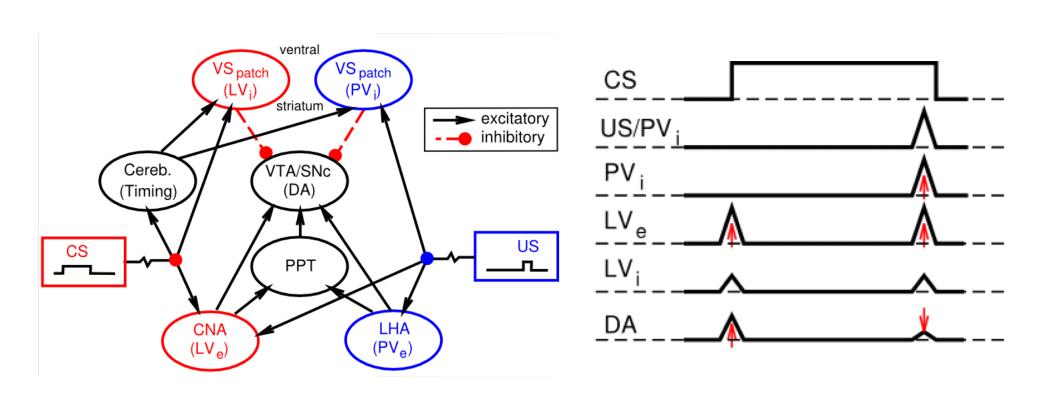
$$\delta_{pv} = PV_e - PV_i = r - \hat{r}$$

DA signal for LV when PV not present/expected:

$$\delta_{lv} = LV_e - LV_i$$

- LV_e is excitatory drive from CNA responding to CS (eventually canceled by LV_i)
- LV_e and LV_i values learned from PV_e when rewards present/expected
- Hence, CS (or some trace) must still be present when US occurs
- CNA supports 1st order conditioning, but not 2nd order (that's in BLA)

Biology of Dopamine Firing



More Detailed Description of PVLV

- Major issue: Which of PV/LV systems should be in charge of overall dopamine system?
- PV and LV learning occur when PV present or expected (indicated by $PV_r > \mathbf{O}_{pv}$)
- PVr system learns: $\delta w_{\rm pvr} = r_{\rm present} {\rm PV_r}$ (improves prediction)
- Recall alternative DA signals:

$$\delta_{\rm pv} = PV_{\rm e} - PV_{\rm i}, \qquad \delta_{\rm lv} = LV_{\rm e} - LV_{\rm i}$$

- Novelty Value (NV) signal reflects stimulus novelty
- Overall dopamine signal:

$$\delta = \begin{cases} \delta_{\rm pv}(t) - \delta_{\rm pv}(t-1) & \text{if PV}_{\rm r} > \Theta_{\rm pv} \\ [\delta_{\rm lv}(t) - \delta_{\rm lv}(t-1)] + [{\rm NV}(t) - {\rm NV}(t-1)] & \text{otherwise} \end{cases}$$

Note DA burst is phasic (ceases after CS onset)

More Detailed Description (ctu'd)

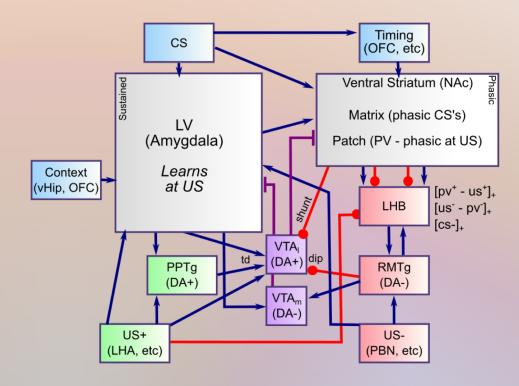
• Learning PV_i weights: $\delta w_{pv} = \varepsilon (PV_e - PV_i)x$

• Learning LV weights is conditional on PV filter:

$$\delta w_{\text{lv}} = \begin{cases} \varepsilon (\text{PV}_{\text{e}} - \text{LV}_{\text{e}})x & \text{if PV}_{\text{r}} > \Theta_{\text{pv}} \\ 0 & \text{otherwise} \end{cases}$$

PVLV.proj Model

- PV in Ventral Striatum system
- LV in Amygdala system
- VTA₁ and VS adapt to US+
- Eventually VTA₁ bursts for CS onset
- LHB+RMTg and VS adapt to US-
- VTA_m and VS adapt to US-
- Eventually DA dip for CS



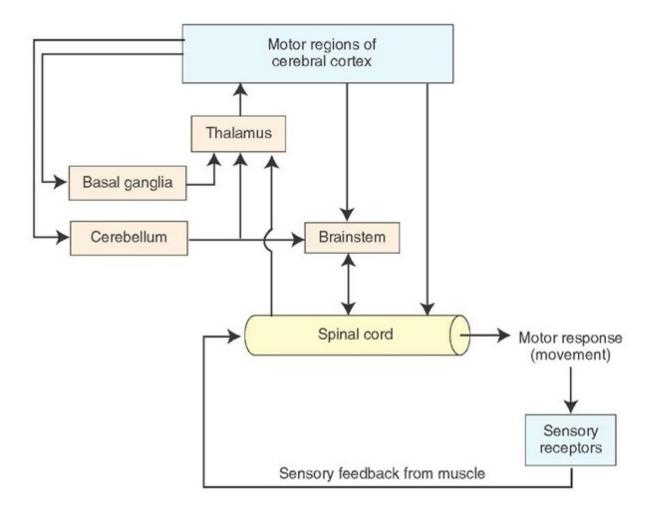
simplified!

emergent Demonstration: PVLV

D. Cerebellum and Error-driven Learning

"The blessing of dimensionality"

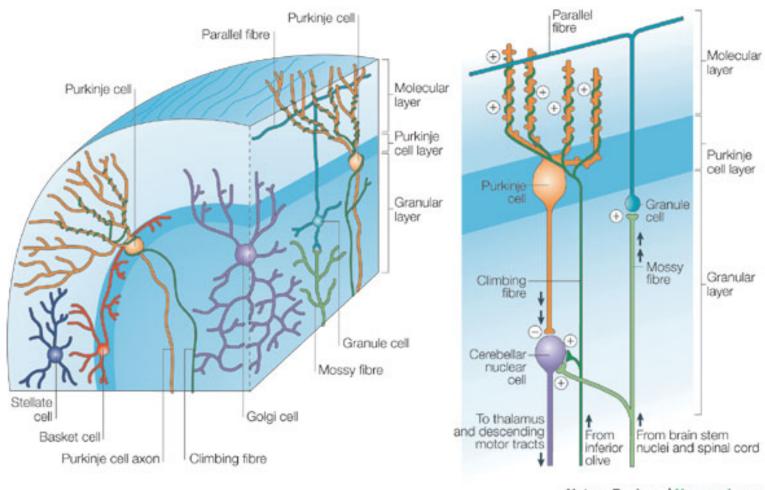
The Motor Control System



Functions of Cerebellum

- Maintenance of equilibrium and posture
- Timing of learned, skilled motor movement
 - any motor movement that improves with practice
 - timing, fluency, rhythm, coordination
 - involved in cognitive processes too
- Correction of errors during the execution of movements
 - error-driven learning
- Many inputs from cortical motor and sensory areas
- Influences cortical motor outputs to spinal chord

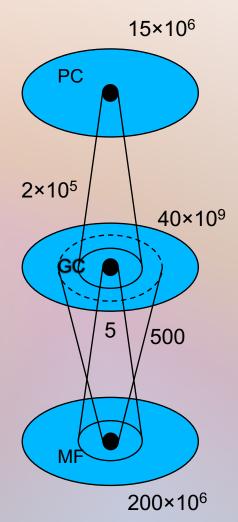
Cerebellar Microstructure



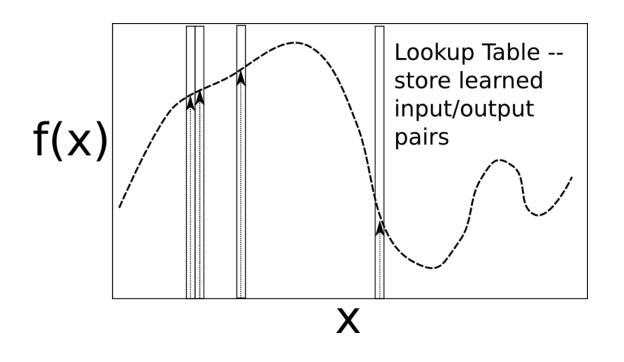
Nature Reviews | Neuroscience

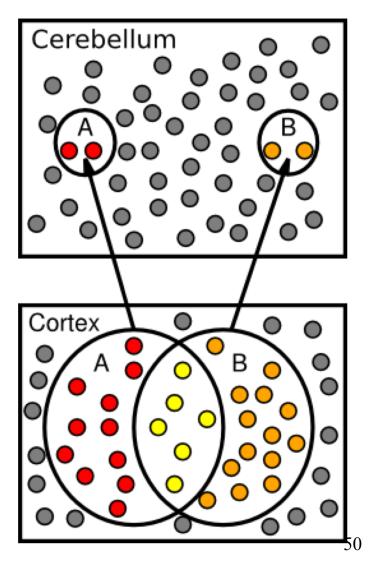
Cerebellum

- Inputs from parietal cortex and motor areas of frontal cortex
- Three layers, very many cortical maps
- Single basic circuit replicated throughout
- 200 million mossy fiber inputs (each to 500 granule cells)
 - projection of input into hyperdimensional space
 - separator learning and dynamics
- 40 billion granule cells (input from 4–5 mossy fibers)
- 15 million Purkinje cells (input from 200,000 granule cells)
 - matrix organization
 - enormous integration and cross connection
- Climbing fibers (one per Purkinje, from inferior olive)



Lookup Table & Pattern Separation

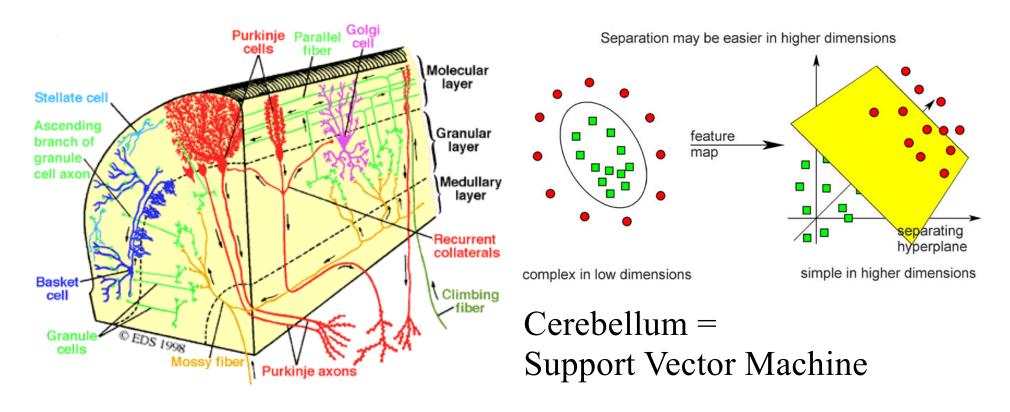




3/4/20 COSC 421/521

(slide < O'Reilly)

Cerebellar Error-driven Learning



- Granule cells = high-dimensional encoding (separation)
- Purkinje/Olive = delta-rule error-driven learning
- Classic ideas from Marr (1969) & Albus (1971)

COSC 421/521 51 (slide < O'Reilly)

Cerebellum is Feed Forward

Feed-forward circuit:

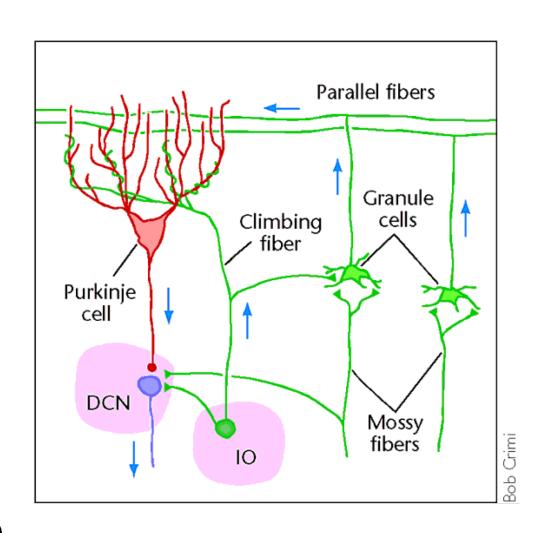
Input (PN)
$$\rightarrow$$
 granules \rightarrow Purkinje \rightarrow Output (DCN)

Inhibitory interactions – no attractor dynamics

Key idea: does delta-rule learning bridging small temporal gap:

$$S(t-100) \longrightarrow R(t)$$

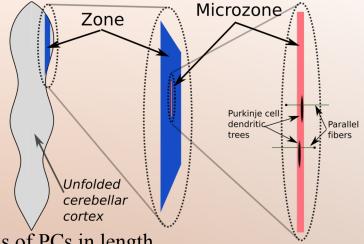
↑ Error(*t*+100)



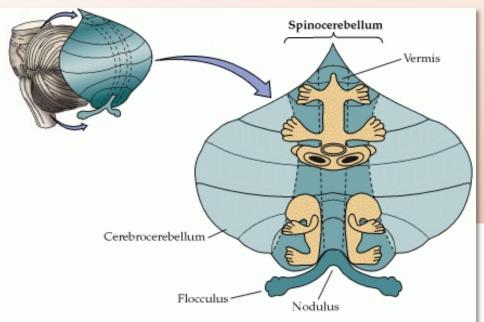
3/4/20 COSC 421/521 52

Mesostructure

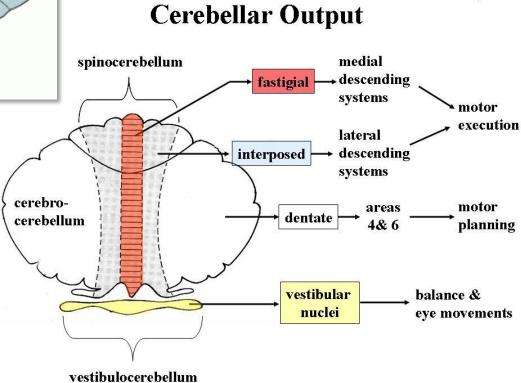
- Microzone: defined by group of adjacent PCs contacted by CFs with same receptive profiles
 - comprises hundreds of PCs and several hundreds of thousands of other neurons



- shaped as narrow strips a few PCs wide and several dozens of PCs in length
- a fraction of a millimeter in width and several millimeters in length
- parallel fibers (PFs) extend for several millimeters, crossing width of microzone and extending into neighbors
- estimated that cat has about 5000 microzones, human has several hundred thousand
- Multizonal micro-complexes (MZMCs): basic functional units of cerebellar cortex
 - each comprises several microzones receiving common CF input and delivering their PC output to the same region of the cerebellar nuclei
 - seem to have an integrated function
 - constituent microzones may be in different regions of the cortex, which receive different MF input and may be associated with different aspects of motor control
 - MZMCs may provide for parallel processing and integration of inputs



Macrostructure



Properties of Hyperdimensional Spaces

- Hyperdimensional spaces = spaces of very high dimension
- Consider vectors of 10,000 bits
 - measure distance by Hamming distance (HD)
 - or normalized Hamming distance (NHD)
- Mean HD = 5000, SD = 50 (binomial distribution)
- $< 10^{-9}$ of space closer than NHD = 0.47 or farther than 0.53 (±300 = ±6 SD)
- Therefore random vectors almost surely have NHD = 0.5 ± 0.03
- Vectors with < 3000 changed bits still accurately recognized
- Ref: Pentti Kanerva (2009), Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors, *Cognitive Computation*, **1**(2)

Orthogonality of Random Hyperdimensional Bipolar Vectors

- 99.99% probability of being within
 4σ of mean
- It is 99.99% probable that random n-dimensional vectors will be within $\varepsilon = 4/\sqrt{n}$ orthogonal
- $\varepsilon = 4\%$ for n = 10,000
- Probability of being less orthogonal than ε decreases exponentially with n
- The brain gets approximate orthogonality by using random high-dimensional vectors

$$|\mathbf{u} \cdot \mathbf{v}| < 4\sigma$$
iff $\|\mathbf{u}\| \|\mathbf{v}\| |\cos \theta| < 4\sqrt{n}$
iff $n|\cos \theta| < 4\sqrt{n}$
iff $|\cos \theta| < 4/\sqrt{n} = \varepsilon$

$$\Pr\{|\cos\theta| > \varepsilon\} = \operatorname{erfc}\left(\frac{\varepsilon\sqrt{n}}{\sqrt{2}}\right)$$

$$\approx \frac{1}{6}\exp(-\varepsilon^2n/2) + \frac{1}{2}\exp(-2\varepsilon^2n/3)$$

3/4/20

COSC 421/52

Hyperdimensional Pattern Associator

- Suppose $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_P$ are a set of random hyperdimensional bipolar vectors (inputs)
- Let $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_P$ be arbitrary bipolar vectors (outputs)
- Define Hebbian linear associator matrix

$$\mathbf{M} = \frac{1}{N} \sum_{k=1}^{P} \mathbf{q}_k \mathbf{p}_k^{\mathrm{T}}$$

- Then $M\mathbf{p}_k \approx \mathbf{q}_k$ (table lookup)
- To encode a sequence of random vectors $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_P$:

$$\mathbf{M} = \frac{1}{N} \sum_{k=1}^{P-1} \mathbf{p}_{k+1} \mathbf{p}_k^{\mathrm{T}}$$

• Then $M\mathbf{p}_k = \mathbf{p}_{k+1}$ (sequence readout)

Some math...

- Suppose $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_P$ are random hyperdimensional bipolar vectors
- Suppose $M = \frac{1}{N} \sum_{j=1}^{P} \mathbf{q}_j \mathbf{p}_j^T$
- Then, $\mathbf{M}\mathbf{p}_{k} = \left(\frac{1}{N}\sum_{j=1}^{P}\mathbf{q}_{j}\mathbf{p}_{j}^{T}\right)\mathbf{p}_{k}$ $= \frac{1}{N}\left(\mathbf{q}_{k}\mathbf{p}_{k}^{T} + \sum_{j\neq k}\mathbf{q}_{j}\mathbf{p}_{j}^{T}\right)\mathbf{p}_{k}$ $= \frac{1}{N}\mathbf{q}_{k}\mathbf{p}_{k}^{T}\mathbf{p}_{k} + \frac{1}{N}\sum_{j\neq k}\mathbf{q}_{j}\mathbf{p}_{j}^{T}\mathbf{p}_{k}$ $= \mathbf{q}_{k} + \frac{1}{N}\sum_{j\neq k}\mathbf{q}_{j}\mathbf{p}_{j}^{T}\mathbf{p}_{k}$
- For random hyperdimensional vectors, $\mathbf{p}_{j}^{T}\mathbf{p}_{k} \approx 0$
- Therefore, $M\mathbf{p}_k \approx \mathbf{q}_k$

BG + Cerebellum Capacities

- Learn what satisfies basic needs, and what to avoid (BG reward learning)
 - And what information to maintain in working memory
 (PFC) to support successful behavior
- Learn basic Sensory → Motor mappings accurately (Cerebellum error-driven learning)
 - Sensory → Sensory mappings? (what is going to happen next)

BG + Cerebellum Incapacities

- Generalize knowledge to novel situations
 - Lookup tables don't generalize well...
- Learn abstract semantics
 - Statistical regularities, higher-order categories, etc
- Encode episodic memories (specific events)
 - Useful for instance-based reasoning
- Plan, anticipate, simulate, etc...
 - Requires robust working memory

COSC 421/521 (slide < O'Reilly)

emergent Demonstration: Cereb