7. Motor Control and Reinforcement Learning

Outline

- A. Action Selection and Reinforcement
- B. Temporal Difference Reinforcement LearningC. PVLV Model
- D. Cerebellum and Error-driven Learning

Sensory-Motor Loop

- Why animals have nervous systems but plants do not: *animals move*
 - a nervous system is needed to coordinate the movement of an animal's body
 - movement is fundamental to understanding cognition
- Perception conditions action
- Action conditions perception
 - profound effect of action on structuring perception is often neglected

Overview

- Subcortical areas:
 - o basal ganglia
 - reinforcement learning (reward/punishment)
 - connections to "what" pathway
 - o cerebellum
 - error-driven learning
 - connections to "how" pathway
 - disinhibitory output dynamic

- Cortical areas:
 - frontal cortex
 - connections to basal ganglia & cerebellum
 - parietal cortex
 - maps sensory information to motor outputs

4

connections to cerebellum

Learning Rules Across the Brain

	Learning Signal			Dynamics		
Area	Reward	Error	Self Org	Separator	Integrator	Attractor
<i>Primitive</i> Basal Ganglia	+++			++	-	
Cerebellum		++++		+++		
<i>Advanced</i> Hippocampus	+	+	+++	+++		+++
Neocortex	++	+++	++		+++	+++

+ = has to some extent ... + = defining characteristic – definitely has
 - = not likely to have ... - - = definitely does not have

COSC 494/594 CCN (slide < O'Reilly)

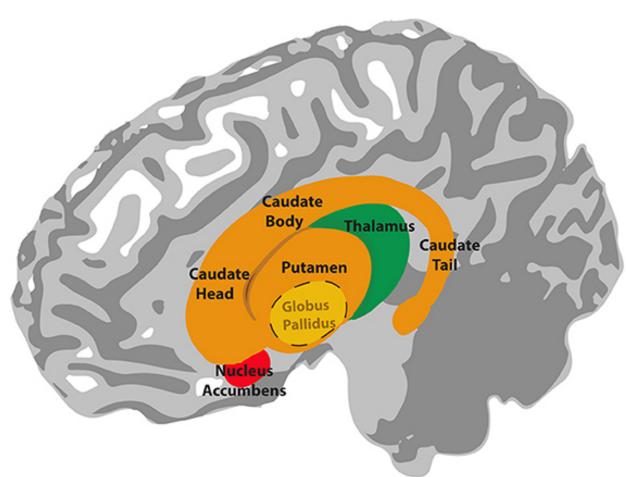
Primitive, Basic Learning...

	Lea	arning Si	gnal	Dynamics		
Area	Reward	Error	Self Org	Separator	Integrator	Attractor
<i>Primitive</i> Basal Ganglia	+++			++	_	
Cerebellum		+++		+++		

- Reward & Error = most basic learning signals (self organized learning is a luxury...)
- Simplest general solution to any learning problem is a *lookup table* = separator dynamics

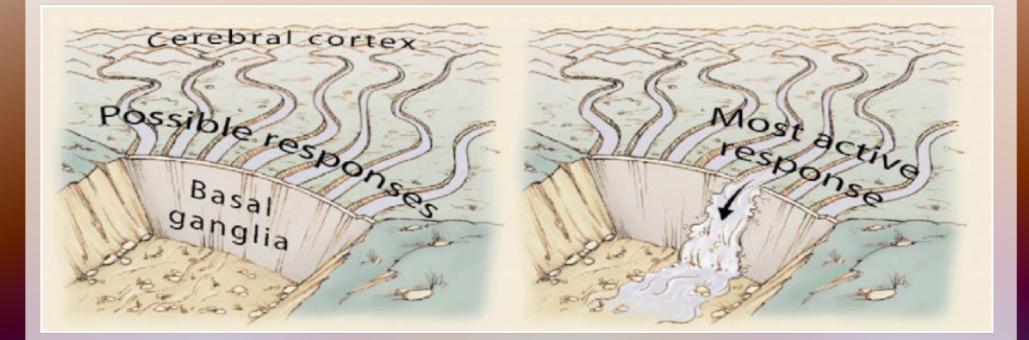
A. Action Selection and Reinforcement

Anatomy of Basal Ganglia

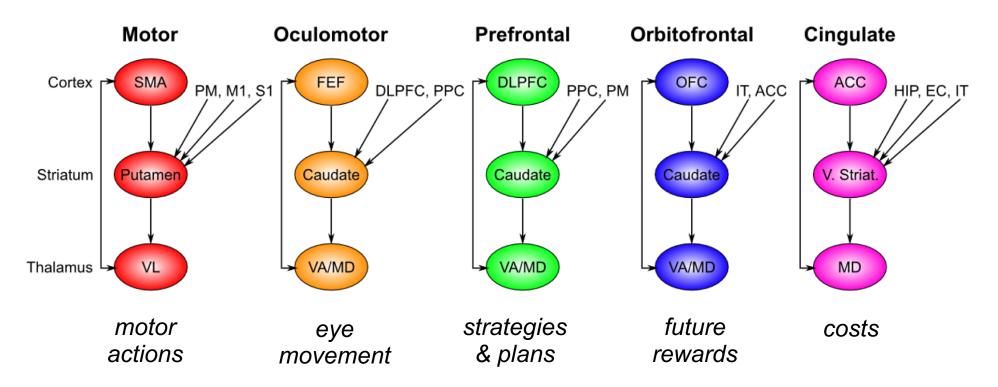


Lim S-J, Fiez JA and Holt LL - Lim S-J, Fiez JA and Holt LL (2014) How may the basal ganglia contribute to auditory categorization and speech perception? Front. Neurosci. 8:230. doi: 10.3389/fnins.2014.00230 http://journal.frontiersin.org/article/10.3389/fnins.2014.00230/full

Basal Ganglia and Action Selection



Basal Ganglia: Action Selection



• Parallel circuits select motor actions and "cognitive" actions across frontal areas

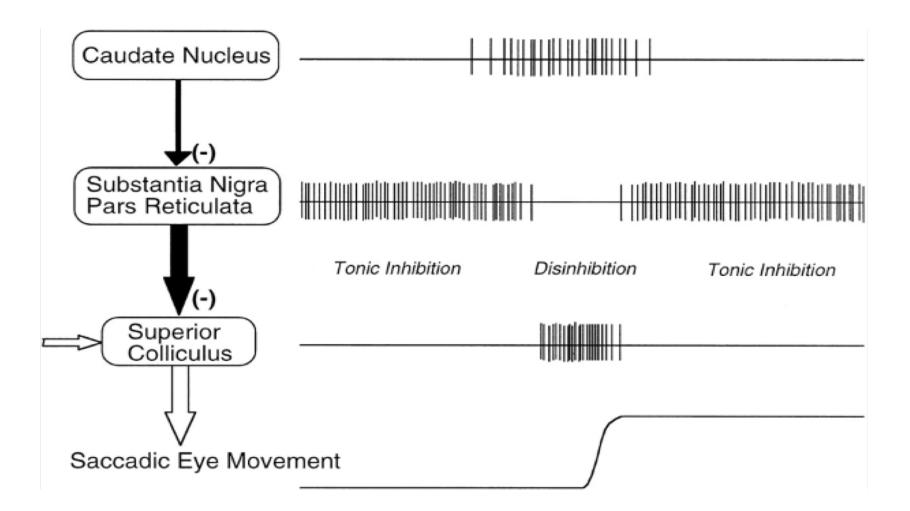
3/5/18

COSC 494/594 CCN

(slide based on O'Reilly)

10

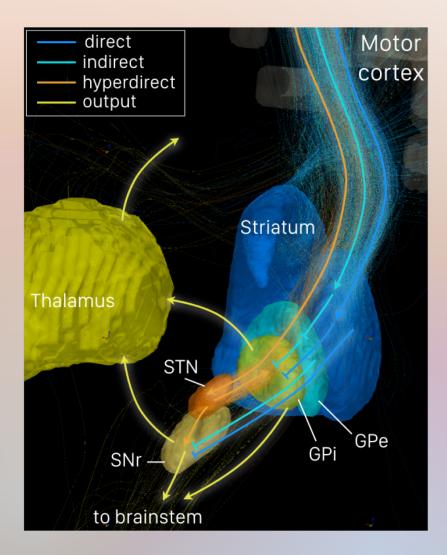
Release from Inhibition



COSC 494/594 CCN (slide < O'Reilly) 11

Motor Loop Pathways

- <u>Direct</u>: striatum inhibits GPi (and SNr)
- <u>Indirect</u>: striatum inhibits GPe, which inhibits GPi (and SNr)
- <u>Hyperdirect</u>: cortex excites STN, which diffusely excites GPi (and SNr)
- GPi inhibits thalamus, which opens motor loops



COSC 494/594 CCN

Basal Ganglia System

• Striatum

- matrix clusters (inhib.)
 - direct (Go) pathway GPi
 - ➤ indirect (NoGo) path → GPe
- patch clusters
 - to dopaminergic system
- Globus pallidus, int. segment (GPi)*
 - tonically active
 - inhibit thalamic cells
- Globus pallidus, ext. segment (GPe)
 - tonically active
 - inhibits corresponding GPi neurons

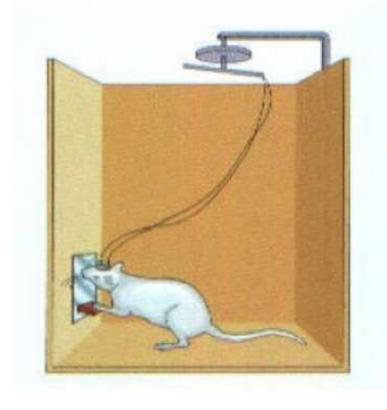
- Thalamus^{*}
 - cells fire when both:
 - excited (cortex)
 - disinhibited (GPi)
 - disinhibits FC deep layers
- Substantia nigra pars compacta (SNc)
 - releases dopamine (DA) into striatum
 - excites D1 receptors (Go)
 - inhibits D2 receptors (NoGo)
- Subthalamic nucleus (STN)
 - hyperdirect pathway
 - input from cortex
 - diffuse excitatory output to GPi
 - global NoGo delays decision
 - *and superior colliculus (SC)

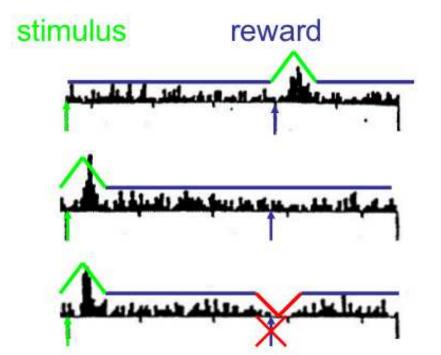
*and substantia nigra pars reticulata (SNr)

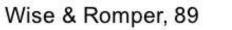
COSC 494/594 CCN

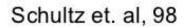
What is Dopamine Doing?

Dopamine carries the brain's revard signal reward prediction error



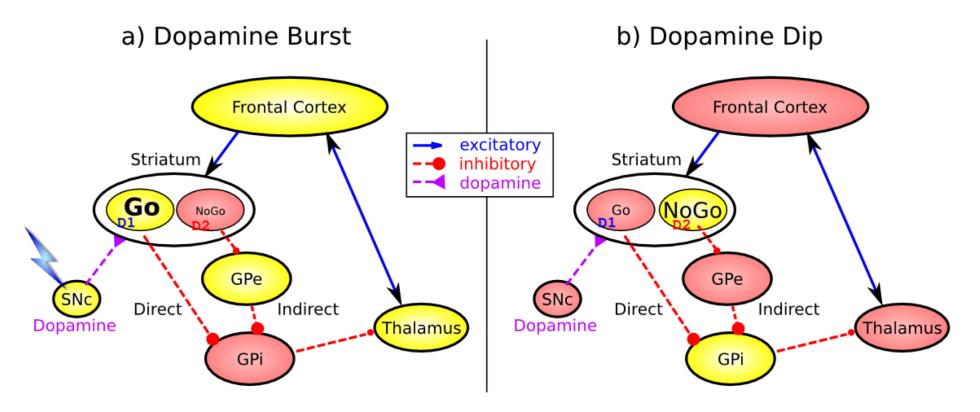






Basal Ganglia Reward Learning

(Frank, 2005...; O'Reilly & Frank 2006)

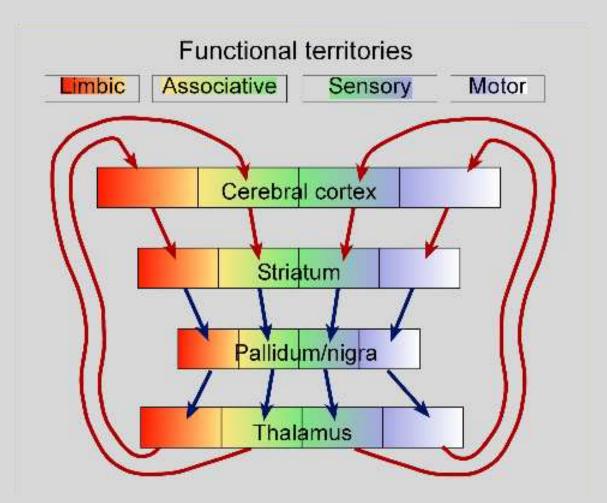


- Feedforward, modulatory (disinhibition) on cortex/motor (same as cerebellum)
- Co-opted for higher level cognitive control \rightarrow PFC

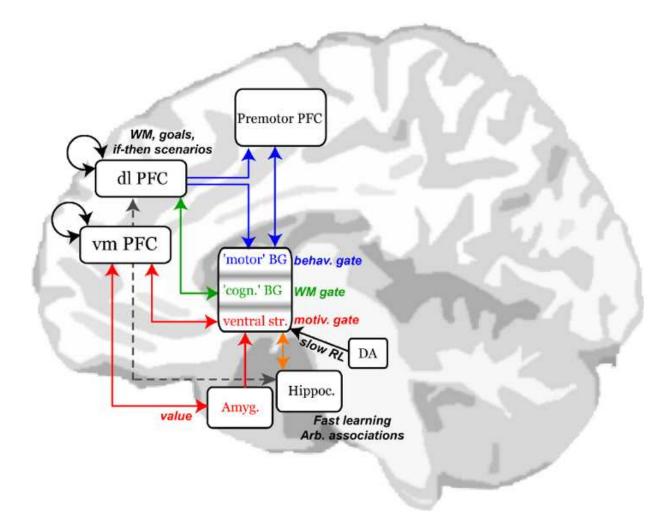
COSC 494/594 CCN

(slide < O'Reilly)

Basal Ganglia Architecture: Cortically-based Loops

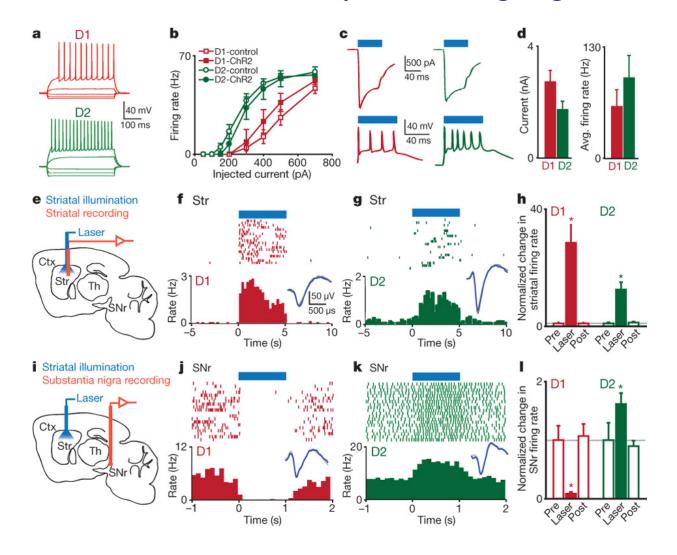


Fronto-basal Ganglia Circuits in Motivation, Action, & Cognition



COSC 494/594 CCN (slide < Frank)

ChR2-mediated excitation of direct- and indirect-pathway MSNs *in vivo* drives activity in basal ganglia circuitry



3/5/18

COSC 494/594 CCN

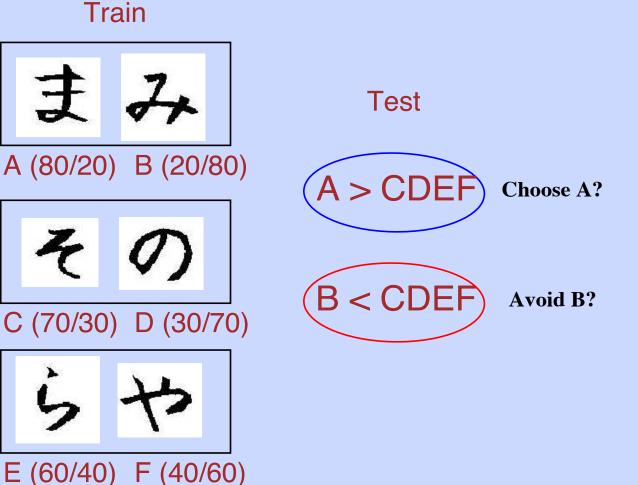
AV Kravitz et al. Nature 466(7306):622-6 (2010) doi:10.1038/nature09159

Human Probabilistic Reinforcement Learning

- Patients with Parkinson's disease (PD) are impaired in cognitive tasks that require learning from positive and negative feedback
- Likely due to depleted dopamine
- But dopamine medication actually worsens performance in some cognitive tasks, despite improving it in others

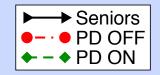
Frank, Seeberger & O'Reilly (2004)

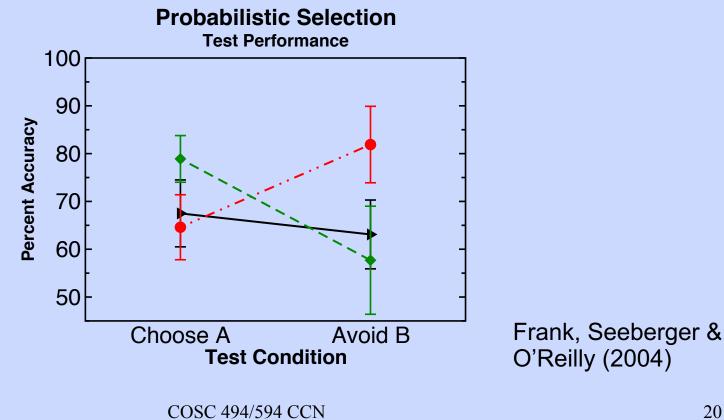
3/5/18



COSC 494/594 CCN (slide based on Frank)

Testing the Model: Parkinson's and Medication Effects

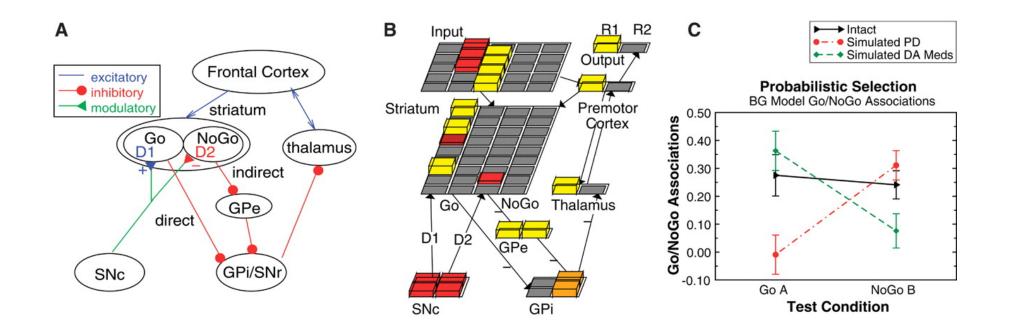




(slide < Frank)

20

BG Model: DA Modulates Learning from Positive/Negative Reinforcement



- (A) The corticostriato-thalamo-cortical loops, including the direct (Go) and indirect (NoGo) pathways of the basal ganglia.
- (B) M. Frank's neural network model of this circuit.
- (C) Predictions from the model for the probabilistic selection task

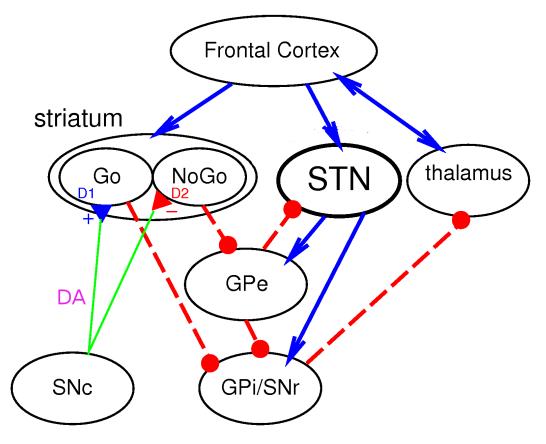
Michael J. Frank et al. Science 2004;306:1940-1943

emergent Demonstration: BG

A simplified model compared to Frank, Seeberger, & O'Reilly (2004)

COSC 494/594 CCN

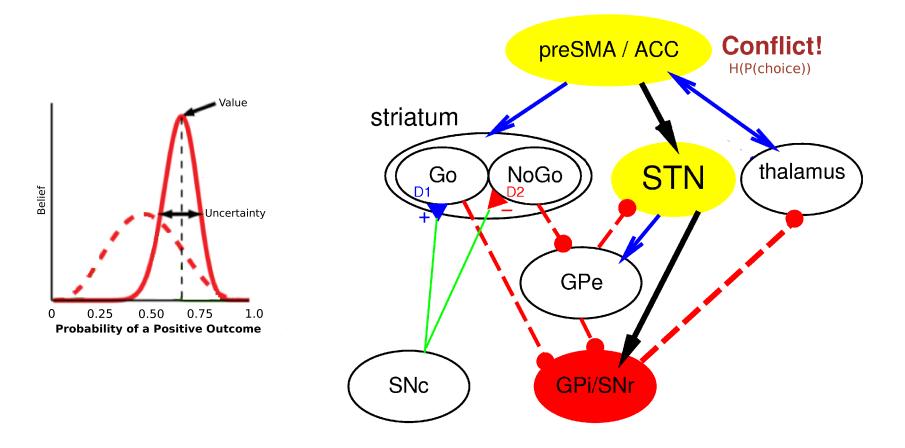
Anatomy of BG Gating Including Subthalamic Nucleus (STN)



PFC-STN provides an override mechanism

COSC 494/594 CCN
(slide < Frank)</pre>

Subthalamic Nucleus: Dynamic Modulation of Decision Threshold

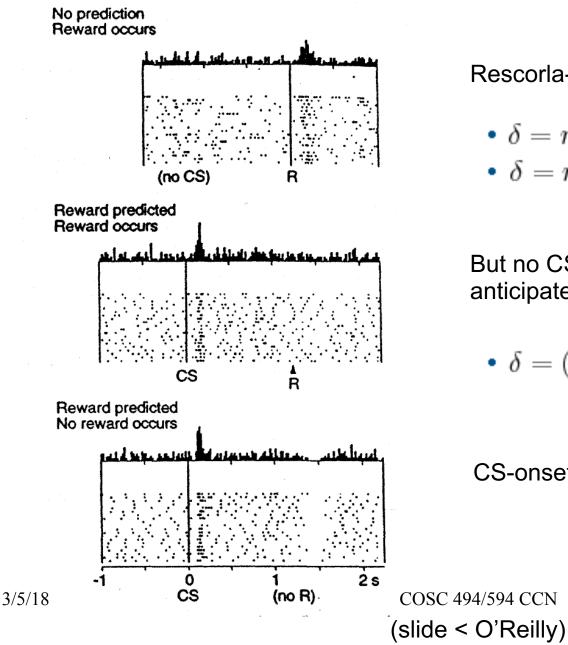


Conflict (entropy) in choice prob \Rightarrow delay decision!

COSC 494/594 CCN
(slide < Frank)</pre>

B. Temporal Difference Reinforcement Learning

Reinforcement Learning: Dopamine



Rescorla-Wagner / Delta Rule:

•
$$\delta = r - \hat{r}$$

• $\delta = r - \sum xw$

But no CS-onset firing – need to anticipate the future!

•
$$\delta = (r+f) - i$$

CS-onset = future reward = f

26

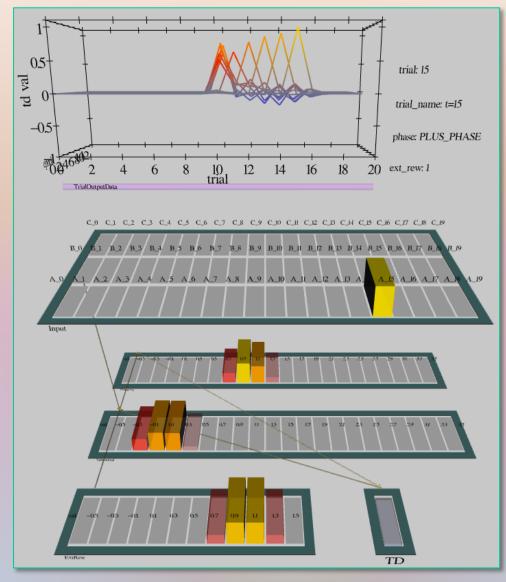
Temporal Differences Learning

- $V(t) = r(t) + \gamma^1 r(t+1) + \gamma^2 r(t+2) + \cdots$ = $r(t) + \gamma [r(t+1) + \gamma^1 r(t+2) + \cdots]$
- $\hat{V}(t) = r(t) + \gamma \hat{V}(t+1)$
- $0 = \left(r(t) + \gamma \hat{V}(t+1)\right) \hat{V}(t)$
- $\delta = (r(t) + \gamma \hat{V}(t+1)) \hat{V}(t)$
- $f = \gamma \hat{V}(t+1)$ whis is the future!

(slide based on O'Reilly)

COSC 494/594 CCN

Network Implementation



COSC 494/594 CCN (slide < O'Reilly)

The RL-cond Model

- ExtRew: external reward *r*(*t*) (based on input)
- TDRewPred: learns to predict reward value
 - minus phase = prediction V(t) from previous trial
 - plus phase = predicted V(t+1) based on Input
- TDRewInteg: Integrates ExtRew and TDRewPred
 - minus phase = V(t) from previous trial
 - plus phase = V(t+1) + r(t)
- TD: computes temporal dif. delta value ≈ dopamine signal
 compute plus minus from TDRewInteg

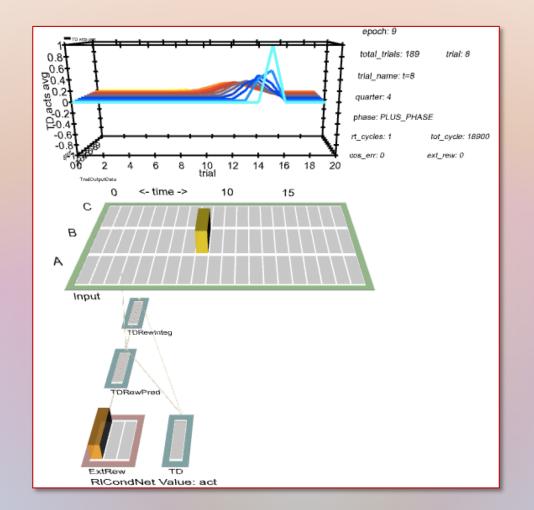
Classical Conditioning

- Forward conditioning
 - unconditioned stimulus (US): doesn't depend on experience
 - leads to unconditioned response (UR)
 - preceding conditioned stimulus (CS) becomes associated with US
 - leads to conditioned response (CR)
- Extinction
 - after CS established, CS is presented repeatedly without US
 - CR frequency falls to pre-conditioning levels
- Second-order conditioning
 - CS1 associated with US through conditioning
 - CS2 associated with CS1 through conditioning, leads to CR

CSC Experiment

- A <u>serial-compound stimulus</u> has a series of distinguishable components
- A <u>complete serial-compound (CSC) stimulus</u> has a component for every small segment of time before, during, and after the US
 - Richard S. Sutton & Andrew G. Barto, "Time-Derivative Models of Pavlovian Reinforcement," *Learning and Computational Neuroscience: Foundations of Adaptive Networks*, M. Gabriel and J. Moore, Eds., pp. 497–537. MIT Press, 1990
- RL-cond.proj implements this form of conditioning
 - somewhat unrealistic, since the stimulus or some trace of it must persist until the US

RL-cond.proj

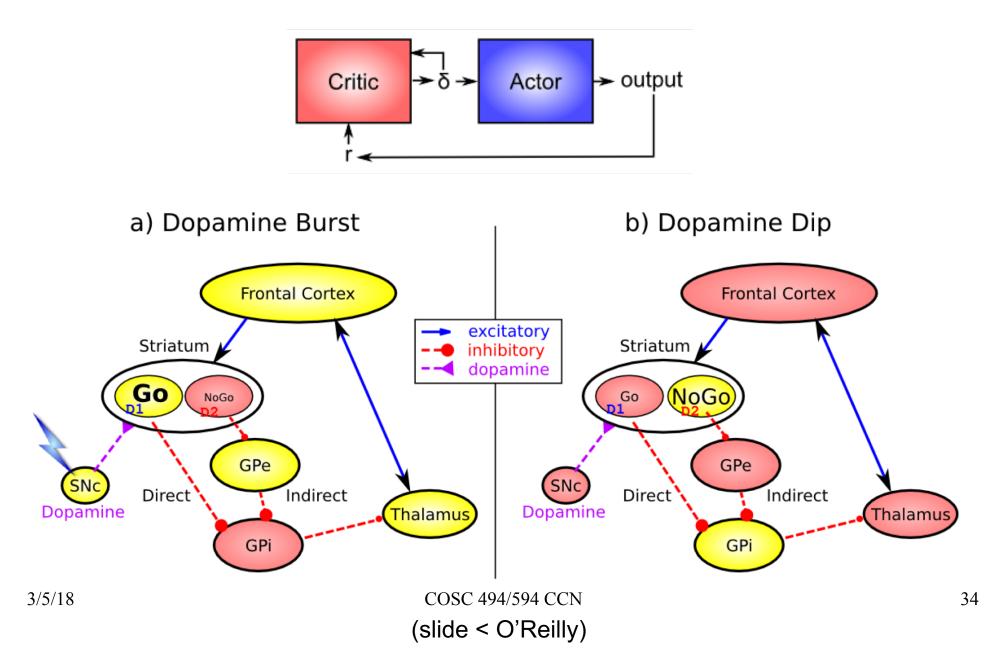


COSC 494/594 CCN

emergent Demonstration: RL

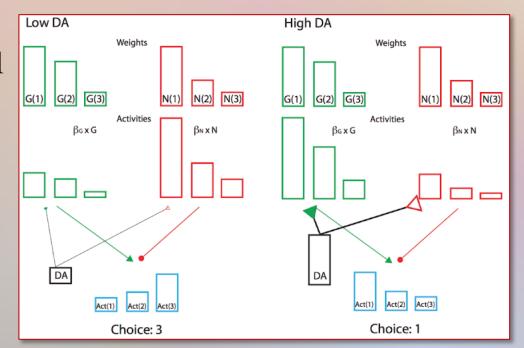
A simplified model of temporal difference reinforcement learning

Actor - Critic



Opponent-Actor Learning (OpAL)

- Actor has independent G and N weights
- Scaled by dopamine (DA) levels during choice
- Choice based on relative activation levels
- Low DA: costs amplified, benefits diminished ⇒ choice 1
- High DA: benefits amplified, costs diminished ⇒ choice 3
- Moderate DA \Rightarrow choice 2
- Accounts for differing costs & benefits



COSC 494/594 CCN

C. PVLV Model of DA Biology

A model of dopamine firing in the brain

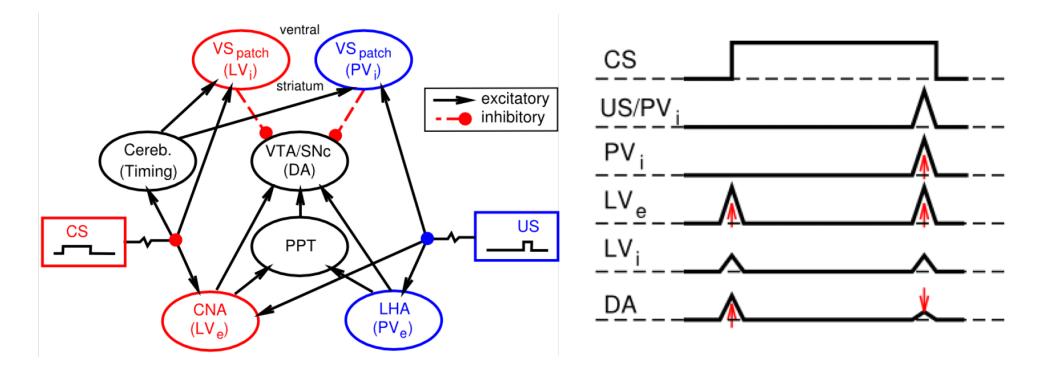
Brain Areas Involved in Reward Prediction

- <u>Lateral hypothalamus (LHA): provides a primary reward signal for</u> basic rewards like food, water etc.
- <u>Patch-like neurons in ventral striatum (VS-patch)</u>
 - have direct inhibitory connections onto dopamine neurons in VTA and SNc
 - likely role in canceling influence of primary reward signals when they're successfully predicted
- <u>Central nucleus of amygdala (CNA)</u>
 - important for driving dopamine firing at the onset of conditioned stimuli
 - receives input broadly from cortex
 - projects directly and indirectly (via VS-patch) to the VTA and SNc (DA neurons)
 - neurons in the CNA exhibit CS-related firing

PVLV Model of Dopamine Firing

- Two distinct systems: <u>Primary Value</u> (PV) and <u>Learned Value</u> (LV)
- DA signal at time of external reward (US): $\delta_{pv} = PV_e - PV_i = r - \hat{r}$
- DA signal for LV when PV not present/expected: $\delta_{lv} = LV_e - LV_i$
- LV_e is excitatory drive from CNA responding to CS (eventually canceled by LV_i)
- LV_e and LV_i values learned from PV_e when rewards present/expected
- Hence, CS (or some trace) must still be present when US occurs
- CNA supports 1st order conditioning, but not 2nd order (that's in BLA)

Biology of Dopamine Firing



More Detailed Description of PVLV

- Major issue: Which of PV/LV systems should be in charge of overall dopamine system?
- PV and LV learning occur when PV present or expected (indicated by $PV_r > \Theta_{pv}$)
- PVr system learns: $\delta w_{pvr} = r_{present} PV_r$ (improves prediction)
- Recall alternative DA signals: $\delta_{pv} = PV_e - PV_i, \qquad \delta_{lv} = LV_e - LV_i$
- Novelty Value (NV) signal reflects stimulus novelty
- Overall dopamine signal:

$$\delta = \begin{cases} \delta_{\rm pv}(t) - \delta_{\rm pv}(t-1) & \text{if } \mathrm{PV}_{\rm r} > \Theta_{\rm pv} \\ [\delta_{\rm lv}(t) - \delta_{\rm lv}(t-1)] + [\mathrm{NV}(t) - \mathrm{NV}(t-1)] & \text{otherwise} \end{cases}$$

• Note DA burst is phasic (ceases after CS onset)

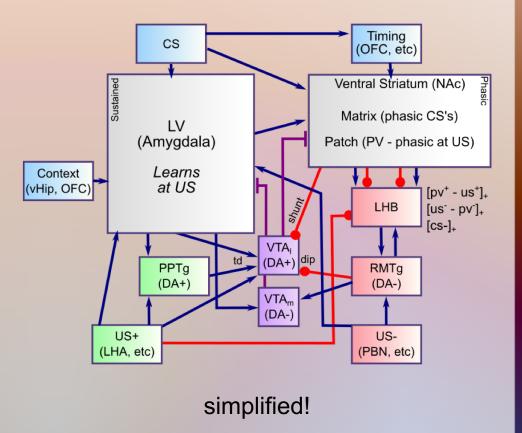
More Detailed Description (ctu'd)

• Learning PV_i weights: $\delta w_{pv} = \varepsilon (PV_e - PV_i)x$

• Learning LV weights is conditional on PV filter: $\delta w_{lv} = \begin{cases} \varepsilon (PV_e - LV_e)x & \text{if } PV_r > \Theta_{pv} \\ 0 & \text{otherwise} \end{cases}$

PVLV.proj Model

- PV in Ventral Striatum system
- LV in Amygdala system
- VTA₁ and VS adapt to US+
- Eventually VTA₁ bursts for CS onset
- LHB+RMTg and VS adapt to US–
- VTA_m and VS adapt to US–
- Eventually DA dip for CS

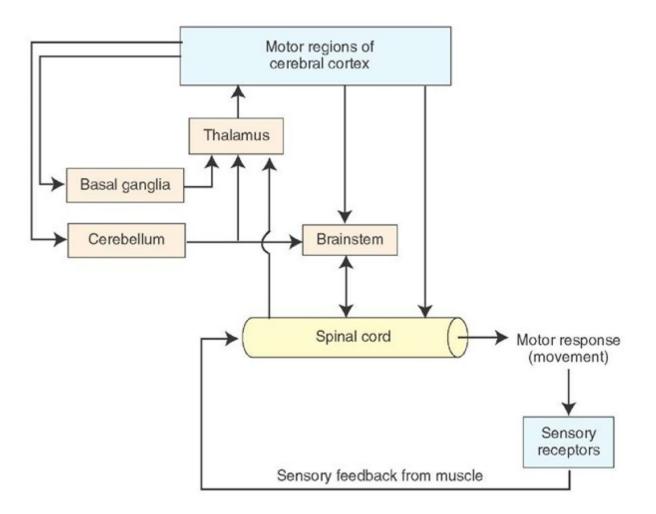


emergent Demonstration: PVLV

D. Cerebellum and Error-driven Learning

"The blessing of dimensionality"

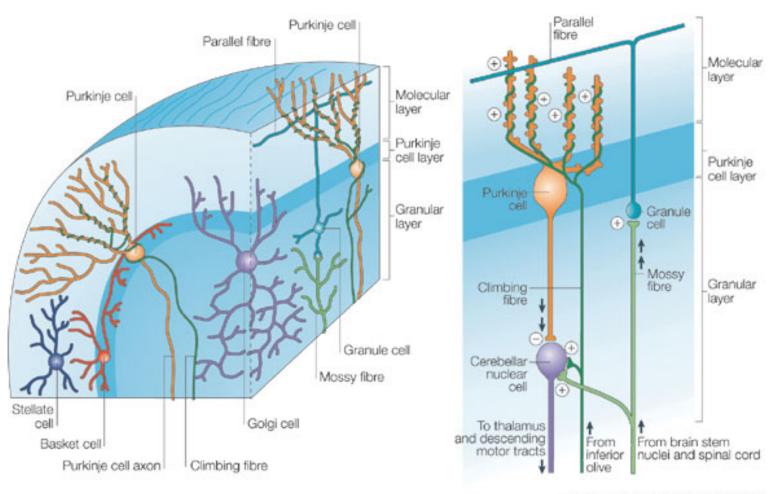
The Motor Control System



Functions of Cerebellum

- Maintenance of equilibrium and posture
- Timing of learned, skilled motor movement
 - any motor movement that improves with practice
 - timing, fluency, rhythm, coordination
 - involved in cognitive processes too
- Correction of errors during the execution of movements
 - error-driven learning
- Many inputs from cortical motor and sensory areas
- Influences cortical motor outputs to spinal chord

Cerebellar Microstructure

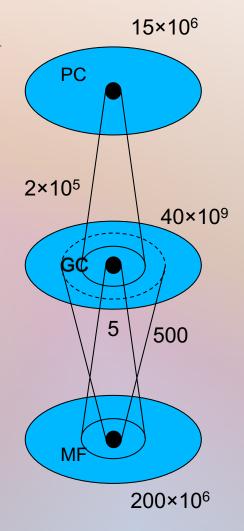


Nature Reviews | Neuroscience

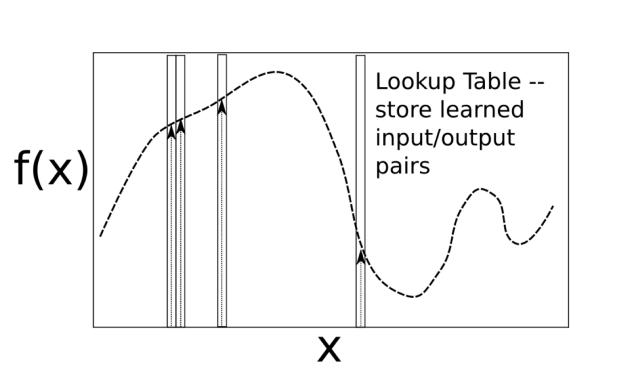
COSC 494/594 CCN

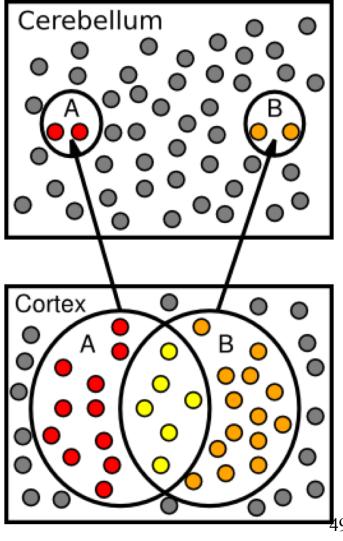
Cerebellum

- Inputs from parietal cortex and motor areas of frontal cortex
- Three layers, very many cortical maps
- Single basic circuit replicated throughout
- 200 million mossy fiber inputs (each to 500 granule cells)
 - projection of input into hyperdimensional space
 - separator learning and dynamics
- 40 billion granule cells (input from 4–5 mossy fibers)
- 15 million Purkinje cells (input from 200,000 granule cells)
 - matrix organization
 - enormous integration and cross connection
- Climbing fibers (one per Purkinje, from inferior olive)



Lookup Table & Pattern Separation

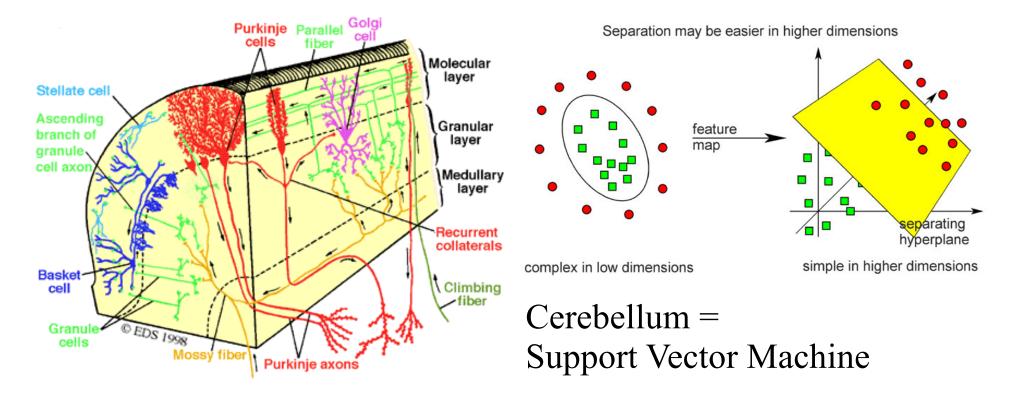




3/5/18

COSC 494/594 CCN (slide < O'Reilly)

Cerebellar Error-driven Learning



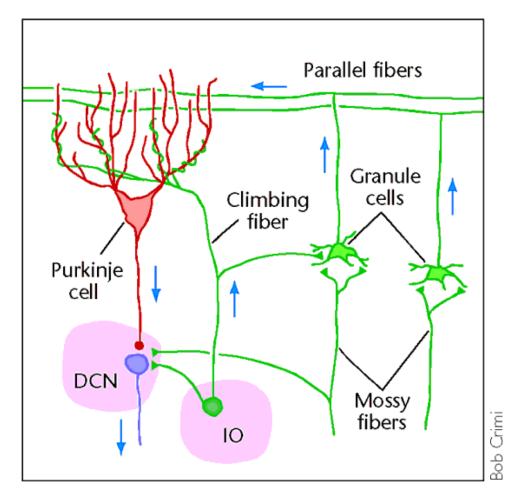
- Granule cells = high-dimensional encoding (separation)
- Purkinje/Olive = delta-rule error-driven learning
- Classic ideas from Marr (1969) & Albus (1971)

Cerebellum is Feed Forward

Feedforward circuit:

- Input (PN) \rightarrow granules \rightarrow Purkinje \rightarrow Output (DCN)
- Inhibitory interactions no attractor dynamics
- <u>Key idea</u>: does delta-rule learning bridging small temporal gap:

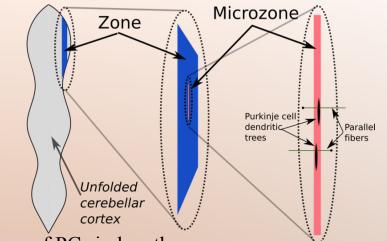
$$S(t-100) \longrightarrow R(t)$$



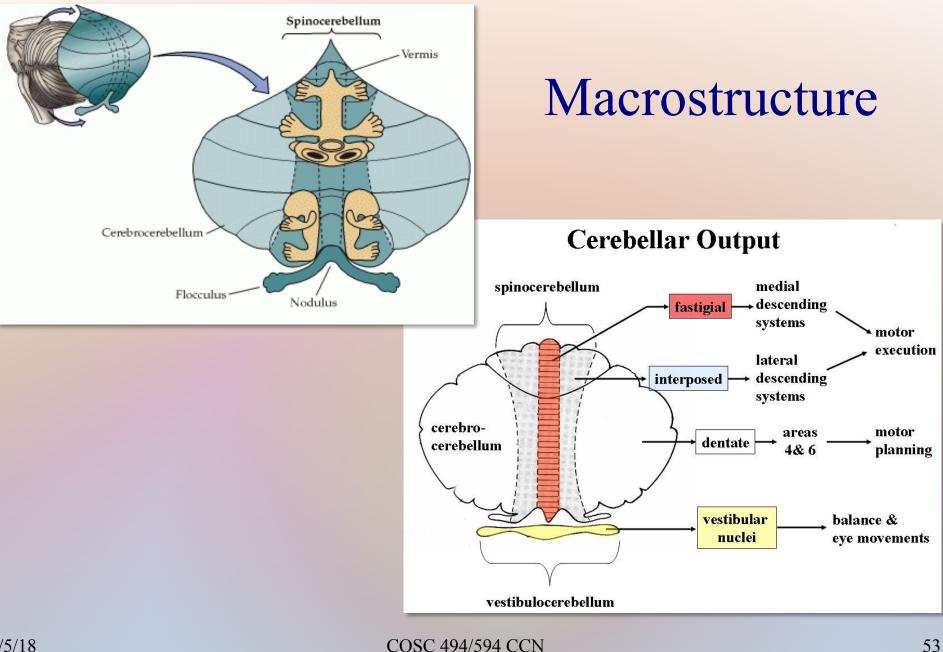
↑ Error(*t*+100)

Mesostructure

- Microzone: defined by group of adjacent PCs contacted by CFs with same receptive profiles
 - comprises hundreds of PCs and several hundreds of thousands of other neurons



- shaped as narrow strips a few PCs wide and several dozens of PCs in length
- a fraction of a millimeter in width and several millimeters in length
- parallel fibers (PFs) extend for several millimeters, crossing width of microzone and extending into neighbors
- estimated that cat has about 5000 microzones, human has several hundred thousand
- Multizonal micro-complexes (MZMCs): basic functional units of cerebellar cortex
 - each comprises several microzones receiving common CF input and delivering their PC output to the same region of the cerebellar nuclei
 - seem to have an integrated function
 - constituent microzones may be in different regions of the cortex, which receive different MF input and may be associated with different aspects of motor control
 - MZMCs may provide for parallel processing and integration of inputs



3/5/18

53

Properties of Hyperdimensional Spaces

- Hyperdimensional spaces = spaces of very high dimension
- Consider vectors of 10,000 bits
 - measure distance by Hamming distance (HD)
 - or normalized Hamming distance (NHD)
- Mean HD = 5000, SD = 50 (binomial distribution)
- $< 10^{-9}$ of space closer than NHD = 0.47 or farther than 0.53 (±300 = ±6 SD)
- Therefore random vectors almost surely have $NHD = 0.5 \pm 0.03$
- Vectors with < 3000 changed bits still accurately recognized
- Ref: Pentti Kanerva (2009), Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors, *Cognitive Computation*, 1(2)

Orthogonality of Random Hyperdimensional Bipolar Vectors

- 99.99% probability of being within 4σ of mean
- It is 99.99% probable that random *n*-dimensional vectors will be within $\varepsilon = 4/\sqrt{n}$ orthogonal
- $\varepsilon = 4\%$ for n = 10,000
- Probability of being less orthogonal than ε decreases exponentially with n
- The brain gets approximate orthogonality by using random high-dimensional vectors 3/5/18

 $|\mathbf{u} \cdot \mathbf{v}| < 4\sigma$ iff $||\mathbf{u}|| ||\mathbf{v}|| |\cos\theta| < 4\sqrt{n}$ iff $n |\cos\theta| < 4\sqrt{n}$ iff $|\cos\theta| < 4/\sqrt{n} = \varepsilon$

$$\Pr\left\{\left|\cos\theta\right| > \varepsilon\right\} = \operatorname{erfc}\left(\frac{\varepsilon\sqrt{n}}{\sqrt{2}}\right)$$
$$\approx \frac{1}{6}\exp\left(-\varepsilon^2 n/2\right) + \frac{1}{2}\exp\left(-2\varepsilon^2 n/3\right)$$

Hyperdimensional Pattern Associator

- Suppose $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_P$ are a set of random hyperdimensional bipolar vectors (inputs)
- Let $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_P$ be arbitrary bipolar vectors (outputs)
- Define Hebbian linear associator matrix

$$\mathbf{M} = \frac{1}{N} \sum_{k=1}^{P} \mathbf{q}_{k} \mathbf{p}_{k}^{\mathrm{T}}$$

- Then $M\mathbf{p}_k \approx \mathbf{q}_k$ (table lookup)
- To encode a sequence of random vectors $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_P$:

$$\mathbf{M} = \frac{1}{N} \sum_{k=1}^{T} \mathbf{p}_{k+1} \mathbf{p}_{k}^{\mathrm{T}}$$

• Then $M\mathbf{p}_k = \mathbf{p}_{k+1}$ (sequence readout)

Some math...

- Suppose $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_P$ are random hyperdimensional bipolar vectors
- Suppose M = $\frac{1}{N} \sum_{j=1}^{P} \mathbf{q}_{j} \mathbf{p}_{j}^{T}$
- Then, $\mathbf{M}\mathbf{p}_k = \left(\frac{1}{N}\sum_{j=1}^{P}\mathbf{q}_j\mathbf{p}_j^T\right)\mathbf{p}_k$ $= \frac{1}{N}\left(\mathbf{q}_k\mathbf{p}_k^T + \sum_{j\neq k}\mathbf{q}_j\mathbf{p}_j^T\right)\mathbf{p}_k$ $= \frac{1}{N}\mathbf{q}_k\mathbf{p}_k^T\mathbf{p}_k + \frac{1}{N}\sum_{j\neq k}\mathbf{q}_j\mathbf{p}_j^T\mathbf{p}_k$ $= \mathbf{q}_k + \frac{1}{N}\sum_{j\neq k}\mathbf{q}_j\mathbf{p}_j^T\mathbf{p}_k$
- For random hyperdimensional vectors, $\mathbf{p}_j^T \mathbf{p}_k \approx 0$
- Therefore, $M\mathbf{p}_k \approx \mathbf{q}_k$

BG + Cerebellum Capacities

- Learn what satisfies basic needs, and what to avoid (BG reward learning)
 - And what information to maintain in working memory (PFC) to support successful behavior
- Learn basic Sensory → Motor mappings accurately (Cerebellum error-driven learning)
 - Sensory → Sensory mappings? (what is going to happen next)

BG + Cerebellum Incapacities

• Generalize knowledge to novel situations

— Lookup tables don't generalize well...

- Learn abstract semantics
 - Statistical regularities, higher-order categories, etc
- Encode episodic memories (specific events)
 Useful for instance-based reasoning
- Plan, anticipate, simulate, etc...
 - Requires robust working memory

emergent Demonstration: Cereb