
7. Motor Control and
Reinforcement Learning



Outline

A. Action Selection and Reinforcement
B. Temporal Difference Reinforcement Learning
C. PVLV Model
D. Cerebellum and Error-driven Learning
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Sensory-Motor Loop

� Why animals have nervous systems but plants do 
not: animals move
� a nervous system is needed to coordinate the movement 

of an animal’s body
�movement is fundamental to understanding cognition

� Perception conditions action
� Action conditions perception
� profound effect of action on structuring perception is 

often neglected
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Overview

• Subcortical areas:
o basal ganglia

Ø reinforcement learning 
(reward/punishment)

Ø connections to “what” pathway

o cerebellum 
Ø error-driven learning
Ø connections to “how” pathway

o disinhibitory output 
dynamic

• Cortical areas:
o frontal cortex

Ø connections to basal ganglia & 
cerebellum

o parietal cortex
Ø maps sensory information to 

motor outputs
Ø connections to cerebellum
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Learning Rules Across the Brain

Area Reward Error Self Org Separator Integrator Attractor

Primitive
Basal Ganglia +++ - - - - - - ++ - - - -
Cerebellum - - - +++ - - - +++ - - - - - -

Advanced
Hippocampus + + +++ +++ - - - +++
Neocortex ++ +++ ++ - - - +++ +++

5

+ = has to some extent   …  +++ = defining characteristic – definitely has
- = not likely to have       …  - - - = definitely does not have

Learning Signal Dynamics
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Primitive, Basic Learning…

Area Reward Error Self Org Separator Integrator Attractor

Primitive
Basal Ganglia +++ - - - - - - ++ - - - -

Cerebellum - - - +++ - - - +++ - - - - - -

6

Learning Signal Dynamics

• Reward & Error = most basic learning signals
(self organized learning is a luxury…)

• Simplest general solution to any learning problem is a
lookup table = separator dynamics
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A. Action Selection and 
Reinforcement
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Anatomy of Basal Ganglia

3/5/18 COSC 494/594 CCN 8

Lim S-J, Fiez JA and Holt LL - Lim S-J, Fiez JA and Holt LL (2014) How may the basal ganglia contribute to 
auditory categorization and speech perception? Front. Neurosci. 8:230. doi: 10.3389/fnins.2014.00230 
http://journal.frontiersin.org/article/10.3389/fnins.2014.00230/full



Basal Ganglia and Action Selection
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Basal Ganglia: Action Selection

10

• Parallel circuits select motor actions and “cognitive” actions 
across frontal areas
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Release from Inhibition
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Motor Loop Pathways
• Direct: striatum inhibits 

GPi (and SNr)
• Indirect: striatum inhibits 

GPe, which inhibits GPi
(and SNr)

• Hyperdirect: cortex excites 
STN, which diffusely 
excites GPi (and SNr)

• GPi inhibits thalamus, 
which opens motor loops
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Basal Ganglia System
• Striatum

§ matrix clusters (inhib.)
Ø direct (Go) pathway ⟞ GPi

Ø indirect (NoGo) path ⟞ GPe

§ patch clusters

Ø to dopaminergic system

• Globus pallidus, int. segment (GPi)*

§ tonically active

§ inhibit thalamic cells

• Globus pallidus, ext. segment (GPe)

§ tonically active

§ inhibits corresponding GPi neurons

• Thalamus*

§ cells fire when both:

Ø excited (cortex)

Ø disinhibited (GPi)

§ disinhibits FC deep layers

• Substantia nigra pars compacta (SNc)

§ releases dopamine (DA) into striatum

§ excites D1 receptors (Go)

§ inhibits D2 receptors (NoGo)

• Subthalamic nucleus (STN)

§ hyperdirect pathway

§ input from cortex

§ diffuse excitatory output to GPi

§ global NoGo delays decision
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What is Dopamine Doing?
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Basal Ganglia Reward Learning
(Frank, 2005…; O’Reilly & Frank 2006)

15

• Feedforward, modulatory (disinhibition) on cortex/motor
(same as cerebellum)

• Co-opted for higher level cognitive control ⟶ PFC
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Basal Ganglia Architecture:
Cortically-based Loops

BG damage⇒ deficits in motor, learning, motivation, working memory, cognitive control
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Fronto-basal Ganglia Circuits in 
Motivation, Action, & CognitionFronto-basal ganglia circuits in motivation, action, cognition
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AV Kravitz et al. Nature 466(7306):622-6 (2010) doi:10.1038/nature09159

ChR2-mediated excitation of direct- and indirect-pathway 
MSNs in vivo drives activity in basal ganglia circuitry
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Human Probabilistic Reinforcement 
Learning Human probabilistic reinforcement learning

Train

Test

Avoid B?

A (80/20) B (20/80)

C (70/30) D (30/70)

E (60/40) F (40/60)

Choose A?A > CDEF

B < CDEF
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Frank, Seeberger & 
O’Reilly (2004) 

• Patients with 
Parkinson’s disease 
(PD) are impaired in 
cognitive tasks that 
require learning from 
positive and negative 
feedback

• Likely due to depleted 
dopamine

• But dopamine 
medication actually 
worsens performance in 
some cognitive tasks, 
despite improving it in 
others



Testing the Model:
Parkinson’s and Medication Effects Testing the model:

Parkinson’s and medication effects

Choose A Avoid B
Test Condition
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PD ON 

Probabilistic Selection
Test Performance

Frank, Seeberger & O’Reilly (2004)

(See also: Cools et al, 06, Frank et al 07, Moustafa et al 08, Bódi et al 09, Palminteri et al, 09, Voon et al 10, etc)
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Frank, Seeberger & 
O’Reilly (2004) 



(A) The corticostriato-thalamo-cortical loops, including the direct (Go) and indirect 
(NoGo) pathways of the basal ganglia. 

(B) M. Frank’s neural network model of this circuit. 
(C) Predictions from the model for the probabilistic selection task 
Michael J. Frank et al. Science 2004;306:1940-1943

Published by AAAS

BG Model: DA Modulates Learning from 
Positive/Negative Reinforcement 



emergent Demonstration: 
BG

A simplified model compared to Frank, Seeberger, & O’Reilly (2004)
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Anatomy of BG Gating Including 
Subthalamic Nucleus (STN) Anatomy of BG gating: with subthalamic nucleus (STN)

• PFC-STN provides an override mechanism
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PFC-STN provides an override mechanism 



Subthalamic Nucleus: Dynamic 
Modulation of Decision Threshold Subthalamic Nucleus:

Dynamic modulation of decision threshold

• Conflict (entropy) in choice prob: ⇒Hold Your Horses!
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Conflict (entropy) in choice prob ⇒ delay decision! 

Bayesian approach to dynamic learning

• Learning from individual noisy outcomes should depend on uncertainty

• For choice tasks, uncertainty in A>B (overlap)

e.g., Yu & Dayan 05; Behrens et al 2007; Nassar et al 2010; Mathys et al 2011



B. Temporal Difference 
Reinforcement Learning 
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Reinforcement Learning: Dopamine

26

Rescorla-Wagner / Delta Rule:

But no CS-onset firing – need to 
anticipate the future!

CS-onset = future reward = f

3/5/18 COSC 494/594 CCN

(slide < O’Reilly)



Temporal Differences Learning

� ! " = $ " + &'$ " + 1 + &)$ " + 2 +⋯
= $ " + & $ " + 1 + &'$ " + 2 +⋯

� ,! " = $ " + & ,!(" + 1)
� 0 = $ " + & ,!(" + 1) − ,!(")
� 1 = $ " + & ,!(" + 1) − ,!(")
� 2 = & ,!(" + 1) ☜ this is the future!
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Network Implementation
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The RL-cond Model

� ExtRew: external reward r(t) (based on input)
� TDRewPred: learns to predict reward value

� minus phase = prediction V(t) from previous trial
� plus phase = predicted V(t+1) based on Input

� TDRewInteg: Integrates ExtRew and TDRewPred
� minus phase = V(t) from previous trial
� plus phase = V(t+1) + r(t)

� TD: computes temporal dif. delta value ≈ dopamine signal
� compute plus – minus from TDRewInteg
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Classical Conditioning
� Forward conditioning

� unconditioned stimulus (US): doesn’t depend on experience

� leads to unconditioned response (UR)

� preceding conditioned stimulus (CS) becomes associated with US

� leads to conditioned response (CR)

� Extinction
� after CS established, CS is presented repeatedly without US

� CR frequency falls to pre-conditioning levels

� Second-order conditioning
� CS1 associated with US through conditioning

� CS2 associated with CS1 through conditioning, leads to CR
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CSC Experiment

� A serial-compound stimulus has a series of distinguishable 
components

� A complete serial-compound (CSC) stimulus has a component for 
every small segment of time before, during, and after the US
� Richard S. Sutton & Andrew G. Barto, “Time-Derivative Models of Pavlovian 

Reinforcement,” Learning and Computational Neuroscience: Foundations of 
Adaptive Networks, M. Gabriel and J. Moore, Eds., pp. 497–537. MIT Press, 
1990

� RL-cond.proj implements this form of conditioning
� somewhat unrealistic, since the stimulus or some trace of it must persist until 

the US
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RL-cond.proj
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emergent Demonstration:
RL

A simplified model of temporal difference reinforcement learning
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Actor - Critic
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Opponent-Actor Learning (OpAL)

� Actor has independent G and N weights

� Scaled by dopamine (DA) levels during choice

� Choice based on relative activation levels

� Low DA: costs amplified, 
benefits diminished ⇒ choice 1

� High DA: benefits amplified, 
costs diminished ⇒ choice 3

� Moderate DA ⇒ choice 2

� Accounts for differing costs & 
benefits
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C. PVLV Model
of DA Biology

A model of dopamine firing in the brain
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Brain Areas Involved in Reward Prediction
� Lateral hypothalamus (LHA): provides a primary reward signal for 

basic rewards like food, water etc.

� Patch-like neurons in ventral striatum (VS-patch)
� have direct inhibitory connections onto dopamine neurons in VTA and SNc

� likely role in canceling influence of primary reward signals when they’re 
successfully predicted

� Central nucleus of amygdala (CNA) 
� important for driving dopamine firing at the onset of conditioned stimuli

� receives input broadly from cortex

� projects directly and indirectly (via VS-patch) to the VTA and SNc (DA 
neurons)

� neurons in the CNA exhibit CS-related firing
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PVLV Model of Dopamine Firing

� Two distinct systems: Primary Value (PV) and Learned Value (LV)

� DA signal at time of external reward (US):
!"# = PV' − PV) = * − *̂

� DA signal for LV when PV not present/expected:
!,# = LV' − LV)

� LVe is excitatory drive from CNA responding to CS (eventually 
canceled by LVi)

� LVe and LVi values learned from PVe when rewards present/expected

� Hence, CS (or some trace) must still be present when US occurs

� CNA supports 1st order conditioning, but not 2nd order (that’s in BLA)
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Biology of Dopamine Firing
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More Detailed Description of PVLV

� Major issue: Which of PV/LV systems should be in charge of overall dopamine 
system?

� PV and LV learning occur when PV present or expected (indicated by PVr > !pv)

� PVr system learns: "#$%& = ($&)*)+, − PV& (improves prediction)

� Recall alternative DA signals: 
"$% = PV) − PV0, "2% = LV) − LV0

� Novelty Value (NV) signal reflects stimulus novelty

� Overall dopamine signal:

" = 4 "$% 5 − "$%(5 − 1) if PV& > Θ$%
"2% 5 − "2%(5 − 1) + NV 5 − NV(5 − 1) otherwise

� Note DA burst is phasic (ceases after CS onset)
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More Detailed Description (ctu’d)

� Learning PVi weights:
!"#$ = & PV) − PV+ ,

� Learning LV weights is conditional on PV filter:

!"-$ = .& PV) − LV) , if PV2 > Θ#$
0 otherwise
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PVLV.proj Model

• PV in Ventral Striatum system

• LV in Amygdala system

• VTAl and VS adapt to US+

• Eventually VTAl bursts for CS
onset

• LHB+RMTg and VS adapt to 
US–

• VTAm and VS adapt to US–

• Eventually DA dip for CS
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emergent Demonstration:
PVLV
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D. Cerebellum and
Error-driven Learning

“The blessing of dimensionality”
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The Motor Control System
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Functions of Cerebellum

� Maintenance of equilibrium and posture
� Timing of learned, skilled motor movement

� any motor movement that improves with practice
� timing, fluency, rhythm, coordination
� involved in cognitive processes too

� Correction of errors during the execution of movements
� error-driven learning

� Many inputs from cortical motor and sensory areas
� Influences cortical motor outputs to spinal chord
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Cerebellar Microstructure
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Cerebellum
� Inputs from parietal cortex and motor areas of frontal cortex

� Three layers, very many cortical maps

� Single basic circuit replicated throughout

� 200 million mossy fiber inputs (each to 500 granule cells)

� projection of input into hyperdimensional space

� separator learning and dynamics

� 40 billion granule cells (input from 4–5 mossy fibers)

� 15 million Purkinje cells (input from 200,000 granule cells)

� matrix organization

� enormous integration and cross connection

� Climbing fibers (one per Purkinje, from inferior olive)

3/5/18 COSC 494/594 CCN 48

PC

GC

MF

15×106

200×106

40×109
2×105

5005



Lookup Table & Pattern Separation
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Cerebellar Error-driven Learning

Cerebellum = 
Support Vector Machine

• Granule cells = high-dimensional encoding (separation)
• Purkinje/Olive = delta-rule error-driven learning
• Classic ideas from Marr (1969) & Albus (1971)
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Cerebellum is Feed Forward 

Feedforward circuit:
Input (PN) ⟶ granules ⟶

Purkinje ⟶ Output (DCN)

Inhibitory interactions – no 
attractor dynamics

Key idea: does delta-rule 
learning bridging small 
temporal gap:
S(t–100) ⟶ R(t)

↑ Error(t+100) 
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Mesostructure
� Microzone: defined by group of adjacent PCs 

contacted by CFs with same receptive profiles

� comprises hundreds of PCs and several hundreds 
of thousands of other neurons

� shaped as narrow strips a few PCs wide and several dozens of PCs in length 

� a fraction of a millimeter in width and several millimeters in length

� parallel fibers (PFs) extend for several millimeters, crossing width of microzone and extending into 
neighbors

� estimated that cat has about 5000 microzones, human has several hundred thousand

� Multizonal micro-complexes (MZMCs): basic functional units of cerebellar cortex

� each comprises several microzones receiving common CF input and delivering their PC output to 
the same region of the cerebellar nuclei

� seem to have an integrated function

� constituent microzones may be in different regions of the cortex, which receive different MF input 
and may be associated with different aspects of motor control

� MZMCs may provide for parallel processing and integration of inputs
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Macrostructure
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Properties of Hyperdimensional Spaces

� Hyperdimensional spaces = spaces of very high dimension

� Consider vectors of 10,000 bits

� measure distance by Hamming distance (HD)

� or normalized Hamming distance (NHD)

� Mean HD = 5000, SD = 50 (binomial distribution)

� < 10–9 of space closer than NHD = 0.47 or farther than 0.53 (±300 = ±6 SD)

� Therefore random vectors almost surely have NHD = 0.5±0.03

� Vectors with < 3000 changed bits still accurately recognized

� Ref: Pentti Kanerva (2009), Hyperdimensional Computing: An Introduction to 
Computing in Distributed Representation with High-Dimensional Random Vectors, 
Cognitive Computation, 1(2)
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Orthogonality of Random 
Hyperdimensional Bipolar Vectors

� 99.99% probability of being within 
4σ of mean

� It is 99.99% probable that random 
n-dimensional vectors will be 
within ! = ⁄4 % orthogonal

� ε = 4% for n = 10,000

� Probability of being less 
orthogonal than ε decreases 
exponentially with n

� The brain gets approximate 
orthogonality by using random 
high-dimensional vectors
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Hyperdimensional Pattern Associator
� Suppose !", !$, … , !& are a set of random hyperdimensional bipolar vectors (inputs)

� Let '", '$, … , '& be arbitrary bipolar vectors (outputs)

� Define Hebbian linear associator matrix

M = 1
+,-."

&
'-!-/

� Then M!- ≈ '- (table lookup)

� To encode a sequence of random vectors !", !$, … , !&:

M = 1
+,-."

&1"
!-2"!-/

� Then M!- = !-2" (sequence readout)
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Some math…

� Suppose !", !$, … , !& are random hyperdimensional bipolar vectors

� Suppose M = "
)∑+,"

& -+!+.

� Then, M!/ = "
)∑+,"

& -+!+. !/
= "

) -/!/. + ∑+1/ -+!+. !/
= "

) -/!/
.!/ + "

)∑+1/ -+!+
. !/

= -/ + "
)∑+1/ -+!+

. !/
� For random hyperdimensional vectors, !+.!/ ≈ 0
� Therefore, M!/ ≈ -/
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BG + Cerebellum Capacities

� Learn what satisfies basic needs, and what to avoid 
(BG reward learning)
�And what information to maintain in working memory 

(PFC) to support successful behavior
� Learn basic Sensory ⟶ Motor mappings accurately 

(Cerebellum error-driven learning)
� Sensory ⟶ Sensory mappings? (what is going to happen 

next)
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BG + Cerebellum Incapacities

� Generalize knowledge to novel situations
� Lookup tables don’t generalize well…

� Learn abstract semantics
� Statistical regularities, higher-order categories, etc

� Encode episodic memories (specific events)
�Useful for instance-based reasoning

� Plan, anticipate, simulate, etc…
� Requires robust working memory
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emergent Demonstration:
Cereb
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