
Chapter II

Physics of Computation

These lecture notes are exclusively for the use of students in Prof. MacLen-
nan’s Unconventional Computation course. c�2019, B. J. MacLennan, EECS,
University of Tennessee, Knoxville. Version of August 24, 2019.

A Energy dissipation

As an introduction to the physics of computation, and further motivation
for unconventional computation, we will discuss Michael P. Frank’s analysis
of energy dissipation in conventional computing technologies (Frank, 2005b).
The performance R of a computer system can measured by the number of
computational operations executed per unit time. This ratio is the product
of the number operations per unit of dissipated energy times the energy
dissipation per unit time:

R =
Nops

t
=

Nops

Ediss
⇥ Ediss

t
= FE ⇥ Pdiss. (II.1)

Here we have defined Pdiss to be the power dissipated by the computation
and the energy e�ciency FE to be to be the number of low-level bit opera-
tions performed per unit of energy. The key parameter is FE, which is the
reciprocal of the energy dissipated per bit operation.

This energy can be estimated as follows. Contemporary digital electronics
uses CMOS technology, which represents a bit as the charge on a capacitor.
The energy to set or reset the bit is (approximately) the energy to charge
the capacitor or the energy dissipated when it discharges. Voltage is energy
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per unit charge, so the work to move an infinitesimal charge dq from one
plate to the other is V dq, where V is the voltage between the plates. But
V is proportional to the charge already on the capacitor, V = q/C. So the
change in energy is dE = V dq = q

C
dq. Hence the energy to reach a charge

Q is

E =

Z
Q

0

q

C
dq =

1

2

Q
2

C
.

Therefore, E = 1
2(CV )2/C = 1

2CV
2 and FE ⇡ (1 op)/(1

2CV
2).

Frank observes that Moore’s law in the 1985–2005 period was a result of
an exponential decrease in C resulting from decreasing feature sizes (since
capacitance is proportional to area) and a decrease in logic voltage V from
5V to about 1V (further improving E by a factor of 25). The clock rate also
went up with smaller feature sizes. (See Fig. II.1.)

Dennard scaling has been another important factor supporting Moore’s
law (Dennard et al., 1974). This refers to the fact that voltage and cur-
rent both scale downward with feature size, and therefore power scales with
transistor area. As a consequence, power density (the power dissipated per
unit area) remains constant as the size of transistors decreases. Furthermore,
with smaller transistors, computers could operate faster. We have seen that
the energy to change state is CV

2
/2. Therefore, if the clock frequency is f

and transistors switch a fraction ↵ of the time, the energy dissipated will be
↵fCV

2
/2. But the capacitance is proportional to the square of the linear

dimensions, and decreasing them allows a corresponding increase in switch-
ing frequency, and so circuits have been able to operate faster with the same
power density.

Unfortunately, Dennard scaling began to break down around 2005. The
reason is that there are two sources of power dissipation in integrated circuits.
A chip’s dynamic power density results from its transistors changing state and
it benefits from Dennard scaling. However, static power density is a result of
leakage currents through the transistors when they are not switching. This is
a result of quantum mechanical tunneling through the transistor’s gate and
increases with decreasing gate widths. It does not scale down with feature
size; on the contrary it scales up rapidly: a 100-fold decrease in size has
resulted in a 108 increase in static power density. Previously, with larger
transistors, static power density was negligible, but it is now comparable to
dynamic power density. By 2006–7 these conditions had created a “power
wall” and ended Dennard scaling.
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Figure II.1: Historical and extrapolated switching energy. Figure from Frank
(2005b, slide 9).
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Figure II.2: Depiction of 0-1-0-1-1 pulses in the presence of high thermal
noise.

In addition to the preceding issues, there are other limitations on the
energy e�ciency of computation, for if the signal is too small in comparison
with thermal energy, then thermal noise will lead to unreliable operation,
because the thermal fluctuations will be of the same order as the signals (Fig.
II.2). The thermal energy is ET = kBT , where kB is Boltzmann’s constant
and T is the absolute temperature. Since kB ⇡ 8.6 ⇥ 10�5 eV/K = 1.38 ⇥
10�23J/K, and room temperature T ⇡ 300K, room-temperature thermal
energy is

ET = kBT ⇡ 26 meV ⇡ 4.14 ⇥ 10�21J ⇡ 4 zJ.

(Fig. II.1 shows ET .)
We have seen that Esig = CV

2
/2, but for reliable operation, how big

should it be in comparison to ET ? Frank estimates Esig � kBT lnR, where
the reliability R = 1/perr, for a desired probability of error perr.1 For example,
for a reasonable reliability R = 2 ⇥ 1017, Esig � 40kBT ⇡ 1 eV, which is the
energy to move one electron with 1V logic levels. This implies a maximum
energy e�ciency of

FE = 1 op/eV ⇡ 1 op

1.6 ⇥ 10�19J
= 6.25 ⇥ 1018op/J. (II.2)

1Frank (2005b, slide 7).
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A round 100kBT corresponds to an error probability of perr = e
�100 = 3.72⇥

10�44 (at room temperature). Therefore, a reasonable target for reliable
operation is

Esig & 100kBT ⇡ 2.6 eV = 414 zJ.

This, therefore, is an estimate of the minimum energy dissipation per op-
eration for reliable operation using conventional technology. Nevertheless,
these conclusions are independent of technology (electronic, optical, carbon
nanotube, etc.), since they depend only on relative energy levels for reliable
operation.2

One apparent solution is to operate at a lower temperature T , but it does
not help much, since the e↵ective T has to reflect the environment into which
the energy is eventually dissipated (i.e., the energy dissipation has to include
the refrigeration to operate below ambient temperature). Another possible
solution, operating closer to kBT and compensating for low reliability with
error-correcting codes, does not help, because we need to consider the total
energy for encoding a bit. That is, we have to include the additional bits
required for error detection and correction.

Frank observed in 2005 that the smallest logic signals were about 104
kBT ,

and therefore that there were only about two orders of magnitude improve-
ment in reliable operation. “A factor of 100 means only around 10 years re-
main of further performance improvements, given the historical performance
doubling period of about 1.5 years. Thus, by about 2015, the performance
of conventional computing will stop improving, at least at the device level”
(Frank, 2005b).

In fact, these limitations are becoming apparent. By 2011 computer en-
gineers were worrying about “the 3 GHz wall,” since computer clock speeds
had been stalled at about that rate for five years.3 Recent processors have
gone a little beyond the barrier, but a “power wall” remains, for although in-
dividual transistors can be operated at higher speeds, the millions or billions
of transistors on a chip dissipate excessive amounts of energy. This presents
an obstacle for future supercomputers.

As of June 2018 the fastest supercomputer was Summit (OLCF-4).4 It is

2Frank presentation, “Reversible Computing: A Cross-Disciplinary Introduction” (Be-

yond Moore), Mar. 10, 2014. put in bib
3Spectrum (Feb. 2011) spectrum.ieee.org/computing/hardware/nextgeneration-

supercomputers/0 (accessed Aug. 20, 2012).
4https://en.wikipedia.org/wiki/Summit (supercomputer) (accessed Aug. 23, 2018);
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rated at 200 petaflops and performed at 122.3 petaflops on LINPACK bench-
mark. It is also the first supercomputer to reach exascale speed, performing
at 1.88 exaops during a genomic analysis. It is expected to reach 3.3 exaops
using mixed-precision calculations. Summit has 2,282,544 CPU and GPU
processing cores in 4608 nodes, each with two IBM Power9 CPUs and six
Nvidia V100 GPUs. The 9216 POWER9 CPUs each have 22 cores (202,752
total), and the 27,648 V100 GPUs each have 80 streaming multiprocessors
(SMs), each with 32 FP64 (double-precision) cores, 64 FP32 (single-precision)
cores, 64 INT32 cores, and 8 tensor cores.5 Each node has over 500GB of co-
herent memory (high-bandwidth memory plus DDR4 SDRAM) addressable
by all CPUs and GPUs, plus 800GB of non-volatile RAM. Summit has 250
PB total file storage, occupies 5,600 sq. ft. of floor space (approximately two
tennis courts), consumes 13 MW total power and has an energy e�ciency FE

= 13.889 GFlops/watt (the fifth most energy e�cient supercomputer), which
is about 72 pJ/flop. Its power consumption is comparable to a town of 3436
households and requires 4,000 gallons of water per minute for cooling.

To convert floating-point operations to basic logic operations, includ-
ing all the overhead etc., one conversion estimate is 107 to 108 ops/flop.6

Therefore, we can compare the theoretical best energy e�ciency (Eq. II.2),
F

�1
E = 1.6⇥ 10�7pJ/op ⇡ 1.6 to 16 pJ/flop, with the 72 pJ/flop of Summit.

The gap is only about one order of magnitude. Indeed, it has been estimated
that scaling up current technology to 1 exaflops would consume 1.5 GW,
more than 0.1% of US power grid.7 This is impractical.

It might be possible to get energy consumption down to 5 to 10 pJ/flop,
but “the energy to perform an arithmetic operation is trivial in comparison
with the energy needed to shu✏e the data around, from one chip to another,
from one board to another, and even from rack to rack.”8 Indeed, due to the
di�culty of programming parallel computers, and due to delays in internal
data transmission, it is di�cult to use more than 5% to 10% of a supercom-

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/ (accessed Aug. 23,
2018)]

5https://www.olcf.ornl.gov/for-users/system-user-guides/summit/nvidia-v100-gpus/
6And so this is one estimate of the di↵erence in time scale between computational

abstractions and the logic that implements them, which was discussed in Ch. I (p. 5).
7Spectrum (Feb. 2011) spectrum.ieee.org/computing/hardware/nextgeneration-

supercomputers/0 (accessed Aug. 20, 2012).
8Spectrum (Feb. 2011) spectrum.ieee.org/computing/hardware/nextgeneration-

supercomputers/0 (accessed Aug. 20, 2012).
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puter’s capacity for any extended period; most of the processors are idling.9

So with those 2,282,544 cores, most of the time about two million of them
are idle! There has to be a better way.

9Spectrum (Feb. 2011) spectrum.ieee.org/computing/hardware/nextgeneration-
supercomputers/0 (accessed 2012-08-20).


