
48 CHAPTER II. PHYSICS OF COMPUTATION

C Reversible computing

C.1 Reversible computing as a solution

Notice that the key quantity FE in Eqn. II.1 depends on the energy dissipated
as heat.16 The 100kBT limit depends on the energy in the signal (necessary
to resist thermal fluctuation causing a bit flip). Although most common
computing operations must dissipate a minimum amount of energy (as given
by VNL), there is nothing that says that information processing has to be
done this way. If we do things di↵erently, there is no need to dissipate energy,
and an arbitrarily large amount of it can be recovered for future operations
(“arbitrary” in the sense that there is no inherent physical lower bound on
the energy that must be dissipated and cannot be recovered). Accomplishing
this becomes a matter of precise energy management: moving it around in
di↵erent patterns, with as little dissipation as possible. Moreover, Esig can be
increased to improve reliability, provided we minimize dissipation of energy.
This goal can be accomplished by making the computation logically reversible
(i.e., each successor state has only one predecessor state).

All fundamental physical theories are Hamiltonian dynamical systems,
and all such systems are time-reversible: if (t) is a solution, then so is (�t).
That is, in general, physics is reversible. Therefore, physical information
cannot be lost, but we can lose track of it. This is entropy: “unknown
information residing in the physical state.” Note how this is fundamentally
a matter of information and knowledge: processes are irreversible because
information becomes inaccessible. Entropy is ignorance.

To avoid dissipation, don’t erase information. The problem is to keep
track of information that would otherwise be dissipated, to avoid squeezing
information out of logical space (IBDF) into thermal space (NIBDF). This is
accomplished by making computation logically reversible (it is already phys-
ically reversible). In e↵ect, computational information is rearranged and
recombined in place. (We will see lots of examples of how to do this.)

C.1.a Information Mechanics

In 1970s, Ed Fredkin, Tommaso To↵oli, and others at MIT formed the In-
formation Mechanics group to the study the physics of information. As we
will see, Fredkin and To↵oli described computation with idealized, perfectly

16This section is based on Frank (2005b).

C. REVERSIBLE COMPUTING 49

elastic balls reflecting o↵ barriers. The balls have minimum dissipation and
are propelled by (conserved) momentum. The model is unrealistic but illus-
trates many ideas of reversible computing. Later we will look at it briefly
(Sec. C.7). They also suggested a more realistic implementation involving
“charge packets bouncing around along inductive paths between capacitors.”
Richard Feynman (Caltech) had been interacting with the Information Me-
chanics group, and developed “a full quantum model of a serial reversible
computer” (Feynman, 1986).

Charles Bennett (1973) (IBM) first showed how any computation could be
embedded in an equivalent reversible computation. Rather than discarding
information (and hence dissipating energy), it keeps it around so it can later
“decompute” it back to its initial state. This was a theoretical proof based on
Turing machines, and did not address the issue of physical implementation.

Bennett (1982) suggested Brownian computers (or Brownian motion ma-
chines) as a possible physical implementation of reversible computation. The
idea is that rather than trying to avoid randomization of kinetic energy
(transfer from mechanical modes to thermal modes), perhaps it can be ex-
ploited. This is an example of respecting the medium in embodied computa-
tion. A Brownian computer makes logical transitions as a result of thermal
agitation. However, because it is operating at thermal equilibrium, it is
about as likely to go backward as forward; it is essentially conducting a ran-
dom walk, and therefore can be expected to take ⇥(n2) time to advance n

steps from its initial state. A small energy input — a very weak external
driving force — biases the process in the forward direction, so that it pre-
cedes linearly, but still very slowly. This means we will need to look at the
relation between energy and computation speed (Sec. C.1.b). DNA polymer-
ization provides an example. We can compare its energy dissipation, about
40kBT (⇠ 1 eV) per nucleotide, with its rate, about a thousand nucleotides
per second.

Bennett (1973) also described a chemical Turing machine, in which the
tape is a large macromolecule analogous to RNA. An added group encodes
the state and head location, and for each transition rule there is a hypothet-
ical enzyme that catalyzes the state transition. We will look at molecular
computation in much more detail later (Ch. IV).

As in ballistic computing, Brownian computing needs logical reversibility.
With no driving force, it is equally likely to move forward or backward, but
any driving force will ensure forward movement. Brownian computing can
accommodate a small degree of irreversibility (see Fig. II.7). In these cases,

50 CHAPTER II. PHYSICS OF COMPUTATION

Figure II.7: Di↵erent degrees of logical reversibility. [from Bennett (1982)]

there are a few backward detours (e.g., it might be equally likely to go in
one forward path or two backward paths), but the process can still be biased
forward. For forward computation on such a tree “the dissipation per step
must exceed kT times the log of the mean number of immediate predeces-
sors to each state” (Bennett, 1982, p. 923). Brownian computation cannot
accommodate exponentially backward branching trees, since the computer
will spend much more of its time going backward than going forward, and
since one backward step is likely to lead to even more backward steps. These
undesired states may outnumber desired states by factors of 2100, requiring
driving forces on the order of 100kT . Why 2100? Think of the number of
possible predecessors to a state that does something like x := 0; assigning
to a 64-bit variable has 264 possible predecessor states. Consider also the
number of predecessors of the statement following a loop. Next we consider
the relation between energy dissipation and computation speed.

C.1.b Energy coefficient

We have seen that a greater driving force can lead to faster computation,
therefore we define an energy coe�cient that relates energy dissipation to
computation speed (Frank, 2005b). Let Ediss be the energy dissipated per

C. REVERSIBLE COMPUTING 51

operation and fop be the frequency of operations; then the energy coe�cient
is defined:

cE
def
= Ediss/fop.

For example, for DNA, cE ⇡ (40kT)/(1kHz) = 40⇥26 meV/kHz ⇡ 1 eV/kHz
(since at room temperature, kBT ⇡ 26 meV: see Sec. A, p. 32). If our goal,
however, is to operate at GHz frequencies (fop ⇡ 109) and energy dissipation
below kBT (which is below VNL, but possible for reversible logic), then we
need energy coe�cients vastly lower than DNA. This is an issue, of course,
for molecular computation.

C.1.c Adiabatic circuits

Since the 1980s, and especially in the 1990s there has been work in adiabatic
circuits. An adiabatic process takes place without input or dissipation of
energy, and adiabatic circuits minimize energy use by obeying certain circuit
design rules. For example: (1) Never turn on a transistor when there is a
voltage potential between the source and drain. (2) Never turn o↵ a transistor
when current is flowing through it. “[A]rbitrary, pipelined, sequential logic
could be implemented in a fully-reversible fashion, limited only by the energy
coe�cients and leakage currents of the underlying transistors.” As of 2004,
about cE = 3 meV/kHz was achievable, which is about 250 times less than
DNA.

“It is di�cult to tell for certain, but a wide variety of post-
transistor device technologies have been proposed . . . that have
energy coe�cients ranging from 105 to 1012 times lower than
present-day CMOS! This translates to logic circuits that could
run at GHz to THz frequencies, with dissipation per op that is
still less (in some cases orders of magnitude less) than the VNL
bound of kBT ln 2 . . . that applies to all irreversible logic technolo-
gies. Some of these new device ideas have even been prototyped
in laboratory experiments [2001].” (Frank, 2005b, p. 388)

Frank (2005b, p. 388) notes, “fully-reversible processor architectures [1998]
and instruction sets [1999] have been designed and implemented in silicon.”
Reversible circuit design is, however, outside of the scope of this book.

52 CHAPTER II. PHYSICS OF COMPUTATION

C.2 Foundations of Conservative Computation

If we want to avoid the von Neumann-Landauer limit, then we have to do re-
versible computation (we cannot throw logical information away). Moreover,
if we want to do fast, reliable computation, we need to use driving forces
and signal levels well above this limit, but this energy cannot be dissipated
into the environment. Therefore, we need to investigate a conservative logic
by which energy and other resources are conserved.17 What this means is
that the mechanical modes (computation) must be separated from the ther-
mal modes (heat) to minimize damping and fluctuation and the consequent
thermalization of information (recall Sec. B.2).

According to Fredkin & To↵oli (1982), “Computation is based on the stor-
age, transmission, and processing of discrete signals.” They outline several
physical principles implicit in the axioms of conventional dissipative logic:

P1 “The speed of propagation of information is bounded.” That is, there
is no action at a distance.

P2 “The amount of information which can be encoded in the state of a
finite system is bounded.” This is ultimately a consequence of thermo-
dynamics and quantum theory.

P3 “It is possible to construct macroscopic, dissipative physical devices
which perform in a recognizable and reliable way the logical functions
AND, NOT, and FAN-OUT.” This is a simple empirical fact (i.e., we
build these things).

Since only macroscopic systems are irreversible, as we go to the microscopic
level, we need to understand reversible logic. This leads to new physical
principles of computing:

P4 “Identity of transmission and storage.” From a relativistic perspective,
information storage in one reference frame may be information trans-
mission in another. For an example, consider leaving a note on a table
in an airplane. In the reference frame of the airplane, it is information
storage. If the airplane travels from one place to another, then in the
reference plane of the earth it is information transmission.

17This section is based primarily on Fredkin & To↵oli (1982).

C. REVERSIBLE COMPUTING 53

(where the superscript denotes the abstract "time" in which events take place in a discrete dynamical
system), and is graphically represented as in Figure 1. The value that is present at a wire’s input at time t
(and at its output at time t + 1) is called the state of the wire at time t.

From the unit wire one obtains by composition more general wires of arbitrary length. Thus, a wire of length
i (i ! 1) represents a space-time signal path whose ends are separated by an interval of i time units. For the
moment we shall not concern ourselves with the specific spatial layout of such a path (cf. constraint P8).

Observe that the unit wire is invertible, conservative (i.e., it conserves in the output the number of 0's and l's
that are present at the input), and is mapped into its inverse by the transformation t -t.

2.4. Conservative-Logic Gates; The Fredkin Gate. Having introduced a primitive whose role
is to represent signals, we now need primitives to represent in a stylized way physical computing events.

Figure 1. The unit wire.

A conservative-logic gate is any Boolean function that is invertible and conservative (cf. Assumptions P5
and P7 above). It is well known that, under the ordinary rules of function composition (where fan-out is
allowed), the two-input NAND gate constitutes a universal primitive for the set of all Boolean functions. In
conservative logic, an analogous role is played by a single signal-processing primitive, namely, the Fredkin
gate, defined by the table

u x1 x2 v y1 y2
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 1 (2)
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

and graphically represented as in Figure 2a. This computing element can be visualized as a device that
performs conditional crossover of two data signals according to the value of a control signal (Figure 2b).
When this value is 1 the two data signals follow parallel paths; when 0, they cross over. Observe that the
Fredkin gate is nonlinear and coincides with its own inverse.

Figure 2. (a) Symbol and (b) operation of the Fredkin gate.

In conservative logic, all signal processing is ultimately reduced to conditional routing of signals. Roughly
speaking, signals are treated as unalterable objects that can be moved around in the course of a computation
but never created or destroyed. For the physical significance of this approach, see Section 6.

2.5. Conservative-Logic Circuits. Finally, we shall introduce a scheme for connecting signals,
represented by unit wires, with events, represented by conservative-logic gates.

Figure II.8: Symbol for unit wire. (Fredkin & To↵oli, 1982)

P5 “Reversibility.” This is because microscopic physics is reversible. There-
fore, our computational primitives will need to be invertible.

P6 “One-to-one composition.” Physically, fan-out is not trivial (even in
conventional logic), so we cannot assume that one function output can
be substituted for any number of input variables. Copying a signal
can be complicated (and, in some cases, impossible, as in quantum
computing). We have to treat fan-out as a specific signal-processing
element.

P7 “Conservation of additive quantities.” It can be shown that in a re-
versible systems there are a number of independent conserved quanti-
ties, and in many systems they are additive over the subsystems, which
makes them more useful. Emmy Noether (1882–1935) proved a famous
theorem: that any symmetry has a corresponding conservation law,
and vice versa; that is, there is a one-to-one correspondence between
physical invariances and conserved quantities. In particular, time in-
variance corresponds to conservation of energy, translational invariance
corresponds to conservation of linear momentum, and rotational invari-
ance corresponds to conservation of angular momentum. Conservative
logic has to obey at least one additive conservation law.

P8 “The topology of space-time is locally Euclidean. “Intuitively, the
amount of ‘room’ available as one moves away from a certain point
in space increases as a power (rather than as an exponential) of the
distance from that point, thus severely limiting the connectivity of a
circuit.”

We will see that two primitive operations are su�cient for conservative logic:
the unit wire and the Fredkin gate.

54 CHAPTER II. PHYSICS OF COMPUTATION

c
a
b

c
a'
b'

0
a
b

0
a
b

1
a
b

1
b
a

(b)(a)

Figure II.9: Fredkin gate or CSWAP (conditional swap): (a) symbol and (b)
operation.

C.2.a Unit wire

The basic operation of information storage/transmission is the unit wire,
which moves one bit of information between two space-time points separated
by one unit of time (Fig. II.8). The input value at time t, which is considered
the wire’s state at time t, becomes the output value at time t+ 1. The unit
wire is reversible and conservative (since it conserves the number of 0s and 1s
in its input). (Note that there are mathematically reversible functions that
are not conservative, e.g., Not.)

C.2.b Fredkin gate

A conservative logic gate is a Boolean function that is both invertible and
conservative (preserves the number of 0s and 1s). Since the number of 1s and
0s is conserved, conservative computing is essentially conditional rerouting,
that is, the initial supply of 0s and 1s is rearranged. Conventional models
of computation are based on rewriting (e.g., Turing machines, the lambda
calculus, register machines, term-rewriting systems, Post and Markov pro-
ductions), but we have seen that overwriting dissipates energy (and is thus
non-conservative). In conservative logic we rearrange bits without creating
or destroying them. There is no infinite “bit supply” and no “bit bucket.”
In the context of the physics of computation, these are physically real, not
metaphors!

A swap is the simplest operation on two bits, and the Fredkin gate, which
is a conditional swap operation (also called CSWAP), is an example of a
conservative logic operation on three bits. It is defined:

(0, a, b) 7! (0, a, b),

C. REVERSIBLE COMPUTING 55

c c c a a'ccc

c c
a a a ba' a' a' b'
b b bb' b' b'

Figure II.10: Alternative notations for Fredkin gate.A conservative-logic circuit is a directed graph whose nodes are conservative-logic gates and whose arcs are
wires of any length (cf. Figure 3).

Figure 3. (a) closed and (b) open conservative-logic circuits.

Any output of a gate can be connected only to the input of a wire, and sirnilarly any input of a gate only to
the output of a wire. The interpretation of such a circuit in terms of conventional sequential computation is
immediate, as the gate plays the role of an "instantaneous" combinational element and the wire that of a
delay element embedded in an interconnection line. In a closed conservative-logic circuit, all inputs and
outputs of any elements are connected within the circuit (Figure 3a). Such a circuit corresponds to what in
physics is called a a closed (or isolated) system. An open conservative-logic circuit possesses a number of
external input and output ports (Figure 3b). In isolation, such a circuit might be thought of as a transducer
(typically, with memory) which, depending on its initial state, will respond with a particular Output
sequence to any particular input sequence. However, usually such a circuit will be thought of as a portion of
a larger circuit; thence the notation for input and output ports (Figure 3b), which is suggestive of,
respectively, the trailing and the leading edge of a wire. Observe that in conservative-logic circuits the
number of output ports always equals that of input ones.

The junction between two adjacent unit wires can be formally treated as a node consisting of a trivial
conservative-logic gate, namely, the identity gate. Inwhat follows, whenever we speak of the realizability of
a function in terms of a certain set of conservative-logic primitives, the unit wire and the identity gate will be
tacitly assumed to be included in this set.

A conservative-logic circuit is a time-discrete dynamical system. The unit wires represent the system’s
individual state variables, while the gates (including, of course, any occurrence of the identity gate)
collectively represent the system’s transition function. The number N of unit wires that are present in the
circuit may be thought of as the number of degrees of freedom of the system. Of these N wires, at any
moment N1 will be in state 1, and the remaining N0 (= N - N1) will be in state 0. The quantity N1 is an
additive function of the system’s state, i.e., is defined for any portion of the circuit and its value for the
whole circuit is the sum of the individual contributions from all portions. Moreover, since both the unit wire
and the gates return at their outputs as many l’s as are present at their inputs, the quantity N1 is an integral of
the motion of the system, i.e., is constant along any trajectory. (Analogous considerations apply to the
quantity N0, but, of course, N0 and N1 are not independent integrals of the motion.) It is from this
"conservation principle" for the quantities in which signals are encoded that conservative logic derives its
name.

It must be noted that reversibility (in the sense of mathematical invertibility) and conservation are
independent properties, that is, there exist computing circuits that are reversible but not "bit-conserving,"
(Toffoli, 1980) and vice versa (Kinoshita, 1976).

Figure II.11: “(a) closed and (b) open conservative-logic circuits.” (Fredkin
& To↵oli, 1982)

(1, a, b) 7! (1, b, a).

The first input is a control signal and the other two are data or controlled
signals. Here, 1 signals a swap, but Fredkin’s original definition used 0 to
signal a swap. See Fig. II.9 and Fig. II.12(a) for the operation of the Fredkin
gate; Fig. II.10 shows alternative notations. Check that the Fredkin gate is
reversible and conservative. As we will see, the Fredkin gate is a universal
Boolean primitive for conservative logic.

C.3 Conservative logic circuits

A conservative-logic circuit is a directed graph constructed from conservative
logic gates connected by wires (see Fig. II.11 for examples). We can think of
the gates as instantaneous and the unit wire as being a unit delay, of which we
can make a sequence (or imagine intervening identity gates). A closed circuit
is a closed (or isolated) physical system, whereas an open circuit has external
inputs and outputs. The number of outputs must equal the number of inputs,
or the circuit will not be reversible. An open circuit may be part of a larger

56 CHAPTER II. PHYSICS OF COMPUTATION

u
a
b

u
a' = ūa+ub
b' = ua+ūb

(a)

a
b

0

a

ab

(b)
āb

Figure II.12: (a) Logical behavior of Fredkin gate. (b) Implementation of
AND gate by Fredkin gate by constraining one input to 0 and discarding two
“garbage” outputs.

conservative circuit, or connected to the environment. A conservative-logic
circuit is a discrete-time dynamical system, that is, it computes in discrete
steps in each of which bits move through the gates and unit wires. The
number N of unit wires in the circuit is its number of degrees of freedom
(specifically, IBDF). The numbers of 0s and 1s at any time is conserved,
N = N0 +N1.

C.4 Universality

Fig. II.12(b) illustrates how the Fredkin gate can be used to implement AND;
other conventional gates, such as NOT, OR, and FAN-OUT can be imple-
mented similarly. (You will show this in Exercises II.4 to II.5). Notice that
the implementation of AND requires that we provide a constant 0 on the
second data line, and the Fredkin gate produces two “garbage bits” whose
values (ab and a) we might not need. Fig. II.13 shows a more complicated
example, a 1-line to 4-line demultiplexer. Depending on the value of the
address bits A1A0 it will direct the input X to Y0, Y1, Y2, or Y3. The circuit
requires three constant 0 inputs and produces two garbage bits in addition
the the desired outputs.

With these constructions one can convert conventional logic circuits (con-
structed from AND, OR, NOT, etc.) into conservative circuits, but the
process is not very e�cient, because of the need for many extra constant
inputs and garbage outputs. It’s better to design the conservative circuit

C. REVERSIBLE COMPUTING 57

0 0 0

X

A0
A1

A1 A0

Y0

Y1

Y2

Y3

Figure II.13: 1-line-to 4-line demultiplexer. The address bits A1A0 =
00, 01, 10, 11 direct the data bit X into Y0, Y1, Y2 or Y3, respectively. Note
that each Fredkin gate uses an address bit to route X into either of two wires.
(Adapted from circuit in Fredkin & To↵oli (1982).)

from scratch. Nevertheless, this shows that any conventional sequential cir-
cuit can be converted into a conservative logic circuit, provided there is a
source for constants and a sink for garbage. As a consequence, the unit wire
and Fredkin gate are a universal set of conservative operators, since they can
be used to implement (for example) AND, NOT, and FAN-OUT, which are
universal.

C.5 Constants and garbage

You have seen that the Fredkin gate can be used to compute non-invertible
functions such as AND, if we are willing to provide appropriate constants
(called “ancillary values”) and to accept unwanted outputs. In general, an
irreversible function can be embedded in a reversible function by providing
appropriate constants from a source and ignoring some of the outputs, the
sink, which are considered garbage (Fig. II.14). That is, if we want to compute
f : x 7! y, we provide appropriate constants c so that it can be embedded
in a conservative computation � : (c, x) 7! (y, g), which produces the desired
output y along with garbage g. However, this garbage cannot be thrown
away (which would dissipate energy), so it must be recycled in some way.

58 CHAPTER II. PHYSICS OF COMPUTATION

3. COMPUTATION IN CONSERVATIVE-LOGIC CIRCUITS; CONSTANTS
AND GARBAGE
In Figure 4a we have expressed the output variables of the Fredkin gate as explicit functions of the input
variables. The overall functional relation-ship between input and output is, as we have seen, invertible. On
the other hand, the functions that one is interested in computing are often noninvertible. Thus, special
provisions must be made in the use of the Fredkin gate (or, for that matter, of any invertible function that is
meant to be a general-purpose signal-processing primitive) in order to obtain adequate computing power.

Suppose, for instance, that one desires to compute the AND function, which is not invertible. In Figure 4b
only inputs u and x1 are fed with arbitrary values a and b, while x2 is fed with the constant value 0. In this
case, the y1 output will provide the desired value ab ("a AND b"), while the other two outputs v and y2 will
yield the "unrequested" values a and ¬ab. Thus, intuitively, the AND function can be realized by means of
the Fredkin gate as long as one is willing to supply "constants" to this gate alongside with the argument, and
accept "garbage" from it alongside with the result. This situation is so common in computation with
invertible primitives that it will be convenient to introduce some terminology in order to deal with it in a
precise way.

Figure 4. Behavior of the Fredkin gate (a) with unconstrained inputs, and (b) with x2 constrained to the

value 0, thus realizing the AND function.

Figure 5. Realization of f by !using source and sink. The function : (c, x) (y, g) is chosen so that, for a

particular value of c, y = f(x).

Terminology: source, sink, constants, garbage. Given any finite function , one obtains a new function f
"embedded" in it by assigning specified values to certain distinguished input lines (collectively called the
source) and disregarding certain distinguished output lines (collectively called the sink). The remaining
input lines will constitute the argument, and the remaining output lines, the result. This construction (Figure
5) is called a realization of f by means of !using source and sink. In realizing f by means of , the source
lines will be fed with constant values, i.e., with values that do not depend on the argument. On the other
hand, the sink lines in general will yield values that depend on the argument, and thus cannot be used as
input constants for a new computation. Such values will be termed garbage. (Much as in ordinary life, this

Figure II.14: “Realization of f by � using source and sink. The function
� : (c, x) 7! (y, g) is chosen so that, for a particular value of c, y = f(x).”
(Fredkin & To↵oli, 1982)

Consider now the network -1,which is the inverse of (Figure 20b). If g and y are used as inputs for -1 this
network will "undo" ’s computation and return c and x as outputs. By combining the two networks, as in
Figure 21, we obtain a new network which obviously computes the identity function and thus looks, in terms
of input-output behavior, just like a bundle of parallel wires. Not only the argument x but also the constants
c are returned unchanged. Yet, buried in the middle of this network there appears the desired result y. Our
next task will be to "observe" this value without disturbing the system.

In a conservative-logic circuit, consider an arbitrary internal line carrying the value a (Figure 22a). The
"spy" device of Figure 22b, when fed with a 0 and a 1, allows one to extract from the circuit a copy of a,
together with its complement, ¬a without interfering in any way with the ongoing computation. By applying
this device to every individual line of the result y of Figure 21, we obtain the complete circuit shown in
Figure 23. As before, the result y produced by !is passed on to -1 I; however, a copy of y (as well as its
complement ¬y) is now available externally. The "price" for each of these copies is merely the supply of n
new constants (where n is the width of the result).

Figure 20. (a) Computation of y = f(x) by means of a combinational conservative-logic network . (b) This

computation is "undone" by the inverse network, -1

Figure 21. The network obtained by combining and -1 'looks from the outside like a bundle of parallel

wires. The value y(=f(x)) is buried in the middle.

The remarkable achievements of this construction are discussed below with the help of the schematic
representation of Figure 24. In this figure, it will be convenient to visualize the input registers as "magnetic
bulletin boards," in which identical, undestroyable magnetic tokens can be moved on the board surface. A
token at a given position on the board represents a 1, while the absence of a token at that position represents
a 0. The capacity of a board is the maximum number of tokens that can be placed on it. Three such registers
are sent through a "black box" F, which represents the conservative-logic circuit of Figure 23, and when they
reappear some of the tokens may have been moved, but none taken away or added. Let us follow this
process, register by register.

Figure 22. The value a carried by an arbitrary line (a) can be inspected in a nondestructive way by the "spy"

device in (b).

Figure II.15: Composition of combinational conservative-logic network with
its inverse to consume the garbage. (Fredkin & To↵oli, 1982)

C.6 Garbageless conservative logic

To reuse the apparatus for a new computation, we would have to throw away
the garbage and provide fresh constants, both of which would dissipate en-
ergy. This is a significant problem if dissipative circuits are naively translated
to conservative circuits because: (1) the amount of garbage tends to increase
with the number of gates, and (2) with the naive translation, the number of
gates tends to increase exponentially with the number of input lines. How-
ever there is a way to make the garbage about the same size as the input,
and thereby limit the dissipated energy.

First observe that a combinational conservative-logic network (one with
no feedback loops) can be composed with its inverse to consume all the
garbage (Fig. II.15). That is, if � converts (c, x) into (y, g), then ��1, its in-
verse, will convert (y, g) back to (c, x). We can always implement ��1 because
the unit wire and the Fredkin gate are invertible (in fact, their own inverses).
This in itself would not be useful, since in “decomputing” (y, g) back to (c, x)

C. REVERSIBLE COMPUTING 59

Consider now the network -1,which is the inverse of (Figure 20b). If g and y are used as inputs for -1 this
network will "undo" ’s computation and return c and x as outputs. By combining the two networks, as in
Figure 21, we obtain a new network which obviously computes the identity function and thus looks, in terms
of input-output behavior, just like a bundle of parallel wires. Not only the argument x but also the constants
c are returned unchanged. Yet, buried in the middle of this network there appears the desired result y. Our
next task will be to "observe" this value without disturbing the system.

In a conservative-logic circuit, consider an arbitrary internal line carrying the value a (Figure 22a). The
"spy" device of Figure 22b, when fed with a 0 and a 1, allows one to extract from the circuit a copy of a,
together with its complement, ¬a without interfering in any way with the ongoing computation. By applying
this device to every individual line of the result y of Figure 21, we obtain the complete circuit shown in
Figure 23. As before, the result y produced by !is passed on to -1 I; however, a copy of y (as well as its
complement ¬y) is now available externally. The "price" for each of these copies is merely the supply of n
new constants (where n is the width of the result).

Figure 20. (a) Computation of y = f(x) by means of a combinational conservative-logic network . (b) This

computation is "undone" by the inverse network, -1

Figure 21. The network obtained by combining and -1 'looks from the outside like a bundle of parallel

wires. The value y(=f(x)) is buried in the middle.

The remarkable achievements of this construction are discussed below with the help of the schematic
representation of Figure 24. In this figure, it will be convenient to visualize the input registers as "magnetic
bulletin boards," in which identical, undestroyable magnetic tokens can be moved on the board surface. A
token at a given position on the board represents a 1, while the absence of a token at that position represents
a 0. The capacity of a board is the maximum number of tokens that can be placed on it. Three such registers
are sent through a "black box" F, which represents the conservative-logic circuit of Figure 23, and when they
reappear some of the tokens may have been moved, but none taken away or added. Let us follow this
process, register by register.

Figure 22. The value a carried by an arbitrary line (a) can be inspected in a nondestructive way by the "spy"

device in (b).
Figure II.16: The “spy circuit” for tapping into the output. (Fredkin &
To↵oli, 1982)

we have lost the result y of the computation. Therefore, observe that the
desired output can be extracted by a “spy circuit” (Fig. II.16) interposed
on a wire. It works because the Fredkin gate satisfies (a, 0, 1) 7! (a, a, ā).
We use this circuit on the bits of y between the computation � and the de-
computation ��1. Notice that the spy circuit requires two ancillary bits for
each bit that it extracts; it outputs the desired value and its complement
(presumably garbage).

We can use these ideas to design a general approach to garbageless compu-
tation (Fig. II.17). The desired computation has m input bits, x1, x2, . . . , xm,
and n output bits y1, . . . , yn. To do it reversibly requires (we suppose) h con-
stants c1, . . . , ch and generates (necessarily) h+m � n garbage bits (for the
number of outputs of a reversible computation has to equal the number of
inputs). Extracting the output requires the provision of 2n new constants
and generates the n output bits and their n complements (which can be con-
sidered garbage). Initializing the machine for a new computation requires
putting in the new input, which will dissipate energy, and restoring the out-
put registers yȳ to their 00 · · · 0011 · · · 11 state, which also dissipates energy.
Therefore the energy dissipated will be proportional to the size of the input
and output (specifically, m + n). The ancillary constants are automatically
restored by decomputation.

Consider the more schematic diagram in Fig. II.18. Think of arranging
tokens (representing 1-bits) in the input registers, both to represent the input
x, but also to provide a supply of n of them in the black lower square. Next,
run the computation (including both the forward and backward passes). The
backward pass restores the input argument tokens to their initial positions.
The 2n-bit string 00 · · · 0011 · · · 11 in the lower register has been rearranged
to yield the result and its complement, yȳ. Restoring the 0 · · · 01 · · · 1 inputs
for another computation dissipates energy, but the amount of energy depends

60 CHAPTER II. PHYSICS OF COMPUTATION

Figure 23. A "garbageless" circuit for computing the function y = f(x). Inputs C1,..., Ch and X1,…., Xm are

returned unchanged, while the constants 0,...,0 and 1,..., 1 in the lower part of the circuits are replaced by the
result, y1,...., yn and its complement, ¬y1,...., ¬yn

Figure 24. The conservative-logic scheme for garbageless computation. Three data registers are "shot"
through a conservative-logic black-box F. The register with the argument, x, is returned unchanged; the

clean register on top of the figure, representing an appropriate supply of input constants, is used as a
scratchpad during the computation (cf. the c and g lines in Figure 23) but is returned clean at the end of the

computation. Finally, the tokens on the register at the bottom of the figure are rearranged so as to encode the
result y and its complement ¬y

(a) The "argument" register, containing a given arrangement of tokens x, is returned unchanged. The
capacity of this register is m, i.e., the number of bits in x.

(b) A clean "scratchpad register" with a capacity of h tokens is supplied, and will be returned clean.
(This is the main supply of constants-namely, c1, . . . , ch in Figure 23.) Note that a clean register means one
with all 0's (i.e., no tokens), while we used both 0's and l's as constants, as needed, in the construction of
Figure 10. However, a proof due to N. Margolus shows that all 0's can be used in this register without loss of
generality. In other words, the essential function of this register is to provide the computation with spare
room rather than tokens.

(c) Finally, we supply a clean "result" register of capacity 2n (where n is the number of bits in y). For
this register, clean means that the top half is empty and the bottom half completely filled with tokens. The

Figure II.17: Garbageless circuit. (Fredkin & To↵oli, 1982)

Figure 23. A "garbageless" circuit for computing the function y = f(x). Inputs C1,..., Ch and X1,…., Xm are

returned unchanged, while the constants 0,...,0 and 1,..., 1 in the lower part of the circuits are replaced by the
result, y1,...., yn and its complement, ¬y1,...., ¬yn

Figure 24. The conservative-logic scheme for garbageless computation. Three data registers are "shot"
through a conservative-logic black-box F. The register with the argument, x, is returned unchanged; the

clean register on top of the figure, representing an appropriate supply of input constants, is used as a
scratchpad during the computation (cf. the c and g lines in Figure 23) but is returned clean at the end of the

computation. Finally, the tokens on the register at the bottom of the figure are rearranged so as to encode the
result y and its complement ¬y

(a) The "argument" register, containing a given arrangement of tokens x, is returned unchanged. The
capacity of this register is m, i.e., the number of bits in x.

(b) A clean "scratchpad register" with a capacity of h tokens is supplied, and will be returned clean.
(This is the main supply of constants-namely, c1, . . . , ch in Figure 23.) Note that a clean register means one
with all 0's (i.e., no tokens), while we used both 0's and l's as constants, as needed, in the construction of
Figure 10. However, a proof due to N. Margolus shows that all 0's can be used in this register without loss of
generality. In other words, the essential function of this register is to provide the computation with spare
room rather than tokens.

(c) Finally, we supply a clean "result" register of capacity 2n (where n is the number of bits in y). For
this register, clean means that the top half is empty and the bottom half completely filled with tokens. The

Figure II.18: “The conservative-logic scheme for garbageless computation.
Three data registers are ‘shot’ through a conservative-logic black-box F . The
register with the argument, x, is returned unchanged; the clean register on
top of the figure, representing an appropriate supply of input constants, is
used as a scratchpad during the computation (cf. the c and g lines in Figure
[II.17]) but is returned clean at the end of the computation. Finally, the
tokens on the register at the bottom of the figure are rearranged so as to
encode the result y and its complement ¬y” (Fredkin & To↵oli, 1982)

C. REVERSIBLE COMPUTING 61

Figure II.19: Overall structure of ballistic computer. (Bennett, 1982)

on the size of the output (number of bits), not the amount of computation.18

C.7 Ballistic computation

“Consider a spherical cow moving in a vacuum. . . ”

To illustrate how conservative computation could dissipate arbitrarily small
amounts of energy, Fredkin and To↵oli developed an idealized model of dis-
sipationless ballistic computation, often called billiard ball computation. It
is based on the same assumptions as the classical kinetic theory of gasses:
perfectly elastic spheres and surfaces. In this case we can think of pucks on
frictionless table.

Fig. II.19 shows the general structure of a billiard ball computer. 1-bits
are represented by the presence of a ball at a location, and 0-bits by its
absence. Input is provided by simultaneously firing balls into the input ports
for the 1s in the argument. Inside the box the balls ricochet o↵ of each other

18Finite loops can be unrolled, which shows that they can be done without dissipation.
(Cf. also that billiard balls can circulate in a frictionless system.)

62 CHAPTER II. PHYSICS OF COMPUTATION

Figure 14 Billiard ball model realization of the interaction gate.

All of the above requirements are met by introducing, in addition to collisions between two balls, collisions
between a ball and a fixed plane mirror. In this way, one can easily deflect the trajectory of a ball (Figure
15a), shift it sideways (Figure 15b), introduce a delay of an arbitrary number of time steps (Figure 1 Sc), and
guarantee correct signal crossover (Figure 15d). Of course, no special precautions need be taken for trivial
crossover, where the logic or the timing are such that two balls cannot possibly be present at the same
moment at the crossover point (cf. Figure 18 or 12a). Thus, in the billiard ball model a conservative-logic
wire is realized as a potential ball path, as determined by the mirrors.

Note that, since balls have finite diameter, both gates and wires require a certain clearance in order to
function properly. As a consequence, the metric of the space in which the circuit is embedded (here, we are
considering the Euclidean plane) is reflected in certain circuit-layout constraints (cf. P8, Section 2).
Essentially, with polynomial packing (corresponding to the Abelian-group connectivity of Euclidean space)
some wires may have to be made longer than with exponential packing (corresponding to an abstract space
with free-group connectivity) (Toffoli, 1977).

Figure 15. The mirror (indicated by a solid dash) can be used to deflect a ball’s path (a), introduce a

sideways shift (b), introduce a delay (c), and realize nontrivial crossover (d).

Figure 16. The switch gate and its inverse. Input signal x is routed to one of two output paths depending on

the value of the control signal, C.

Figure II.20: “Billiard ball model realization of the interaction gate.” (Fred-
kin & To↵oli, 1982)

and o↵ of fixed reflectors, and this interaction performs the computation.
After a fixed time delay, the balls emerging (or not) from the output ports
define the output. Obviously the number of 1s (balls) is conserved, and the
computation is reversible because the laws of motion are reversible.

Since in this idealized model collisions are perfectly elastic, and there is no
friction, no energy is dissipated, and the tiniest initial velocities are su�cient
for a computation of arbitrary length. Therefore, there is no lower bound
on the energy required for the computation. (Computation will go faster, of
course, if the balls are shot in at higher velocity.) Since the laws of classi-
cal dynamics are reversible, the computation will be reversible, assuming of
course that billiard balls can be made to compute at all!

In fact, they can, and Fig. II.20 shows the realization of the computational
primitive, the interaction gate. If balls representing 1-bits are shot in from
the left at p and q, then the balls emerging (or not) on the right will represent
four logical possibilities, p q, p̄ q, p q̄, and p̄ q̄ (the latter represented by no
balls emerging from the gate). (Of course, the gate is conservative: the
number of balls entering it has to equal the number exiting.) Notice that
the interaction gate is invertible, because if we put in on the right one of the
four possible outputs (11, 10, 01, 00), we will get the corresponding input on
the left (p q, p̄ q, p q̄, p̄ q̄, respectively). Check to make sure you see this (Ex.
II.10). Fig. II.21 is a more abstract symbol for the interaction gate and its
inverse.

The interaction gate is universal because it can compute both AND and

C. REVERSIBLE COMPUTING 63

Figure 12. (a) Balls of radius l/sqrt(2) traveling on a unit grid. (b) Right-angle elastic collision between two

balls.

Figure 13. (a) The interaction gate and (b) its inverse.

6.2. The Interaction Gate. The interaction gate is the conservative-logic primitive defined by Figure
13a, which also assigns its graphical representation.7

In the billiard ball model, the interaction gate is realized simply as the potential locus of collision of two
balls. With reference to Figure 14, let p, q be the values at a certain instant of the binary variables associated
with the two points P, Q, and consider the values-four time steps later in this particular example-of the
variables associated with the four points A, B, C, D. It is clear that these values are, in the order shown in the
figure, pq, ¬pq, p¬q; and pq. In other words, there will be a ball at A if and only if there was a ball at P and
one at Q; similarly, there will be a ball at B if and only if there was a ball at Q and none at P; etc.

6.3. Interconnection; Timing and Crossover; The Mirror. Owing to its AND and NOT
capabilities, the interaction gate is clearly a universal logic primitive (as explained in Section 5, we assume
the availability of input constants). To verify that these capabilities are retained in the billiard ball model,
one must make sure that one can realize the appropriate interconnections, i.e., that one can suitably route
balls from one collision locus to another and maintain proper timing. In particular, since we are considering
a planar grid, one must provide a way of performing signal crossover.

7 Note that the interaction gate has four output lines but only four (rather than 24) output states-in other
words, the output variables are constrained. When one considers its inverse (Figure 13b), the same
constraints appear on the input variables. In composing functions of this kind, one must exercise due care
that the constraints are satisfied.

Figure II.21: “(a) The interaction gate and (b) its inverse.” (Fredkin &
To↵oli, 1982)

Figure 14 Billiard ball model realization of the interaction gate.

All of the above requirements are met by introducing, in addition to collisions between two balls, collisions
between a ball and a fixed plane mirror. In this way, one can easily deflect the trajectory of a ball (Figure
15a), shift it sideways (Figure 15b), introduce a delay of an arbitrary number of time steps (Figure 1 Sc), and
guarantee correct signal crossover (Figure 15d). Of course, no special precautions need be taken for trivial
crossover, where the logic or the timing are such that two balls cannot possibly be present at the same
moment at the crossover point (cf. Figure 18 or 12a). Thus, in the billiard ball model a conservative-logic
wire is realized as a potential ball path, as determined by the mirrors.

Note that, since balls have finite diameter, both gates and wires require a certain clearance in order to
function properly. As a consequence, the metric of the space in which the circuit is embedded (here, we are
considering the Euclidean plane) is reflected in certain circuit-layout constraints (cf. P8, Section 2).
Essentially, with polynomial packing (corresponding to the Abelian-group connectivity of Euclidean space)
some wires may have to be made longer than with exponential packing (corresponding to an abstract space
with free-group connectivity) (Toffoli, 1977).

Figure 15. The mirror (indicated by a solid dash) can be used to deflect a ball’s path (a), introduce a

sideways shift (b), introduce a delay (c), and realize nontrivial crossover (d).

Figure 16. The switch gate and its inverse. Input signal x is routed to one of two output paths depending on

the value of the control signal, C.

Figure II.22: “The mirror (indicated by a solid dash) can be used to deflect
a ball’s path (a), introduce a sideways shift (b), introduce a delay (c), and
realize nontrivial crossover (d).” (Fredkin & To↵oli, 1982)

NOT. However, we must make provisions for arbitrary interconnections in a
planar grid. Therefore, we need to implement signal crossover and to control
timing so that balls arrive at the correct time in order to interact. In fact, it’s
only necessary to deal with non-trivial crossover, for trivial crossover is when
two balls cannot possibly be at the same place at the same time. Fig. II.22
shows mechanisms for realizing nontrivial crossover, delays, and direction
changes. Notice that the “wires” in this computer are virtual, represented
by the possible trajectories of the balls, and are not physical objects. For
reversible computing, the Fredkin gate is more relevant, and Fig. II.23 shows
its realization in terms of multiple interaction gates. (The “bridge” indicates
non-trivial crossover.) Since the Fredkin gate is universal, any reversible
computation can be implemented on the billiard ball computer.

64 CHAPTER II. PHYSICS OF COMPUTATION156 Introduction to computer science

!

"

#

!$

"$

#$

!

Figure 3.14. A simple billiard ball computer, with three input bits and three output bits, shown entering on the left
and leaving on the right, respectively. The presence or absence of a billiard ball indicates a 1 or a 0, respectively.
Empty circles illustrate potential paths due to collisions. This particular computer implements the Fredkin classical
reversible logic gate, discussed in the text.

we will ignore the effects of noise on the billiard ball computer, and concentrate on
understanding the essential elements of reversible computation.
The billiard ball computer provides an elegant means for implementing a reversible

universal logic gate known as the Fredkin gate. Indeed, the properties of the Fredkin gate
provide an informative overview of the general principles of reversible logic gates and
circuits. The Fredkin gate has three input bits and three output bits, which we refer to
as a, b, c and a�, b�, c�, respectively. The bit c is a control bit, whose value is not changed
by the action of the Fredkin gate, that is, c� = c. The reason c is called the control bit
is because it controls what happens to the other two bits, a and b. If c is set to 0 then a
and b are left alone, a� = a, b� = b. If c is set to 1, a and b are swapped, a� = b, b� = a.
The explicit truth table for the Fredkin gate is shown in Figure 3.15. It is easy to see
that the Fredkin gate is reversible, because given the output a�, b�, c�, we can determine
the inputs a, b, c. In fact, to recover the original inputs a, b and c we need only apply
another Fredkin gate to a�, b�, c�:

Exercise 3.29: (Fredkin gate is self-inverse) Show that applying two consecutive
Fredkin gates gives the same outputs as inputs.

Examining the paths of the billiard balls in Figure 3.14, it is not difficult to verify that
this billiard ball computer implements the Fredkin gate:

Exercise 3.30: Verify that the billiard ball computer in Figure 3.14 computes the
Fredkin gate.

In addition to reversibility, the Fredkin gate also has the interesting property that
the number of 1s is conserved between the input and output. In terms of the billiard
ball computer, this corresponds to the number of billiard balls going into the Fredkin
gate being equal to the number coming out. Thus, it is sometimes referred to as being
a conservative reversible logic gate. Such reversibility and conservative properties are
interesting to a physicist because they can be motivated by fundamental physical princi-

Figure II.23: Realization of the Fredkin gate in terms of multiple interaction
gates. [NC]

Of course, the billiard ball computer is an idealized model of computation,
and like other abstract models, such as the Turing machine, it has practical
limitations (Bennett, 1982). For example, minuscule errors of any sort (po-
sition, velocity, alignment) will accumulate rapidly (by about a factor of 2
at each collision). Therefore, an initial random error of 1/1015 in position or
velocity (about what would be expected from Heisenberg uncertainty prin-
ciple) would lead to a completely unpredictable trajectory after a few dozen
collisions, leading to a Maxwell distribution of velocities, as in a gas. That is,
errors grow exponentially in the length of a computation. “Even if classical
balls could be shot with perfect accuracy into a perfect apparatus, fluctuat-
ing tidal forces from turbulence in the atmosphere of nearby stars would be
enough to randomize their motion within a few hundred collisions” (Bennett,
1982, p. 910). Various solutions to these problems have been considered, but
they all have limitations. Bennett (1982, p. 911) concludes, “In summary,
although ballistic computation is consistent with the laws of classical and
quantum mechanics, there is no evident way to prevent the signals’ kinetic
energy from spreading into the computer’s other degrees of freedom.” Of
course, signals can be restored, but this introduces dissipation, and we are
back where we began. Nevertheless, ballistic computation, as found in the
billiard ball computer, illustrates some of the principles of reversible comput-
ing that are used in quantum computation, the topic of the next chapter.

