
Chapter III

Quantum Computation

These lecture notes are exclusively for the use of students in Prof. MacLen-
nan’s Unconventional Computation course. c�2019, B. J. MacLennan, EECS,
University of Tennessee, Knoxville. Version of August 27, 2019.

A Mathematical preliminaries

“[I]nformation is physical, and surprising physical theories such as quantum
mechanics may predict surprising information processing abilities.” (Nielsen
& Chuang, 2010, p. 98)

A.1 Complex numbers

If you go to the course webpage, and look under Quantum Computation in
the Topics section, you will see a link to “complex number review [FFC-
ch4].” Depending on how familiar you are with complex numbers, read or
skim it through section 4.4.2.1 (pp. 41–53). This should tell you all you need
to know (and a little more).

A.2 Linear algebra review

A.2.a Dirac bracket notation

Much of the math of quantum computation is just elementary linear algebra,
but the notation is di↵erent (and of course there is a physical interpretation).
The Dirac bracket notation will seem peculiar if you are not used to it, but
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68 CHAPTER III. QUANTUM COMPUTATION

it is elegant and powerful, as are all good notations. Think of it like a new
programming language.

First, the notation | i represents an n-dimensional vector, which we
can write in a particular basis as a n ⇥ 1 complex column vector, | i =
(v1, . . . , vn)T. We pronounce | i “ket psi” or “psi ket.” Normally the vectors
are finite-dimensional, but they can be infinite-dimensional if the vectors have
a finite magnitude (their components are square-summable),

P
k
|vk|2 < 1.

The Dirac notation has the advantage that we can use arbitrary names
for vectors, for example:

|excitedi, |zeroi, |onei, |"i, | %i, |1i, |101i, |5i, |f(x)i, |1⌦g(1)i.

It may be easier to remember if you notice that it looks kind of like an arrow;
compare |vi and ~v.

The notation h�| represents a 1⇥n complex row vector, h�| = (u1, . . . , un)
in a particular basis. We pronounce h | “bra psi” or “psi bra.” If | i =
(v1, . . . , vn)T, then h | = (v1, . . . , vn), where vk is the complex conjugate of
vk. Recall that

x+ iy = x � iy and rei� = re
�i�

.

We define the adjoint (conjugate transpose, Hermitian transpose) M † of
a matrix M by

(M †)jk = Mkj.

We pronounce it “M dagger,” “M adjoint,” etc. Note that corresponding
bras and kets are adjoints: h | = | i† and | i = h |†.

A.2.b Inner product

Suppose |�i = (u1, . . . , un)T and | i = (v1, . . . , vn)T in the same basis. Then
the complex inner product of the vectors is defined

P
k
ukvk = h�| | i. Thus,

the inner product of two vectors is the conjugate transpose of the first times
the second. This is the convention in physics, which we will follow; math-
ematicians usually put the complex conjugate on the second argument. It
doesn’t make any di↵erence so long as you are consistent. Since the inner
product multiplies a 1 ⇥ n matrix by an n ⇥ 1 matrix, the result is a 1 ⇥ 1
matrix, or scalar. This product of a bra and a ket is usually abbreviated
h� |  i = h�| | i, which can be pronounced “�-bra ket- ” or “� bra-ket  .”

The complex inner product satisfies several important properties:
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1. It is positive definite:

h |  i > 0, if | i 6= 0,

h |  i = 0, if | i = 0.

2. It has conjugate symmetry: h� |  i = h | �i.

3. It is linear in its second argument (the one that’s not conjugated):

h� | c i = ch� |  i, for c 2 C,
h� |  + �i = h� |  i + h� | �i.

Note that conjugate symmetry and linearity in the second argument together
imply that hc� |  i = ch� |  i (antilinearity in the first argument). The
complex inner product is called sesquilinear, which means “one-and-a-half
linear” (in contrast to the inner product of real vectors, which is linear in
both arguments, i.e., bilinear).

The norm or magnitude of a vector is defined k| ik =
p

h |  i. That
is, k| ik2 = |v1|2 + · · · |vn|2. A vector is normalized if k| ik = 1. Note that
normalized vectors fall on the surface of an n-dimensional hypersphere.

A.2.c Bases and Generalized Fourier Series

Vectors |�i and | i are orthogonal if h� |  i = 0. A set of vectors is or-
thogonal if each vector is orthogonal to all the others. An orthonormal (ON)
set of vectors is an orthogonal set of normalized vectors. A set of vectors
|�1i, |�2i, . . . spans a vector space if for every vector | i in the space there
are complex coe�cients c1, c2, . . . such that | i =

P
k
ck|�ki. A basis for a

vector space is a linearly independent set of vectors that spans the space.
Equivalently, a basis is a minimal generating set for the space; that is, all
of the vectors in the space can be generated by linear combinations of the
basis vectors. An (orthonormal) basis for a vector space is an (orthonormal)
set of vectors that spans the space. In general, when I write “basis” I mean
“orthonormal basis.” Any vector in the space has a unique representation as
a linear combination of the basis vectors.

A Hilbert space is a complete inner-product space. “Complete” means
that all Cauchy sequences of vectors (or functions) have a limit in the space.
(In a Cauchy sequence, kxm � xnk ! 0 as m,n ! 1.) Hilbert spaces may
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be finite- or infinite-dimensional. Suppose |1i, |2i, . . . is an ON basis for a
Hilbert space H. Note, that these are just the names of the basis vectors (we
could have used |e1i, |e2i, . . . or something similar), and have nothing to do
with the integers 1, 2, etc. Given such a basis, any | i in H can be expanded
in a generalized Fourier series:

| i =
X

k

ck|ki.

The generalized Fourier coe�cients ck can be determined by taking inner
products with the corresponding basis vectors:

hk |  i = hk|
X

j

cj|ji =
X

j

cjhk | ji = ck.

Therefore, ck = hk |  i. Hence,

| i =
X

k

ck|ki =
X

k

hk |  i |ki =
X

k

|kihk |  i.

This is just the vector’s representation in a particular basis. (Note that this
equation implies the identity matrix I =

P
k
|kihk|.)

A linear operator L : H ! Ĥ satisfies L(c|�i+ d| i) = cL(|�i)+ dL(| i)
for all |�i, | i 2 H and c, d 2 C. For example, di↵erentiation is a linear
operator.

A linear operator L : H ! Ĥ can be represented by a (possibly infinite-
dimensional) matrix relative to bases for H and Ĥ. To see this, suppose |1i,
|2i, . . . is a basis for H and |1̂i, |2̂i, . . . is a basis for Ĥ. Consider |�i = L| i
and represent the vectors in these bases by their Fourier coe�cients: bj = h|̂ |
�i and ck = hk |  i. Hence |�i is represented by the vector b = (b1, b2, . . .)T

and | i by the vector c = (c1, c2, . . .)T. Apply the linearity of L:

bj = h|̂ | �i
= h|̂ | L |  i

= h|̂|L
 
X

k

ck|ki
!

= h|̂|
 
X

k

ckL|ki
!

=
X

k

h|̂ | L | kick.
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Therefore, define the matrix Mjk

def
= h|̂ | L | ki and we see b = Mc. For

this reason, an expression of the form h|̂ | L | ki is sometimes called a matrix
element of the operator L. Note that the matrix depends on the bases we
choose.

A.2.d Outer product or dyad

We can form the product of a ket and a bra, which is called a dyad or outer
product. Consider first the finite dimensional case. If |�i is an m⇥ 1 column
vector, and | i is an n⇥ 1 column vector (so that h | is a 1⇥n row vector),
then the outer product |�ih | is an m ⇥ n matrix. In most cases of interest
m = n. Since matrix multiplication is associative, (|�ih |) |�i = |�i h | �i.
More generally, we can form outer products of infinite-dimensional vectors
in Hilbert spaces. If |�i 2 H0 and | i 2 H, then |�ih | is the linear operator
L : H ! H0 defined, for any |�i 2 H:

L|�i = (|�ih |)|�i = |�i h | �i.

That is, |�ih | is the operator that returns |�i scaled by the inner product of
| i and its argument. To the extent that the inner product h | �i measures
the similarity of | i and |�i, the result |�i is weighted by this similarity. The
product of a ket and a bra |�ih | can be pronounced “�-ket bra- ” or “�
ket-bra  ,” and abbreviated |�ih |. This product is also called a dyad.

The special case of |�ih�| in which |�i is normalized is called a projector
onto |�i. This is because |�ih�| | i = |�i h� |  i, that is, |�i scaled by the
projection of | i on |�i. More generally, if |⌘1i, . . . , |⌘mi are orthonormal,
then

P
m

k=1 |⌘kih⌘k| projects into them-dimensional subspace spanned by these
vectors.

Any linear operator can be represented as a weighted sum of outer prod-
ucts. To see this, suppose L : H ! Ĥ, ||̂i is a basis for Ĥ, and |ki is a basis
for H. Consider |�i = L| i. We know from Sec. A.2.c that

h|̂ | �i =
X

k

Mjkck, where Mjk = h|̂ | L | ki, and ck = hk |  i.

Hence,

|�i =
X

j

||̂i h|̂ | �i
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=
X

j

||̂i
 
X

k

Mjkhk |  i
!

=

 
X

j

||̂i
X

k

Mjkhk|
!

| i

=

 
X

jk

Mjk||̂ihk|
!

| i.

Hence, we have a sum-of-outer-products representation of the operator in
terms of its matrix elements:

L =
X

jk

Mjk||̂ihk|, where Mjk = h|̂ | L | ki.

A.2.e Tensor products

In this section we define the tensor product, which is of central importance in
quantum computation. To see where we are headed, suppose |�i and | i are
the quantum states of two objects (e.g., the states of two qubits, or quantum
bits). Then the state of the composite system (e.g., the pair of qubits) will
be represented by the tensor product |�i ⌦ | i, which we can think of as a
sort of concatenation or structure formed of |�i and | i. If H and H0 are the
Hilbert spaces from which these states are drawn, then the tensor product
space H ⌦ H0 is the space of all possible states of the two-qubit system (i.e.,
all such pairs or structures). We can apply the tensor product to operators
as well: L ⌦ M is the operator that applies, in parallel, L to the first qubit
of the pair and M to the second qubit:

(L ⌦ M)(|�i ⌦ | i) = (L|�i) ⌦ (M | i).

For vectors, operators, and spaces, we pronounce L⌦M as “L tensor M .” As
we will see, the tensor product is essential to much of the power of quantum
computation. Next we develop these ideas more formally.

Suppose that |⌘ji is an ON basis for H and |⌘0

k
i is an ON basis for H0.

For every pair of basis vectors, define the tensor product |⌘ji ⌦ |⌘0

k
i as a

sort of couple or pair of the two basis vectors; that is, there is a one-to-one
correspondence between the |⌘ji ⌦ |⌘0

k
i and the pairs in {|⌘0i, |⌘1i, . . .} ⇥

{|⌘0

0i, |⌘0

1i, . . .}. Define the tensor product space H⌦H0 as the space spanned
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by all linear combinations of the basis vectors |⌘ji ⌦ |⌘0

k
i. Therefore each

element of H⌦H0 is represented by a unique sum
P

jk
cjk|⌘ji⌦ |⌘0

k
i. In order

to make H ⌦ H0 a Hilbert space, we need an inner product:

h�1 ⌦ �2 |  1 ⌦  2i = h�1 |  1i h�2 |  2i.

That is, we multiply the inner products of the corresponding elements of the
tensor product pairs.

Usually, we are dealing with finite-dimensional spaces, in which case the
tensor products can be defined less abstractly in terms of matrices. Suppose
in a given basis |�i = (u1, . . . , um)T and | i = (v1, . . . , vn)T, then their tensor
product in that basis can be defined by the Kronecker product:

|�i ⌦ | i =

0

B@
u1| i

...
um| i

1

CA

=
�
u1| iT

, . . . , um| iT
�T

= (u1v1, . . . , u1vn, . . . , umv1 . . . , umvn)
T
.

Note that this is an mn ⇥ 1 column vector and that

(|�i ⌦ | i)(j�1)n+k = ujvk.

This combinatorial explosion of dimension is what gives quantum computa-
tion its power.

The following abbreviations are frequent: |� i = |�, i = |�i| i = |�i ⌦
| i. Note that |�i| i can only be a tensor product because it would not be a
legal matrix product. These are some useful properties of the tensor product
(which is bilinear):

(c|�i) ⌦ | i = c(|�i ⌦ | i) = |�i ⌦ (c| i),
(|�i + | i) ⌦ |�i = (|�i|�i) + (| i|�i),
|�i ⌦ (| i + |�i) = (|�i ⌦ | i) + (|�i ⌦ |�i).

The tensor product of linear operators is defined

(L ⌦ M) (|�i ⌦ | i) = L|�i ⌦ M | i.
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Using the fact that | i =
P

jk
cjk|⌘ji ⌦ |⌘0

k
i you can compute (L ⌦ M)| i

for an arbitrary | i 2 H ⌦ H0 (exercise). If M is a k ⇥m matrix and N is a
l ⇥ n matrix, then their Kronecker product is a kl ⇥ mn matrix:

M ⌦ N =

0

BBB@

M11N M12N · · · M1mN
M21N M22N · · · M2mN

...
...

. . .
...

Mk1N Mk2N · · · MkmN

1

CCCA
.

Matrices, of course, are linear operators and satisfy (M ⌦ N) (|�i ⌦ | i) =
M|�i ⌦ N| i.

For a vector, operator, or space M , we define the tensor power M
⌦n to

be M tensored with itself n times:

M
⌦n =

nz }| {
M ⌦ M ⌦ · · · ⌦ M .

A.2.f Properies of operators and matrices

Several properties of operators and matrices are important in quantum com-
putation. An operator L : H ! H is normal if L†

L = LL
†. The same applies

to square matrices. That is, normal operators commute with their adjoints.
An operator L : H ! H is Hermitian or self-adjoint if L† = L. The same

applies to square matrices. (Hermitian matrices are the complex analogues
of symmetric matrices.) Note that Hermitian operators are normal. It is
easy to see that L is Hermitian if and only if h� | L |  i = h | L | �i for all
|�i, | i (since h | L | �i = h� | L† |  i = h� | L |  i). A normal matrix is
Hermitian if and only if it has real eigenvalues (exercise). This is important
in quantum mechanics, since measurement results are usually assumed to be
real.

An operator U is unitary if U †
U = UU

† = I. That is, a unitary operator
is invertible and its inverse is its adjoint: if U is unitary, then U

�1 = U
†.

Obviously every unitary operator is also normal. (A normal matrix is unitary
if and only if its spectrum — the multiset of its eigenvalues — is contained
in the unit circle in the complex plane.)

Unitary operators are like rotations of a complex vector space (analo-
gous to orthogonal operators, which are rotations of a real vector space).
Just as orthogonal transformations preserve the angles between vectors, uni-
tary operators preserve their inner products (which are analogous to angles).
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Consider the inner product between U |�i and U | i:

(U |�i)†U | i = h� | U †
U |  i = h� |  i.

Hence, the inner product of U |�i and U | i is the same as the inner product
of |�i and | i. Therefore, unitary operators are isometric, that is, they
preserve norms:

kU | ik2 = h | U †
U |  i = h |  i = k| ik2

.

Unitary operators are important in quantum computation because the evo-
lution of quantum systems is unitary.

A.2.g Spectral decomposition and operator functions (sup-
plementary)

For any normal operator on a finite-dimensional Hilbert space, there is an
ON basis that diagonalizes the operator, and conversely, any diagonalizable
operator is normal. This is called a spectral decomposition of the opera-
tor. The ON basis comprises its set of eigenvectors, which we can write
|0i, |1i, . . . , |ni and the corresponding eigenvalues �k are the diagonal ele-
ments (cf. Sec. A.2.d, p. 72): L =

P
n

k=1 �k|kihk|. Therefore, a matrix is
normal if and only if it can be diagonalized by a unitary transform (see
A.2.f, above). That is, it is normal if and only if there is a unitary U such
that L = U⇤U †, where ⇤ = diag(�1, . . .�n). If |0i, |1i, . . . , |ni is the basis,
then U = (|0i, |1i, . . . , |ni) and

U
† =

0

BBB@

h0|
h1|
...

hn|

1

CCCA
.

(More generally, this property holds for compact normal operators.)
It is often convenient to extend various complex functions (e.g., ln, exp,

p
)

to normal matrices and operators. If f : C ! C and L : H ! H, then we
define:

f(L)
def
=

nX

k=1

f(�k)|kihk|,
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where L =
P

n

k=1 �k|kihk| is the spectral decomposition of L. Therefore, for
a normal linear operator or matrix L we can write

p
L, lnL, eL, etc. This is

not an arbitrary extension, but follows from the power series expansion for
f .


