
D. QUANTUM ALGORITHMS 125Quantum algorithms 33

Figure 1.19. Quantum circuit implementing Deutsch’s algorithm.

is sent through two Hadamard gates to give

|�1i =
 |0i + |1ip

2

�  |0i � |1ip
2

�
. (1.42)

A little thought shows that if we apply Uf to the state |xi(|0i � |1i)/
p
2 then we obtain

the state (�1)f (x)|xi(|0i � |1i)/
p
2. Applying Uf to |�1i therefore leaves us with one of

two possibilities:

|�2i =

8
����<

����:

±
 |0i + |1ip

2

�  |0i � |1ip
2

�
if f (0) = f (1)

±
 |0i � |1ip

2

�  |0i � |1ip
2

�
if f (0) 6= f (1).

(1.43)

The final Hadamard gate on the first qubit thus gives us

|�3i =

8
����<

����:

±|0i
 |0i � |1ip

2

�
if f (0) = f (1)

±|1i
 |0i � |1ip

2

�
if f (0) 6= f (1).

(1.44)

Realizing that f (0)� f (1) is 0 if f (0) = f (1) and 1 otherwise, we can rewrite this result
concisely as

|�3i = ±|f (0)� f (1)i
 |0i � |1ip

2

�
, (1.45)

so by measuring the first qubit we may determine f (0) � f (1). This is very interesting
indeed: the quantum circuit has given us the ability to determine a global property of
f (x), namely f (0)�f (1), using only one evaluation of f (x)! This is faster than is possible
with a classical apparatus, which would require at least two evaluations.
This example highlights the difference between quantum parallelism and classical

randomized algorithms. Naively, one might think that the state |0i|f (0)i + |1i|f (1)i
corresponds rather closely to a probabilistic classical computer that evaluates f (0) with
probability one-half, or f (1) with probability one-half. The difference is that in a classical
computer these two alternatives forever exclude one another; in a quantum computer it is

Figure III.22: Quantum circuit for Deutsch algorithm. [fig. from Nielsen &
Chuang (2010)]

D Quantum algorithms

D.1 Deutsch-Jozsa algorithm

D.1.a Deutsch’s algorithm

In this section you will encounter your first example of a quantum algorithm
that can compute faster than a classical algorithm for the same problem.
This is a simplified version of Deutsch’s original algorithm, which shows how
it is possible to extract global information about a function by using quantum
parallelism and interference (Fig. III.22).9

Suppose we have a function f : 2 ! 2, as in Sec. C.5. The goal is to
determine whether f(0) = f(1) with a single function evaluation. This is
not a very interesting problem (since there are only four such functions), but
it is a warmup for the Deutsch-Jozsa algorithm. Simple as it is, it could be
expensive to decide on a classical computer. For example, suppose f(0) =
the billionth bit of ⇡ and f(1) = the billionth bit of e. Then the problem is
to decide if the billionth bits of ⇡ and e are the same. It is mathematically
simple, but computationally complex.

To see how we might solve this problem, suppose we have a quantum gate
array Uf for f ; that is, Uf |xi|yi = |xi|y � f(x)i. In particular, Uf |xi|0i =

9This is the 1998 improvement by Cleve et al. to Deutsch’s 1985 algorithm (Nielsen &
Chuang, 2010, p. 59).

126 CHAPTER III. QUANTUM COMPUTATION

|xi|f(x)i and Uf |xi|1i = |xi|¬f(x)i. Usually we set y = 0 to get the result
|f(x)i, but here you will see an application in which we want y = 1.

Now consider the result of applying Uf to |xi in the data register and to
the superposition |�i = 1

p
2
(|0i � |1i) in the target register.

Uf |xi|�i = 1p
2
|xi|f(x)i � 1p

2
|xi|¬f(x)i = 1p

2
|xi[|f(x)i � |¬f(x)i].

Now the rightmost square bracket is |0i � |1i if f(x) = 0 or |1i � |0i if
f(x) = 1. Therefore, we can write

Uf |xi|�i = 1p
2
|xi(�)f(x)(|0i � |1i) = (�)f(x)|xi|�i. (III.21)

[Here, (�)x is an abbreviation for (�1)x when we want to emphasize that
the sign is all that matters.] Since Uf |xi|�i = (�)f(x)|xi|�i, the result of
applying it to an equal superposition of x = 0 and x = 1 is:

1p
2

X

x22

Uf |xi|�i = 1p
2

X

x22

(�)f(x)|xi|�i.

If f is a constant function, then f(0) = f(1), and the summation is ± 1
p

2
(|0i+

|1i)|�i = ±|+i|�i because both components have the same sign.. On the
other hand, if f(0) 6= f(1), then the summation is ± 1

p
2
(|0i � |1i)|�i =

±|�i|�i because the components have opposite signs. That is, a constant
function gives the |0i and |1i components of the data qubit the same phase,
and otherwise gives them the opposite phase. Therefore, we can determine
whether the function is constant or not by measuring the first qubit in the sign
basis; we get |+i if f(0) = f(1) and |�i otherwise. With this background,
we can state Deutsch’s algorithm.

algorithm Deutsch:

Initial state: Begin with the qubits | 0i
def
= |01i.

Superposition: Transform it to a pair of superpositions

| 1i
def
=

1p
2
(|0i + |1i) ⌦ 1p

2
(|0i � |1i) = | + �i. (III.22)

D. QUANTUM ALGORITHMS 127

by a pair of Hadamard gates. Recall that H|0i = 1
p

2
(|0i + |1i) = |+i and

H|1i = 1
p

2
(|0i � |1i) = |�i.

Function application: Next apply Uf to | 1i = | + �i. As we’ve seen,
Uf |xi|0i = |xi|0 � f(x)i = |xi|f(x)i, and Uf |xi|1i = |xi|1 � f(x)i =
|xi|¬f(x)i. Therefore, expand Eq. III.22 and apply Uf :

| 2i
def
= Uf | 1i

= Uf


1p
2
(|0i + |1i) ⌦ 1p

2
(|0i � |1i)

�

=
1

2
[Uf |00i � Uf |01i + Uf |10i � Uf |11i]

=
1

2
[|0, f(0)i � |0,¬f(0)i + |1, f(1)i � |1,¬f(1)i]

There are two cases: f(0) = f(1) and f(0) 6= f(1).

Equal (constant function): If f(0) = f(1), then

| 2i =
1

2
[|0, f(0)i � |0,¬f(0)i + |1, f(0)i � |1,¬f(0)i]

=
1

2
[|0i(|f(0)i � |¬f(0)i) + |1i(|f(0)i � |¬f(0)i)]

=
1

2
(|0i + |1i)(|f(0)i � |¬f(0)i)

= ±1

2
(|0i + |1i)(|0i � |1i)

= ± 1p
2
(|0i + |1i)|�i

= | + �i.

The last line applies because global phase (including ±) doesn’t matter.

Unequal (balanced function): If f(0) 6= f(1), then

| 2i =
1

2
[|0, f(0)i � |0,¬f(0)i + |1,¬f(0)i � |1, f(0)i]

128 CHAPTER III. QUANTUM COMPUTATION

=
1

2
[|0i(|f(0)i � |¬f(0)i) + |1i(|¬f(0)i � |f(0)i)]

=
1

2
[|0i(|f(0)i � |¬f(0)i) � |1i(|f(0)i � |¬f(0)i)]

=
1

2
(|0i � |1i)(|f(0)i � |¬f(0)i)

= ±1

2
(|0i � |1i)(|0i � |1i)

= ± 1p
2
(|0i � |1i)|�i

= | � �i
Clearly we can discriminate between the two cases by measuring the first
qubit in the sign basis. In particular, note that in the unequal case, the |1i
component has the opposite phase from the |0i component.

Measurement: Therefore we can determine whether f(0) = f(1) or not by
measuring the first bit of | 2i in the sign basis, which we can do with the
Hadamard gate (recall H|+i = |0i and H|�i = |1i):

| 3i
def
= (H ⌦ I)| 2i

=

⇢
±|0i|�i, if f(0) = f(1)
±|1i|�i, if f(0) 6= f(1)

= ±|f(0) � f(1)i|�i.

⇤

Notice that the information we need is in the data register, not the target
register. This technique is called phase kick-back (i.e., kicked back into the
phase of the data register).

In conclusion, we can determine whether or not f(0) = f(1) with a single
evaluation of f , which is quite remarkable. In e↵ect, we are evaluating f on
a superposition of |0i and |1i and determining how the results interfere with
each other. As a result we get a definite (not probabilistic) determination of
a global property with a single evaluation.

This is a clear example where a quantum computer can do something
faster than a classical computer. However, note that Uf has to uncompute

D. QUANTUM ALGORITHMS 129
Quantum algorithms 35

Figure 1.20. Quantum circuit implementing the general Deutsch–Jozsa algorithm. The wire with a ‘/’ through it
represents a set of n qubits, similar to the common engineering notation.

evenly weighted superposition of 0 and 1. Next, the function f is evaluated (by Bob)
using Uf : |x, yi ! |x, y � f (x)i, giving

|�2i =
X

x

(�1)f (x)|xip
2n

 |0i � |1ip
2

�
. (1.48)

Alice now has a set of qubits in which the result of Bob’s function evaluation is stored
in the amplitude of the qubit superposition state. She now interferes terms in the super-
position using a Hadamard transform on the query register. To determine the result of
the Hadamard transform it helps to first calculate the effect of the Hadamard transform
on a state |xi. By checking the cases x = 0 and x = 1 separately we see that for a single
qubit H|xi =

P
z(�1)xz|zi/

p
2. Thus

H�n|x1, . . . , xni =
P

z1,...,zn
(�1)x1z1+·· +xnzn |z1, . . . , zni

p
2n

. (1.49)

This can be summarized more succinctly in the very useful equation

H�n|xi =
P

z(�1)x·z|zip
2n

, (1.50)

where x · z is the bitwise inner product of x and z, modulo 2. Using this equation
and (1.48) we can now evaluate |�3i,

|�3i =
X

z

X

x

(�1)x·z+f (x)|zi
2n

 |0i � |1ip
2

�
. (1.51)

Alice now observes the query register. Note that the amplitude for the state |0i�n isP
x(�1)f (x)/2n. Let’s look at the two possible cases – f constant and f balanced – to

discern what happens. In the case where f is constant the amplitude for |0i�n is +1 or
�1, depending on the constant value f (x) takes. Because |�3i is of unit length it follows
that all the other amplitudes must be zero, and an observation will yield 0s for all qubits
in the query register. If f is balanced then the positive and negative contributions to the
amplitude for |0i�n cancel, leaving an amplitude of zero, and a measurement must yield
a result other than 0 on at least one qubit in the query register. Summarizing, if Alice

Figure III.23: Quantum circuit for Deutsch-Jozsa algorithm. [fig. from NC]

f , which takes as much time as computing it, but we will see other cases
(Deutsch-Jozsa) where the speedup is much more than 2⇥.

D.1.b The Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm is a generalization of the Deutsch algorithm to
n bits, which they published it in 1992; here we present the improved version
of Nielsen & Chuang (2010, p. 59).

This is the problem: Suppose we are given an unknown function f : 2n !
2 in the form of a unitary transform Uf 2 L(Hn+1

,H) (Fig. III.23). We are
told only that f is either constant or balanced, which means that it is 0 on
half its domain and 1 on the other half. Our task is to determine into which
class the given f falls.

Consider first the classical situation. We can try di↵erent input bit strings
x. We might (if we’re lucky) discover after the second query of f that it is
not constant. But we might require as many as 2n

/2 + 1 queries to answer
the question. So we’re facing O(2n�1) function evaluations.

algorithm Deutsch-Jozsa:

Initial state: As in the Deutsch algorithm, prepare the initial state | 0i
def
=

|0i⌦n|1i.

130 CHAPTER III. QUANTUM COMPUTATION

Superposition: Use the Walsh-Hadamard transformation to create a su-
perposition of all possible inputs:

| 1i
def
= (H⌦n ⌦ H)| 0i =

X

x22n

1p
2n

|x,�i.

Claim: Similarly to the single qubit case (Eq. III.21), we can see that
Uf |x,�i = (�)f(x)|xi|�i, where (�)n is an abbreviation for (�1)n. From
the definition of |�i and Uf , Uf |x,�i = |xi 1

p
2
(|f(x)i � |¬f(x)i). Since

f(x) 2 2, 1
p

2
(|f(x)i� |¬f(x)i) = |�i if f(x) = 0, and it = �|�i if f(x) = 1.

This establishes the claim.

Function application: Therefore, you can see that:

| 2i
def
= Uf | 1i =

X

x22n

1p
2n

(�)f(x)|xi|�i. (III.23)

In the case of a constant function, all the components of the data state have
the same phase, otherwise they do not.

To see how we can make use of this information, let’s consider the state
in more detail. For a single bit you can show (Exer. III.47):

H|xi = 1p
2
(|0i + (�)x|1i) = 1p

2

X

z22

(�)xz|zi =
X

z22

1p
2
(�)xz|zi.

(This is just another way of writing H|0i = 1
p

2
(|0i+|1i) and H|1i = 1

p
2
(|0i�

|1i).) Therefore, the general formula for the Walsh transform of n bits is:

H
⌦n|x1, x2, . . . , xni =

1p
2n

X

z1,...,zn22

(�)x1z1+···+xnzn |z1, z2, . . . , zni

=
1p
2n

X

z22n

(�)x·z|zi, (III.24)

where x ·z is the bitwise inner product. (It doesn’t matter if you do addition
or � since only the parity of the result is significant.) Remember this formula!
Combining this and the result in Eq. III.23,

| 3i
def
= (H⌦n ⌦ I)| 2i =

X

z22n

X

x22n

1

2n
(�)x·z+f(x)|zi|�i.

D. QUANTUM ALGORITHMS 131

Measurement: Consider the first n qubits and the amplitude of one par-
ticular basis state, z = |0i = |0i⌦n, which we separate from the rest of the
summation:

| 3i =
X

x22n

1

2n
(�)f(x)|0i|�i +

X

z22n�{0}

X

x22n

1

2n
(�)x·z+f(x)|zi|�i

Hence, the amplitude of |0i⌦n, the all-|0i qubit string, is
P

x22n
1
2n (�)f(x).

Recall how in the basic Deutsch algorithm we got a sum of signs (either all
the same or not) for all the function evaluations. The result is similar here,
but we have 2n values rather than just two. We now have two cases:

Constant function: If the function is constant, then all the exponents of
�1 will be the same (either all 0 or all 1), and so the amplitude will be ±1.
Therefore all the other amplitudes are 0 and any measurement must yield 0
for all the qubits (since only |0i⌦n has nonzero amplitude).

Balanced function: If the function is not constant then (ex hypothesi) it
is balanced, but more specifically, if it is balanced, then there must be an
equal number of +1 and �1 contributions to the amplitude of |0i⌦n, so its
amplitude is 0. Therefore, when we measure the state, at least one qubit
must be nonzero (since the all-0s state has amplitude 0).
⇤

The good news about the Deutsch-Jozsa algorithm is that with one quan-
tum function evaluation we have got a result that would require between 2
and O(2n�1) classical function evaluations (exponential speedup!). The bad
news is that the algorithm has no known applications! Even if it were useful,
however, the problem could be solved probabilistically on a classical com-
puter with only a few evaluations of f : for an error probability of ✏, it takes
O(log ✏�1) function evaluations. However, it illustrates principles of quantum
computing that can be used in more useful algorithms.

