
D. QUANTUM ALGORITHMS 147

D.4 Search problems

D.4.a Overview

Many problems can be formulated as search problems over a solution space
S.18 That is, find the x 2 S such that some predicate P (x) is true. For
example, hard problems such as the Hamiltonian path problem and Boolean
satisfiability can be formulated this way. An unstructured search problem
is a problem that makes no assumptions about the structure of the search
space, or for which there is no known way to make use of it (also called a
needle in a haystack problem). That is, information about a particular value
P (x0) does not give us usable information about another value P (x1). In
contrast, a structured search problem is a problem in which the structure of
the solution space can be used to guide the search, for example, searching an
alphabetized array. In general, unstructured search takes O(M) evaluations,
where M = |S| is the size of the solution space (which is often exponential in
the size of the problem). On the average it will be M/2 (think of searching
an unordered array) to find a solution with 50% probability.

We will see that Grover’s algorithm can do unstructured search on a quan-
tum computer with bounded probability in O(

p
M) time, that is, quadratic

speedup. This is provably more e�cient than any algorithm on a classical
computer, which is good (but not great). Unfortunately, it has been proved
that Grover’s algorithm is optimal for unstructured search. Therefore, to
do better requires exploiting the structure of the solution space. Quantum
computers do not exempt us from understanding the problems we are trying
to solve! Shor’s algorithm is an excellent example of exploiting the structure
of a problem domain. Later we will take a look at heuristic quantum search
algorithms that do make use of problem structure.

D.4.b Grover’s Algorithm

algorithm Grover:

Input: Let M be the size of the solution space and pick n such that 2n � M .

18This section is based primarily on Rie↵el & Polak (2000).

148 CHAPTER III. QUANTUM COMPUTATION

30 · E. Rieffel and W. Polak

The difficult step is to obtain a useful result from this superposition.
For any x0 such that P (x0) is true, |x0, 1i will be part of the superposition of Eq. 2.

Since the amplitude of such a state is 1�
2n , the probability that a random measurement

of the superposition produces x0 is only 2�n. The trick is to change the quantum state
in Eq. 2 so as to greatly increase the amplitude of vectors |x0, 1i for which P is true and
decrease the amplitude of vectors |x, 0i for which P is false.
Once such a transformation of the quantum state has been performed, one can simply

measure the last qubit of the quantum state which represents P (x). Because of the am-
plitude change, there is a high probability that the result will be 1. If this is the case, the
measurement has projected the state of Eq. 2 onto the subspace 1�

2k

Pk
i=1 |xi, 1i where

k is the number of solutions. Further measurement of the remaining bits will provide one
of these solutions. If the measurement of qubit P (x) yields 0, then the whole process is
started over and the superposition of Eq. 2 must be computed again.
Grover’s algorithm then consists of the following steps:

(1) Prepare a register containing a superposition of all possible values xi 2 [0 . . . 2n � 1].
(2) Compute P (xi) on this register.
(3) Change amplitude aj to �aj for xj such that P (xj) = 1. An efficient algorithm for

changing selected signs is described in section 7.1.2. A plot of the amplitudes after
this step is shown here.

average

0

(4) Apply inversion about the average to increase amplitude of xj with P (xj) = 1. The
quantum algorithm to efficiently perform inversion about the average is given in sec-
tion 7.1.1. The resulting amplitudes look as shown, where the amplitude of all the xi’s
with P (xi) = 0 have been diminished imperceptibly.

average

0

(5) Repeat steps 2 through 4 �
4

p
2n times.

(6) Read the result.

Boyer et.al. [Boyer et al. 1996] provide a detailed analysis of the performance of Grover’s
algorithm. They prove that Grover’s algorithm is optimal up to a constant factor; no quan-
tum algorithm can perform an unstructured search faster. They also show that if there is
only a single x0 such that P (x0) is true, then after �

8

p
2n iterations of steps 2 through 4 the

failure rate is 0.5. After iterating �
4

p
2n times the failure rate drops to 2�n. Interestingly,

additional iterations will increase the failure rate. For example, after �
2

p
2n iterations the

failure rate is close to 1.
There are many classical algorithms in which a procedure is repeated over and over again

for ever better results. Repeating quantum procedures may improve results for a while, but

Figure III.28: Depiction of the result of phase rotation (changing the sign)
of solutions in Grover’s algorithm. [source: Rie↵el & Polak (2000)]

30 · E. Rieffel and W. Polak

The difficult step is to obtain a useful result from this superposition.
For any x0 such that P (x0) is true, |x0, 1i will be part of the superposition of Eq. 2.

Since the amplitude of such a state is 1�
2n , the probability that a random measurement

of the superposition produces x0 is only 2�n. The trick is to change the quantum state
in Eq. 2 so as to greatly increase the amplitude of vectors |x0, 1i for which P is true and
decrease the amplitude of vectors |x, 0i for which P is false.
Once such a transformation of the quantum state has been performed, one can simply

measure the last qubit of the quantum state which represents P (x). Because of the am-
plitude change, there is a high probability that the result will be 1. If this is the case, the
measurement has projected the state of Eq. 2 onto the subspace 1�

2k

Pk
i=1 |xi, 1i where

k is the number of solutions. Further measurement of the remaining bits will provide one
of these solutions. If the measurement of qubit P (x) yields 0, then the whole process is
started over and the superposition of Eq. 2 must be computed again.
Grover’s algorithm then consists of the following steps:

(1) Prepare a register containing a superposition of all possible values xi 2 [0 . . . 2n � 1].
(2) Compute P (xi) on this register.
(3) Change amplitude aj to �aj for xj such that P (xj) = 1. An efficient algorithm for

changing selected signs is described in section 7.1.2. A plot of the amplitudes after
this step is shown here.

average

0

(4) Apply inversion about the average to increase amplitude of xj with P (xj) = 1. The
quantum algorithm to efficiently perform inversion about the average is given in sec-
tion 7.1.1. The resulting amplitudes look as shown, where the amplitude of all the xi’s
with P (xi) = 0 have been diminished imperceptibly.

average

0

(5) Repeat steps 2 through 4 �
4

p
2n times.

(6) Read the result.

Boyer et.al. [Boyer et al. 1996] provide a detailed analysis of the performance of Grover’s
algorithm. They prove that Grover’s algorithm is optimal up to a constant factor; no quan-
tum algorithm can perform an unstructured search faster. They also show that if there is
only a single x0 such that P (x0) is true, then after �

8

p
2n iterations of steps 2 through 4 the

failure rate is 0.5. After iterating �
4

p
2n times the failure rate drops to 2�n. Interestingly,

additional iterations will increase the failure rate. For example, after �
2

p
2n iterations the

failure rate is close to 1.
There are many classical algorithms in which a procedure is repeated over and over again

for ever better results. Repeating quantum procedures may improve results for a while, but

Figure III.29: Depiction of result of inversion about the mean in Grover’s
algorithm. [source: Rie↵el & Polak (2000)]

Let N
def
= 2n and let N

def
= 2n = {0, 1, . . . , N �1}, the set of n-bit strings. We

are given a computable predicate P : N ! 2. Suppose we have a quantum
gate array UP (an oracle) that computes the predicate:

UP |x, yi = |x, y � P (x)i.

Application: Consider what happens if, as usual, we apply the function to
a superposition of all possible inputs | 0i:

UP | 0i|0i = UP

"
1p
N

X

x2N

|x, 0i
#
=

1p
N

X

x2N

|x, P (x)i.

Notice that the components we want, |x, 1i, and the components we don’t
want, |x, 0i, all have the same amplitude, 1

p
N
. So if we measure the state,

the chances of getting a hit are very small, O(2�n). The trick, therefore, is
to amplify the components that we want at the expense of the ones we don’t
want; this is what Grover’s algorithm accomplishes.

D. QUANTUM ALGORITHMS 149

Sign-change: To do this, first we change the sign of every solution (a phase
rotation of ⇡). That is, if the state is

P
j
aj|xj, P (xj)i, then we want to

change aj to �aj whenever P (xj) = 1. See Fig. III.28. I’ll get to the
technique in a moment.

Inversion about mean: Next, we invert all the components around their
mean amplitude (which is a little less than the amplitudes of the non-
solutions); the result is shown in Fig. III.29. As a result of this operation,
amplitudes of non-solutions go from a little above the mean to a little below
it, but amplitudes of solutions go from far below the mean to far above it.
This amplifies the solutions.

Iteration: This Grover iteration (the sign change and inversion about the

mean) is repeated ⇡
p

N

4 times. Thus the algorithm is O(
p
N).

Measurement: Measurement yields an x0 for which P (x0) = 1 with high

probability. Specifically, if there is exactly one solution x0 2 S, then ⇡
p

N

8

iterations will yield it with probability 1/2. With ⇡
p

N

4 iterations, the prob-
ability of failure drops to 1/N = 2�n. Unlike with most classical algorithms,
additional iterations will give a worse result! This is because Grover iter-
ations are unitary rotations, and so excessive rotations can rotate past the
solution. Therefore it is critical to know when to stop. Fortunately there
is a quantum technique (Brassard et al. 1998) for determining the optimal
stopping point. Grover’s iteration can be used for a wide variety of problems
as a part of other quantum algorithms.
⇤

In the following geometric analysis, I will suppose that there is just one
answer ↵ such that P (↵) = 1; then |↵i is the desired answer vector. Let
|!i be a uniform superposition of all the other (non-answer) states, and
observe that |↵i and |!i are orthonormal. Therefore, initially the state is

| 0i = 1
p

N
|↵i +

q
N�1

N
|!i. In general, after k iterations the state is | ki =

150 CHAPTER III. QUANTUM COMPUTATION

â

2â

Figure III.30: Process of inversion about the mean in Grover’s algorithm.
The black lines represent the original amplitudes aj. The red lines represent
2ā � aj, with the arrow heads indicating the new amplitudes a0

j
.

a|↵i + w|!i, for some a, w with |a|2 + |w|2 = 1.
The sign change operation transforms the state as follows:

| ki = a|↵i + w|!i 7! �a|↵i + w|!i = | 0

k
i,

where I’ve called the result | 0

k
i. This is a reflection across the |!i vector,

which means that it will be useful to look at reflections more generally.
Suppose that |�i and |�?i are orthonormal vectors and that | i = a|�?i+

b|�i is an arbitrary vector in the space they span (Fig. III.31). The reflection
of | i across |�i is | 0i = �a|�?i + b|�i. Since a = h�? | i and b =
h� | i, we know | i = |�ih� | i + |�?ih�? | i, and you can see that
| 0i = |�ih� | i � |�?ih�? | i. Hence the operator to reflect across |�i is

R�

def
= |�ih�| � |�?ih�?|. Alternate forms of this operator are 2|�ih�| � I and

I � 2|�?ih�?|, that is, subtract twice the perpendicular component.
The sign change can be expressed as a reflection:

R! = |!ih!| � |↵ih↵| = I � 2|↵ih↵|,

which expresses the sign-change of the answer vector clearly. Of course we
don’t know |↵i, which is why we will have to use a di↵erent process to
accomplish this reflection (see p. 163). We also will see that the inversion
about the mean is equivalent to reflecting that state vector across | 0i.

But first, taking this for granted, let’s see the e↵ect of the Grover iteration
(Fig. III.32). Let ✓ be the angle between | 0i and |!i. It’s given by the inner

D. QUANTUM ALGORITHMS 151

∣𝜑⟩

∣𝜑⊥⟩

∣𝜓⟩

∣𝜓′⟩

a

–a

b

Figure III.31: Reflection across arbitrary vector. Reflection of | i across |�i
in plane with |�?i. | i = a|�?i + b|�i becomes | 0i = �a|�?i + b|�i.

|ω〉

|α〉

|ψ0〉
θ

|ψ'0〉

|ψ1〉

θ

2θ

Figure III.32: Geometry of first Grover iteration.

152 CHAPTER III. QUANTUM COMPUTATION

product cos ✓ = h 0 | !i =
q

N�1
N

. Therefore the sign change reflects | 0i
from ✓ above |!i into | 0

0i, which is ✓ below it. Inversion about the mean
reflects | 0

0i from 2✓ below | 0i into a state we call | 1i, which is 2✓ above it.
Therefore, in going from | 0i to | 1i the state vector has rotated 2✓ closer
to |↵i.

You can see that after k iterations, the state vector | ki will be (2k+1)✓
above |!i. We can solve (2k + 1)✓ = ⇡/2 to get the required number of
iterations to bring | ki to |↵i. Note that for small ✓, ✓ ⇡ sin ✓ = 1

p
N

(which

is certainly small). Hence, we want (2k+1)/
p
N ⇡ ⇡/2, or 2k+1 ⇡ ⇡

p
N/2.

That is, k ⇡ ⇡
p
N/4 is the required number of iterations. Note that after

⇡
p
N/8 iterations, we are about halfway there (i.e., ⇡/4), so the probability

of success is 50%. In general, the probability of success is about sin2 2k+1
p

N
.

Now for the techniques for changing the sign and inversion about the
mean. Let | ki be the state after k iterations (k � 0). To change the sign,
simply apply UP to | ki|�i. To see the result, let X0 = {x | P (x) = 0} and
X1 = {x | P (x) = 1}, the solution set. Then:

UP | ki|�i

= UP

"
X

x2N

ax|x,�i
#

= UP

"
1p
2

X

x2N

ax|x, 0i � ax|x, 1i
#

=
1p
2
UP

"
X

x2X0

ax|x, 0i +
X

x2X1

ax|x, 0i �
X

x2X0

ax|x, 1i �
X

x2X1

ax|x, 1i
#

=
1p
2

"
X

x2X0

axUP |x, 0i +
X

x2X1

axUP |x, 0i

�
X

x2X0

axUP |x, 1i �
X

x2X1

axUP |x, 1i
#

=
1p
2

"
X

x2X0

ax|x, 0i +
X

x2X1

ax|x, 1i

�
X

x2X0

ax|x, 1 � 0i �
X

x2X1

ax|x, 1 � 1i
#

D. QUANTUM ALGORITHMS 153

=
1p
2

"
X

x2X0

ax|xi|0i +
X

x2X1

ax|xi|1i �
X

x2X0

ax|xi|1i �
X

x2X1

ax|xi|0i
#

=
1p
2

X

x2X0

ax|xi �
X

x2X1

ax|xi
!
(|0i � |1i)

=

X

x2X0

ax|xi �
X

x2X1

ax|xi
!

|�i.

Therefore the signs of the solutions have been reversed (they have been ro-
tated by ⇡). Notice how |�i in the target register can be used to separate
the 0 and 1 results by rotation. This is a useful idea!

It remains to show the connection between inversion about the mean and
reflection across | 0i. This reflection is given by R 0 = 2| 0ih 0| � I. Note
that:

| 0ih 0| =

1p
N

X

x2N

|xi
!

1p
N

X

y2N

hy|
!

=
1

N

X

x2N

X

y2N

|xihy|.

This is the di↵usion matrix:
0

BBB@

1
N

1
N

· · · 1
N

1
N

1
N

· · · 1
N

...
...

. . .
...

1
N

1
N

· · · 1
N

1

CCCA
,

which, as we will see, does the averaging.
To perform inversion about the mean, let ā be the average of the aj (see

Fig. III.30). Inversion about the mean is accomplished by the transformation:

X

j2N

aj|xji 7!
X

j2N

(2ā � aj)|xji.

To see this, write aj = ā ± �j, that is, as a di↵erence from the mean. Then
2ā � aj = 2ā � (ā ± �j) = ā ⌥ �j. Therefore an amplitude �j below the
mean will be transformed to �j above, and vice verse. But an amplitude
that is negative, and thus very far below the mean, will be transformed to
an amplitude much above the mean. This is exactly what we want in order
to amplify the negative components, which correspond to solutions.

154 CHAPTER III. QUANTUM COMPUTATION

Inversion about the mean is accomplished by a “Grover di↵usion trans-
formation” D. To derive the matrix D, consider the new amplitude a

0

j
as a

function of all the others:

a
0

j

def
= 2ā � aj = 2

1

N

N�1X

k=0

ak

!
� aj =

X

k 6=j

2

N
ak +

✓
2

N
� 1

◆
aj.

This matrix has 2
N

� 1 on the main diagonal and 2
N

in the o↵-diagonal
elements:

D =

0

BBB@

2
N

� 1 2
N

· · · 2
N

2
N

2
N

� 1 · · · 2
N

...
...

. . .
...

2
N

2
N

· · · 2
N

� 1

1

CCCA
.

Note that D = 2| 0ih 0|�I = R 0 . It is easy to confirm that DD
† = I (Exer.

III.50), so the matrix is unitary and therefore a possible quantum operation,
but it remains to be seen if it can be implemented e�ciently.

We claim D = WRW , where W = H
⌦n is the n-qubit Walsh-Hadamard

transform and R is the phase rotation matrix:

R
def
=

0

BBB@

1 0 · · · 0
0 �1 · · · 0
...

...
. . .

...
0 0 · · · �1

1

CCCA
.

To see this, let

R
0 def
= R + I =

0

BBB@

2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

1

CCCA
.

Then WRW = W (R0 � I)W = WR
0
W � WW = WR

0
W � I. It is easy to

show (Exer. III.51) that:

WR
0
W =

0

BBB@

2
N

2
N

· · · 2
N

2
N

2
N

· · · 2
N

...
...

. . .
...

2
N

2
N

· · · 2
N

1

CCCA
.

D. QUANTUM ALGORITHMS 155

Figure III.33: Circuit for Grover’s algorithm. The Grover iteration in the
dashed box is repeated ⇡

p
N

4 times.

It therefore follows that D = WR
0
W � I = WRW . See Fig. III.33 for a

diagram of Grover’s algorithm.
It remains to consider the possibility that there may be several solutions

to the problem. If there are s solutions, then run the Grover iteration
⇡

p
N/s

4

times, which is optimal (Exer. III.52). It can be done in
p

N/s iterations
even if s is unknown.

D.4.c Hogg’s heuristic search algorithms

Many important problems can be formulated as constraint satisfaction prob-
lems, in which we try to find a set of assignments to variables that satisfy

specified constraints. More specifically let V
def
= {v1, . . . , vn} be a set of vari-

ables, and let X
def
= {x1, . . . , xn} be a set of values that can be assigned to

the variables, and let C1, . . . , Cl be the constraints. The set of all possible
assignments of values to variables is V ⇥X. Subsets of this set correspond
to full or partial assignments, including inconsistent assignments. The set of
all such assignments is P(V ⇥X).

The sets of assignments form a lattice under the ✓ partial order (Fig.
III.34). By assigning bits to the elements of V ⇥X, elements of P(V ⇥X)
can be represented by mn-element bit strings (i.e., integers in the set MN =
{0, . . . , 2mn � 1}); see Fig. III.35. Hogg’s algorithms are based on the ob-
servation that if an assignment violates the constraints, then so do all those
assignments above it in the lattice.

156 CHAPTER III. QUANTUM COMPUTATION

Introduction to Quantum Computing · 33

�

{v1 = 0} {v1 = 1} {v2 = 0} {v2 = 1}

⇢
v2 = 0
v2 = 1

� ⇢
v1 = 1
v2 = 1

� ⇢
v1 = 0
v2 = 1

� ⇢
v1 = 1
v2 = 0

� ⇢
v1 = 0
v2 = 0

� ⇢
v1 = 0
v1 = 1

�

�
v1 = 1
v2 = 0
v2 = 1

� �
v1 = 0
v2 = 0
v2 = 1

� �
v1 = 0
v1 = 1
v2 = 1

� �
v1 = 0
v1 = 1
v2 = 0

�

8
�<

�:

v1 = 0
v1 = 1
v2 = 0
v2 = 1

�
��

��

���������

�
�

�

�
�

�

���������

������

������

������������

������

������������

������������

������������

������������

������

������

������������

������������

������

������������

������

������������

������������

������

���������

�
�

�

�
�

�

���������

Fig. 4. Lattice of variable assignments in a CSP

=
1p
2n

(|0i + (�1)rn�1 |1i) ⌦ . . . ⌦ (|0i + (�1)r0 |1i)

=
1p
2n

2n�1X

s=0

(�1)sn�1rn�1 |sn�1i ⌦ . . . ⌦ (�1)s0r0 |s0i

=
1p
2n

2n�1X

s=0

(�1)s·r|si.

7.2.2 Overview of Hogg’s algorithms. A constraint satisfaction problem (CSP) has n
variables V = {v1, . . . , vn} which can takem different valuesX = {x1, . . . , xm} subject
to certain constraints C1, . . . , Cl. Solutions to a constraint satisfaction problem lie in the
space of assignments of xi’s to vj’s, V ⇥X . There is a natural lattice structure on this space
given by set containment. Figure 4 shows the assignment space and its lattice structure for
n = 2, m = 2, x1 = 0, and x2 = 1. Note that the lattice includes both incomplete and
inconsistent assignments.
Using the standard correspondence between sets of enumerated elements and binary

sequences, in which a 1 in the nth place corresponds to inclusion of the nth element and a
0 corresponds to exclusion, standard basis vectors for a quantum state space can be put in
one to one correspondence with the sets. For example, Figure 5 shows the lattice of Figure
4 rewritten in ket notation where the elements v1 = 0, v1 = 1, v2 = 0 and v2 = 1 have
been enumerated in that order.
If a state violates a constraint, then so do all states above it in the lattice. The approach

Figure III.34: Lattice of variable assignments. [source: Rie↵el & Polak
(2000)]

D. QUANTUM ALGORITHMS 157
34 · E. Rieffel and W. Polak

|0000�

|1000� |0100� |0010� |0001�

|1100� |1010� |1001� |0110� |0101� |0011�

|1110� |1101� |1011� |0111�

|1111�

���������

�
�

�

�
�

�

���������

������

������

������������

������

������������

������������

������������

������������

������

������

������������

������������

������

������������

������

������������

������������

������

���������

�
�

�

�
�

�

���������

Fig. 5. Lattice of variable assignments in ket form

Hogg takes in designing quantum algorithms for constraint satisfaction problems is to be-
gin with all the amplitude concentrated in the |0 . . . 0i state and to iteratively move ampli-
tude up the lattice from sets to supersets and away from sets that violate the constraints.
Note that this algorithm begins differently than Shor’s algorithm and Grover’s algorithm,
which both begin by computing a function on a superposition of all the input values at
once.
Hogg gives two ways [Hogg 1996; Hogg 1998] of constructing a unitary matrix for

moving amplitude up the lattice. We will describe both methods, and then describe how he
moves amplitude away from bad sets.
Moving amplitude up: Method 1. There is an obvious transformation that moves

amplitude from sets to supersets. Any amplitude associated to the empty set is evenly
distributed among all sets with a single element. Any amplitude associated to a set with a
single element is evenly distributed among all two element sets which contain that element
and so on. For the lattice of a three element set

|111i

����� �����
|011i |101i |110i

���������� ����������

|001i |010i |100i
����� �����

|000i

We want to transform

|000i ! 1/
p

3(|001i + |010i + |100i

Figure III.35: Lattice of binary strings corresponding to all subsets of a 4-
element set. [source: Rie↵el & Polak (2000)]

algorithm Hogg:

Initialization: The algorithm begins with all the amplitude concentrated
in the bottom of the lattice, |0 · · · 0i (i.e., the empty set of assignments).

Movement: The algorithm proceeds by moving amplitude up the lattice,
while avoiding assignments that violate the constraints; that is, we want
to move amplitude from a set to its supersets. For example, we want to
redistribute the amplitude from |1010i to |1110i and |1011i. Hogg has de-
veloped several methods. One method is based on the assumption that the
transformation has the form WDW , where W = H

⌦mn, the mn-dimensional
Walsh-Hadamard transformation, and D is diagonal. The elements of D

depend on the size of the sets. Recall (D.1.b, p. 138) that

W |xi = 1p
2mn

X

z2MN

(�)x·z|zi.

158 CHAPTER III. QUANTUM COMPUTATION

As shown in Sec. A.2.c (p. 74), we can derive a matrix representation for W :

Wjk = hj | W | ki

= hj| 1p
2mn

X

z2MN

(�)k·z|zi

=
1p
2mn

X

z2MN

(�)k·zhj | zi

=
1p
2mn

(�1)k·j
.

Note that k · j = |k \ j|, where on the right-hand side we interpret the bit
strings as sets.
⇤

The general approach is to try to steer amplitude away from sets that
violate the constraints, but the best technique depends on the particular
problem. One technique is to invert the phase on bad subsets so that they
tend to cancel the contribution of good subsets to supersets. This could be
done by a process like Grover’s algorithm using a predicate that tests for
violation of constraints. Another approach is to assign random phases to
bad sets.

It is di�cult to analyze the probability that an iteration of a heuristic
algorithm will produce a solution, and so its e�ciency is usually evaluated
empirically, but empirical tests will be di�cult to apply to quantum heuristic
search until larger quantum computers are available, since classical computers
require exponential time to simulate quantum systems. Small simulations,
however, indicate that Hogg’s algorithms may provide polynomial speedup
over Grover’s algorithm.

