H Exercises

Exercise III. 1 Compute the probability of measuring $|0\rangle$ and $|1\rangle$ for each of the following quantum states:

1. $0.6|0\rangle+0.8|1\rangle$.
2. $\frac{1}{\sqrt{3}}|0\rangle+\sqrt{2 / 3}|1\rangle$.
3. $\frac{\sqrt{3}}{2}|0\rangle-\frac{1}{2}|1\rangle$.
4. $-\frac{1}{25}(24|0\rangle-7|1\rangle)$.
5. $-\frac{1}{\sqrt{2}}|0\rangle+\frac{e^{i \pi / 6}}{\sqrt{2}}|1\rangle$.

Exercise III. 2 Compute the probability of the four states if the following are measured in the computational basis:

1. $\left(e^{i}|00\rangle+\sqrt{2}|01\rangle+\sqrt{3}|10\rangle+2 e^{2 i}|11\rangle\right) / \sqrt{10}$.
2. $\frac{1}{2}(-|0\rangle+|1\rangle) \otimes\left(e^{\pi i}|0\rangle+e^{-\pi i}|1\rangle\right)$.
3.

$$
(\sqrt{1 / 3}|0\rangle-\sqrt{2 / 3}|1\rangle) \otimes \sqrt{2}\left(\frac{e^{\pi i / 4}}{2}|0\rangle+\frac{e^{\pi i / 2}}{2}|1\rangle\right) .
$$

Exercise III. 3 Suppose that a two-qubit register is in the state

$$
|\psi\rangle=\frac{3}{5}|00\rangle-\frac{\sqrt{7}}{5}|01\rangle+\frac{e^{i \pi / 2}}{\sqrt{5}}|10\rangle-\frac{2}{5}|11\rangle .
$$

1. Suppose we measure just the first qubit. Compute the probability of measuring a $|0\rangle$ or a $|1\rangle$ and the resulting register state in each case.
2. Do the same, but supposing instead that we measure just the second qubit.

Exercise III. 4 Prove that projectors are idempotent, that is, $P^{2}=P$.
Exercise III. 5 Prove that a normal matrix is Hermitian if and only if it has real eigenvalues.

Exercise III. 6 Prove that $U(t) \stackrel{\text { def }}{=} \exp (-i H t / \hbar)$ is unitary.
Exercise III. 7 Use spectral decomposition to show that $K=-i \log (U)$ is Hermitian for any unitary U, and thus $U=\exp (i K)$ for some Hermitian K.

Exercise III. 8 Show that the commutators ([L,M] and $\{L, M\}$) are bilinear (linear in both of their arguments).

Exercise III. 9 Show that $[L, M]$ is anticommutative, i.e., $[M, L]=-[L, M]$, and that $\{L, M\}$ is commutative.

Exercise III. 10 Show that $L M=\frac{[L, M]+\{L, M\}}{2}$.
Exercise III. 11 In Sec. B. 5 we proved the no-cloning theorem with single ancillary constant qubit. Prove that the cloning is still impossible if multiple ancillary qubits are provided. That is, show that we cannot have a unitary operator $U(|\psi\rangle \otimes|C\rangle)=|\psi\rangle|\psi\rangle \otimes|D\rangle$, where $|C\rangle$ is an $n>1$ dimensional vector and $|D\rangle$ is an $n-1$ dimensional vector. (Note that $|D\rangle$ might depend on $|\psi\rangle$.)

Exercise III. 12 Show that the four Bell states are orthonormal (i.e., both orthogonal and normalized).

Exercise III. 13 Prove that $\left|\beta_{11}\right\rangle$ is entangled.
Exercise III. 14 Prove that $\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$ is entangled.
Exercise III. 15 What is the effect of Y (imaginary definition) on the computational basis vectors? What is its effect if you use the real definition (C.2.a, p. 112)?

Exercise III. 16 Prove that I, X, Y, and Z are unitary. Use either the imaginary or real definition of Y (C.2.a, p. 112).

Exercise III. 17 What is the matrix for H in the sign basis?
Exercise III. 18 Show that the X, Y, Z and H gates are Hermitian (their own inverses) and prove your answers. Use either the imaginary or real definition of Y (C.2.a, p. 112).

