
254 CHAPTER V. ANALOG COMPUTATION

C Fundamentals of analog computing

C.1 Continuous state space

As discussed in Sec. B, the fundamental characteristic that distinguishes
analog from digital computation is that the state space is continuous in analog
computation and discrete in digital computation. Therefore it might be
more accurate to call analog and digital computation continuous and discrete
computation, respectively. Furthermore, since the earliest days there have
been hybrid computers that combine continuous and discrete state spaces
and processes. Thus, there are several respects in which the state space may
be continuous.

In the simplest case the state space comprises a finite (generally mod-
est) number of variables, each holding a continuous quantity (e.g., voltage,
current, charge). In a traditional GPAC they correspond to the variables in
the ODEs defining the computational process, each typically having some
independent meaning in the analysis of the problem. Mathematically, the
variables are taken to contain bounded real numbers, although complex-
valued variables are also possible (e.g., in AC electronic analog computers).
In a practical sense, however, their precision is limited by noise, stability,
device tolerance, and other factors (discussed below, Sec. C.4).

In typical analog neural networks the state space is larger in dimension
but more structured than in traditional analog computers. The artificial
neurons are organized into one or more layers, each composed of a (possi-
bly large) number of artificial neurons. Commonly each layer of neurons is
densely connected to the next layer (i.e., each neuron in one layer is connected
to every neuron in the next). In general the layers each have some meaning
in the problem domain, but the individual neurons constituting them do not
(and so, in mathematical descriptions, the neurons are typically numbered
rather than named).

The individual artificial neurons usually perform a simple computation
such as this:

y = �(s), where s = b+
nX

i=1

wixi,

and where y is the activity of the neuron, x1, . . . , xn are the activities of
the neurons that provide its inputs, b is a bias term, and w1, . . . , wn are the
weights or strengths of the connections. Often the activation function � is a

C. FUNDAMENTALS OF ANALOG COMPUTING 255

real-valued sigmoid (“S-shaped”) function, such as the logistic sigmoid,

�(s) =
1

1 + e�s
,

in which case the neuron activity y is a real number, but some applications
use a discontinuous threshold function, such as the Heaviside function,

U(s) =

⇢
+1 , if s � 0
0 , if s < 0

,

in which case the activity is a discrete quantity. The saturated-linear or
piecewise-linear sigmoid is also used occasionally:

�(s) =

8
<

:

+1 , if s > 1
s , if 0 s 1
0 , if s < 0

.

Regardless of whether the activation function is continuous or discrete,
the bias b and connection weights w1, . . . , wn are real numbers, as is the “net
input” s = b+

P
i
wixi to the activation function. Analog computation may

be used to evaluate the linear combination s and the activation function �(s),
if it is real-valued. If it is discrete, analog computation can approximate
it with a su�ciently sharp sigmoid. The biases and weights are normally
determined by a learning algorithm (e.g., back-propagation), which is also a
good candidate for analog implementation.

In summary, the continuous state space of a neural network includes the
bias values and net inputs of the neurons and the interconnection strengths
between the neurons. It also includes the activity values of the neurons, if
the activation function is a real-valued sigmoid function, as is often the case.
Often large groups (“layers”) of neurons (and the connections between these
groups) have some intuitive meaning in the problem domain, but typically
the individual neuron activities, bias values, and interconnection weights do
not (they are “sub-symbolic”).

If we extrapolate the number of neurons in a layer to the continuum limit,
we get a field, which may be defined as a spatially continuous distribution
of continuous quantity. Treating a group of artificial or biological neurons
as a continuous mass is a reasonable mathematical approximation if their
number is su�ciently large and if their spatial arrangement is significant (as
it generally is in the brain). Fields are especially useful in modeling cortical

256 CHAPTER V. ANALOG COMPUTATION

maps, in which information is represented by the pattern of activity over a
region of neural cortex.

In field computation the state space in continuous in two ways: it is
continuous in variation but also in space. Therefore, field computation is
especially applicable to solving PDEs and to processing spatially extended
information such as visual images. Some early analog computing devices were
capable of field computation (Truitt & Rogers, 1960, pp. 1-14–17, 2-2–16).
For example, as previously mentioned (Sec. B), large resistor and capacitor
networks could be used for solving PDEs such as di↵usion problems. In these
cases a discrete ensemble of resistors and capacitors was used to approximate
a continuous field, while in other cases the computing medium was spatially
continuous. The latter made use of conductive sheets (for two-dimensional
fields) or electrolytic tanks (for two- or three-dimensional fields). When they
were applied to steady-state spatial problems, these analog computers were
called field plotters or potential analyzers.

The ability to fabricate very large arrays of analog computing devices,
combined with the need to exploit massive parallelism in realtime computa-
tion and control applications, creates new opportunities for field computa-
tion (MacLennan, 1987, 1990, 1999). There is also renewed interest in using
physical fields in analog computation. For example, Rubel (1993) defined an
abstract extended analog computer (EAC), which augments Shannon’s (1941)
general purpose analog computer with (unspecified) facilities for field com-
putation, such as PDE solvers (see Secs. E.3–E.4 below). J. W. Mills has
explored the practical application of these ideas in his artificial neural field
networks and VLSI EACs, which use the di↵usion of electrons in bulk silicon
or conductive gels and plastics for 2D and 3D field computation (Mills, 1996;
Mills et al., 2006).

C.2 Computational process

We have considered the continuous state space, which is the basis for analog
computing, but there are a variety of ways in which analog computers can
operate on the state. In particular, the state can change continuously in time
or be updated at distinct instants (as in digital computation).

C. FUNDAMENTALS OF ANALOG COMPUTING 257

C.2.a Continuous time

Since the laws of physics on which analog computing is based are di↵erential
equations, many analog computations proceed in continuous real time. Also,
as we have seen, an important application of analog computers in the late
19th and early 20th centuries was the integration of ODEs in which time
is the independent variable. A common technique in analog simulation of
physical systems is time scaling, in which the di↵erential equations are altered
systematically so the simulation proceeds either more slowly or more quickly
than the primary system (see Sec. C.4 for more on time scaling). On the
other hand, because analog computations are close to the physical processes
that realize them, analog computing is rapid, which makes it very suitable
for real-time control applications.

In principle, any mathematically describable physical process operating
on time-varying physical quantities can be used for analog computation. In
practice, however, analog computers typically provide familiar operations
that scientists and engineers use in di↵erential equations (Rogers & Con-
nolly, 1960; Truitt & Rogers, 1960). These include basic arithmetic opera-
tions, such as algebraic sum and di↵erence (u(t) = v(t) ± w(t)), constant
multiplication or scaling (u(t) = cv(t)), variable multiplication and division
(u(t) = v(t)w(t), u(t) = v(t)/w(t)), and inversion (u(t) = �v(t)). Transcen-
dental functions may be provided, such as the exponential (u(t) = exp v(t)),
logarithm (u(t) = ln v(t)), trigonometric functions (u(t) = sin v(t), etc.), and
resolvers for converting between polar and rectangular coordinates. Most
important, of course, is definite integration (u(t) = v0 +

R
t

0 v(⌧)d⌧), but dif-
ferentiation may also be provided (u(t) = v̇(t)). Generally, however, direct
di↵erentiation is avoided, since noise tends to have a higher frequency than
the signal, and therefore di↵erentiation amplifies noise; typically problems
are reformulated to avoid direct di↵erentiation (Weyrick, 1969, pp. 26–7).
As previously mentioned, many GPACs include (arbitrary) function genera-
tors, which allow the use of functions defined only by a graph and for which
no mathematical definition might be available; in this way empirically defined
functions can be used (Rogers & Connolly, 1960, pp. 32–42). Thus, given a
graph (x, f(x)), or a su�cient set of samples, (xk, f(xk)), the function gen-
erator approximates u(t) = f(v(t)). Rather less common are generators for
arbitrary functions of two variables, u(t) = f(v(t), w(t)), in which the func-
tion may be defined by a surface, (x, y, f(x, y)), or by su�cient samples from
it.

258 CHAPTER V. ANALOG COMPUTATION

Although analog computing is primarily continuous, there are situations
in which discontinuous behavior is required. Therefore some analog comput-
ers provide comparators, which produce a discontinuous result depending on
the relative value of two input values. For example,

u =

⇢
k , if v � w,

0 , if v < w.

Typically, this would be implemented as a Heaviside (unit step) function
applied to the di↵erence of the inputs, u = kU(v � w). In addition to
allowing the definition of discontinuous functions, comparators provide a
primitive decision making ability, and may be used, for example to terminate
a computation (switching the computer from “operate” to “hold” mode).

Other operations that have proved useful in analog computation are time
delays and noise generators (Howe, 1961, ch. 7). The function of a time delay
is simply to retard the signal by an adjustable delay T > 0: u(t+ T) = v(t).
One common application is to model delays in the primary system (e.g.,
human response time).

Typically a noise generator produces time-invariant Gaussian-distributed
noise with zero mean and a flat power spectrum (over a band compatible with
the analog computing process). The standard deviation can be adjusted by
scaling, the mean can be shifted by addition, and the spectrum altered by
filtering, as required by the application. Historically noise generators were
used to model noise and other random e↵ects in the primary system, to
determine, for example, its sensitivity to e↵ects such as turbulence. However,
noise can make a positive contribution in some analog computing algorithms
(e.g., for symmetry breaking and in simulated annealing, weight perturbation
learning, and stochastic resonance).

As already mentioned, some analog computing devices for the direct so-
lution of PDEs have been developed. In general a PDE solver depends on
an analogous physical process, that is, on a process obeying the same class
of PDEs that it is intended to solve. For example, in Mills’ EAC, di↵usion
of electrons in conductive sheets or solids is used to solve di↵usion equations
(Mills, 1996; Mills et al., 2006). Historically, PDEs were solved on electronic
GPACs by discretizing all but one of the independent variables, thus replac-
ing the di↵erential equations by di↵erence equations (Rogers & Connolly,
1960, pp. 173–93). That is, computation over a field was approximated by
computation over a finite real array.

C. FUNDAMENTALS OF ANALOG COMPUTING 259

Reaction-di↵usion computation is an important example of continuous-
time analog computing. The state is represented by a set of time-varying
chemical concentration fields, c1, . . . , cn. These fields are distributed across
a one-, two-, or three-dimensional space ⌦, so that, for x 2 ⌦, ck(x, t) repre-
sents the concentration of chemical k at location x and time t. Computation
proceeds in continuous time according to reaction-di↵usion equations, which
have the form:

@c/@t = Dr2c+ F(c),

where c = (c1, . . . , cn)T is the vector of concentrations, D = diag(d1, . . . , dn)
is a diagonal matrix of positive di↵usion rates, and F is nonlinear vector
function that describes how the chemical reactions a↵ect the concentrations.

Some neural net models operate in continuous time and thus are examples
of continuous-time analog computation. For example, Grossberg (Grossberg,
1967, 1973, 1976) defines the activity of a neuron by di↵erential equations
such as this:

ẋi = �aixi +
nX

j=1

bijw
(+)
ij

fj(xj) �
nX

j=1

cijw
(�)
ij

gj(xj) + Ii.

This describes the continuous change in the activity of neuron i resulting
from passive decay (first term), positive feedback from other neurons (second
term), negative feedback (third term), and input (last term). The fj and

gj are nonlinear activation functions, and the w
(+)
ij

and w
(�)
ij

are adaptable
excitatory and inhibitory connection strengths, respectively.

The continuous Hopfield network is another example of continuous-time
analog computation (Hopfield, 1984). The output yi of a neuron is a nonlinear
function of its internal state xi, yi = �(xi), where the hyperbolic tangent is
usually used as the activation function, �(x) = tanh x, because its range is
[�1, 1]. The internal state is defined by a di↵erential equation,

⌧iẋi = �aixi + bi +
nX

j=1

wijyj,

where ⌧i is a time constant, ai is the decay rate, bi is the bias, and wij is the
connection weight to neuron i from neuron j. In a Hopfield network every
neuron is symmetrically connected to every other (wij = wji) but not to itself
(wii = 0).

260 CHAPTER V. ANALOG COMPUTATION

Of course analog VLSI implementations of neural networks also operate
in continuous time (e.g., Mead, 1989; Fakhraie & Smith, 1997)

Concurrent with the resurgence of interest in analog computation have
been innovative reconceptualizations of continuous-time computation. For
example, Brockett (1988) has shown that dynamical systems can perform a
number of problems normally considered to be intrinsically sequential. In
particular, a certain system of ODEs (a nonperiodic finite Toda lattice) can
sort a list of numbers by continuous-time analog computation. The system
is started with the vector x equal to the values to be sorted and a vector
y initialized to small nonzero values; the y vector converges to a sorted
permutation of x.

C.2.b Sequential time

Sequential-time computation refers to computation in which discrete compu-
tational operations take place in succession but at no definite interval (van
Gelder, 1997). Ordinary digital computer programs take place in sequential
time, for the operations occur one after another, but the individual oper-
ations are not required to have any specific duration, so long as they take
finite time.

One of the oldest examples of sequential analog computation is provided
by the compass-and-straightedge constructions of traditional Euclidean ge-
ometry (Sec. B). These computations proceed by a sequence of discrete
operations, but the individual operations involve continuous representations
(e.g., compass settings, straightedge positions) and operate on a continuous
state (the figure under construction). Slide rule calculation might seem to be
an example of sequential analog computation, but if we look at it, we see that
although the operations are performed by an analog device, the intermediate
results are recorded digitally (and so this part of the state space is discrete).
Thus it is a kind of hybrid computation.

The familiar digital computer automates sequential digital computations
that once were performed manually by human “computers.” Sequential ana-
log computation can be similarly automated. That is, just as the control unit
of an ordinary digital computer sequences digital computations, so a digital
control unit can sequence analog computations. In addition to the analog
computation devices (adders, multipliers, etc.), such a computer must pro-
vide variables and registers capable of holding continuous quantities between
the sequential steps of the computation (see also Sec. C.2.c below).

C. FUNDAMENTALS OF ANALOG COMPUTING 261

The primitive operations of sequential-time analog computation are typ-
ically similar to those in continuous-time computation (e.g., addition, multi-
plication, transcendental functions), but integration and di↵erentiation with
respect to sequential time do not make sense. However, continuous-time
integration within a single step, and space-domain integration, as in PDE
solvers or field computation devices, are compatible with sequential analog
computation.

In general, any model of digital computation can be converted to a similar
model of sequential analog computation by changing the discrete state space
to a continuum, and making appropriate changes to the rest of the model.
For example, we can make an analog Turing machine by allowing it to write
a bounded real number (rather than a symbol from a finite alphabet) onto a
tape cell. The Turing machine’s finite control can be altered to test for tape
markings in some specified range.

Similarly, in a series of publications Blum, Shub, and Smale developed a
theory of computation over the reals, which is an abstract model of sequential-
time analog computation (Blum et al., 1998, 1988). In this “BSS model”
programs are represented as flowcharts, but they are able to operate on real-
valued variables. Using this model they were able to prove a number of
theorems about the complexity of sequential analog algorithms.

The BSS model, and some other sequential analog computation models,
assume that it is possible to make exact comparisons between real numbers
(analogous to exact comparisons between integers or discrete symbols in dig-
ital computation) and to use the result of the comparison to control the path
of execution. Comparisons of this kind are problematic because they imply
infinite precision in the comparator (which may be defensible in a mathemat-
ical model but is impossible in physical analog devices), and because they
make the execution path a discontinuous function of the state (whereas ana-
log computation is usually continuous). Indeed, it has been argued that this
is not “true” analog computation (Siegelmann, 1999, p. 148).

Many artificial neural network models are examples of sequential-time
analog computation. In a simple feed-forward neural network, an input vector
is processed by the layers in order, as in a pipeline. That is, the output
of layer n becomes the input of layer n + 1. Since the model does not
make any assumptions about the amount of time it takes a vector to be
processed by each layer and to propagate to the next, execution takes place
in sequential time. Most recurrent neural networks, which have feedback, also
operate in sequential time, since the activities of all the neurons are updated

262 CHAPTER V. ANALOG COMPUTATION

synchronously (that is, signals propagate through the layers, or back to earlier
layers, in lockstep).

Many artificial neural-net learning algorithms are also sequential-time
analog computations. For example, the back-propagation algorithm updates
a network’s weights, moving sequentially backward through the layers.

In summary, the correctness of sequential time computation (analog or
digital) depends on the order of operations, not on their duration, and sim-
ilarly the e�ciency of sequential computations is evaluated in terms of the
number of operations, not on their total duration.

C.2.c Discrete time

Discrete-time analog computation has similarities to both continuous-time
and sequential-time analog computation. Like the latter, it proceeds by a
sequence of discrete (analog) computation steps; like the former, these steps
occur at a constant rate in real time (e.g., some “frame rate”). If the real-
time rate is su�cient for the application, then discrete-time computation can
approximate continuous-time computation (including integration and di↵er-
entiation).

Some electronic GPACs implemented discrete-time analog computation
by a modification of repetitive operation mode, called iterative analog compu-
tation (Ashley, 1963, ch. 9). Recall (Sec. B.1.b) that in repetitive operation
mode a clock rapidly switched the computer between reset and compute
modes, thus repeating the same analog computation, but with di↵erent pa-
rameters (set by the operator). However, each repetition was independent of
the others. Iterative operation was di↵erent in that analog values computed
by one iteration could be used as initial values in the next. This was accom-
plished by means of an analog memory circuit (based on an op amp) that
sampled an analog value at the end of one compute cycle (e↵ectively during
hold mode) and used it to initialize an integrator during the following reset
cycle. (A modified version of the memory circuit could be used to retain a
value over several iterations.) Iterative computation was used for problems
such as determining, by iterative search or refinement, the initial conditions
that would lead to a desired state at a future time. Since the analog compu-
tations were iterated at a fixed clock rate, iterative operation is an example
of discrete-time analog computation. However, the clock rate is not directly
relevant in some applications (such as the iterative solution of boundary
value problems), in which case iterative operation is better characterized as

C. FUNDAMENTALS OF ANALOG COMPUTING 263

sequential analog computation.
The principal contemporary examples of discrete-time analog computing

are in neural network applications to time-series analysis and (discrete-time)
control. In each of these cases the input to the neural net is a sequence
of discrete-time samples, which propagate through the net and generate
discrete-time output signals. Many of these neural nets are recurrent, that
is, values from later layers are fed back into earlier layers, which allows the
net to remember information from one sample to the next.

C.3 Analog computer programs

The concept of a program is central to digital computing, both practically,
for it is the means for programming general-purpose digital computers, and
theoretically, for it defines the limits of what can be computed by a universal
machine, such as a universal Turing machine. Therefore it is important to
discuss means for describing or specifying analog computations.

Traditionally, analog computers were used to solve ODEs (and sometimes
PDEs), and so in one sense a mathematical di↵erential equation is one way
to represent an analog computation. However, since the equations were usu-
ally not suitable for direct solution on an analog computer, the process of
programming involved the translation of the equations into a schematic dia-
gram showing how the analog computing devices (integrators etc.) should be
connected to solve the problem. These diagrams are the closest analogies to
digital computer programs and may be compared to flowcharts, which were
once popular in digital computer programming. It is worth noting, how-
ever, that flowcharts (and ordinary computer programs) represent sequences
among operations, whereas analog computing diagrams represent functional
relationships among variables, and therefore a kind of parallel data flow.

Di↵erential equations and schematic diagrams are suitable for continuous-
time computation, but for sequential analog computation something more
akin to a conventional digital program can be used. Thus, as previously
discussed (Sec. C.2.b), the BSS system uses flowcharts to describe sequen-
tial computations over the reals. Similarly, Moore (1996) defines recursive
functions over the reals by means of a notation similar to a programming
language.

In principle any sort of analog computation might involve constants that
are arbitrary real numbers, which therefore might not be expressible in finite
form (e.g., as a finite string of digits). Although this is of theoretical interest

264 CHAPTER V. ANALOG COMPUTATION

(see Sec. F.3 below), from a practical standpoint these constants could be
set with about at most four digits of precision (Rogers & Connolly, 1960,
p. 11). Indeed, automatic potentiometer-setting devices were constructed
that read a series of decimal numerals from punched paper tape and used
them to set the potentiometers for the constants (Truitt & Rogers, 1960,
pp. 3-58–60). Nevertheless it is worth observing that analog computers do
allow continuous inputs that need not be expressed in digital notation, for
example, when the parameters of a simulation are continuously varied by
the operator. In principle, therefore, an analog program can incorporate
constants that are represented by a real-valued physical quantity (e.g., an
angle or a distance), which need not be expressed digitally. Further, as we
have seen (Sec. B.1.b), some electronic analog computers could compute a
function by means of an arbitrarily drawn curve, that is, not represented by
an equation or a finite set of digitized points. Therefore, in the context of
analog computing it is natural to expand the concept of a program beyond
discrete symbols to include continuous representations (scalar magnitudes,
vectors, curves, shapes, surfaces, etc.).

Typically such continuous representations would be used as adjuncts to
conventional discrete representations of the analog computational process,
such as equations or diagrams. However, in some cases the most natural static
representation of the process is itself continuous, in which case it is more like
a “guiding image” than a textual prescription (MacLennan, 1995). A simple
example is a potential surface, which defines a continuum of trajectories from
initial states (possible inputs) to fixed-point attractors (the results of the
computations). Such a “program” may define a deterministic computation
(e.g., if the computation proceeds by gradient descent), or it may constrain
a nondeterministic computation (e.g., if the computation may proceed by
any potential-decreasing trajectory). Thus analog computation suggests a
broadened notion of programs and programming.

C.4 Characteristics of analog computation

C.4.a Precision

Analog computation is evaluated in terms of both accuracy and precision,
but the two must be distinguished carefully (Ashley 1963, pp. 25–8, Weyrick
1969, pp. 12–13, Small 2001, pp. 257–61). Accuracy refers primarily to the
relationship between a simulation and the primary system it is simulating

C. FUNDAMENTALS OF ANALOG COMPUTING 265

or, more generally, to the relationship between the results of a computation
and the mathematically correct result. Accuracy is a result of many factors,
including the mathematical model chosen, the way it is set up on a computer,
and the precision of the analog computing devices. Precision, therefore, is a
narrower notion, which refers to the quality of a representation or computing
device. In analog computing, precision depends on resolution (fineness of op-
eration) and stability (absence of drift), and may be measured as a fraction
of the represented value. Thus a precision of 0.01% means that the represen-
tation will stay within 0.01% of the represented value for a reasonable period
of time. For purposes of comparing analog devices, the precision is usually
expressed as a fraction of full-scale variation (i.e., the di↵erence between the
maximum and minimum representable values).

It is apparent that the precision of analog computing devices depends
on many factors. One is the choice of physical process and the way it is
utilized in the device. For example a linear mathematical operation can be
realized by using a linear region of a nonlinear physical process, but the
realization will be approximate and have some inherent imprecision. Also,
associated, unavoidable physical e↵ects (e.g., loading, and leakage and other
losses) may prevent precise implementation of an intended mathematical
function. Further, there are fundamental physical limitations to resolution
(e.g., quantum e↵ects, di↵raction). Noise is inevitable, both intrinsic (e.g.,
thermal noise) and extrinsic (e.g., ambient radiation). Changes in ambient
physical conditions, such as temperature, can a↵ect the physical processes
and decrease precision. At slower time scales, materials and components
age and their physical characteristics change. In addition, there are always
technical and economic limits to the control of components, materials, and
processes in analog device fabrication.

The precision of analog and digital computing devices depend on very
di↵erent factors. The precision of a (binary) digital device depends on the
number of bits, which influences the amount of hardware, but not its quality.
For example, a 64-bit adder is about twice the size of a 32-bit adder, but can
made out of the same components. At worst, the size of a digital device might
increase with the square of the number of bits of precision. This is because
binary digital devices only need to represent two states, and therefore they
can operate in saturation. The fabrication standards su�cient for the first bit
of precision are also su�cient for the 64th bit. Analog devices, in contrast,
need to be able to represent a continuum of states precisely. Therefore, the
fabrication of high-precision analog devices is much more expensive than low-

266 CHAPTER V. ANALOG COMPUTATION

precision devices, since the quality of components, materials, and processes
must be much more carefully controlled. Doubling the precision of an analog
device may be expensive, whereas the cost of each additional bit of digital
precision is incremental; that is, the cost is proportional to the logarithm of
the precision expressed as a fraction of full range.

The forgoing considerations might seem to be a convincing argument for
the superiority of digital to analog technology, and indeed they were an im-
portant factor in the competition between analog and digital computers in
the middle of the twentieth century (Small, 2001, pp. 257–61). However, as
was argued at that time, many computer applications do not require high pre-
cision. Indeed, in many engineering applications, the input data are known
to only a few digits, and the equations may be approximate or derived from
experiments. In these cases the very high precision of digital computation
is unnecessary and may in fact be misleading (e.g., if one displays all 14
digits of a result that is accurate to only three). Furthermore, many appli-
cations in image processing and control do not require high precision. More
recently, research in artificial neural networks (ANNs) has shown that low-
precision analog computation is su�cient for almost all ANN applications.
Indeed, neural information processing in the brain seems to operate with very
low precision — perhaps less than 10% (McClelland et al., 1986, p. 378) —
for which it compensates with massive parallelism. For example, by coarse
coding a population of low-precision devices can represent information with
relatively high precision (Rumelhart et al. 1986, pp. 91–6, Sanger 1996).

C.4.b Scaling

An important aspect of analog computing is scaling, which is used to adjust a
problem to an analog computer. First is time scaling, which adjusts a problem
to the characteristic time scale at which a computer operates, which is a
consequence of its design and the physical processes by which it is realized
(Peterson 1967, pp. 37–44, Rogers & Connolly 1960, pp. 262–3, Weyrick
1969, pp. 241–3). For example, we might want a simulation to proceed on
a very di↵erent time scale from the primary system. Thus a weather or
economic simulation should proceed faster than real time in order to get
useful predictions. Conversely, we might want to slow down a simulation of
protein folding so that we can observe the stages in the process. Also, for
accurate results it is necessary to avoid exceeding the maximum response rate
of the analog devices, which might dictate a slower simulation speed. On the

C. FUNDAMENTALS OF ANALOG COMPUTING 267

other hand, too slow a computation might be inaccurate as a consequence of
instability (e.g., drift and leakage in the integrators).

Time scaling a↵ects only time-dependant operations such as integration.
For example, suppose t, time in the primary system or “problem time,” is
related to ⌧ , time in the computer, by ⌧ = �t. Therefore, an integration
u(t) =

R
t

0 v(t
0)dt0 in the primary system is replaced by the integration u(⌧) =

�
�1

R
⌧

0 v(⌧ 0)d⌧ 0 on the computer. Thus time scaling may be accomplished
simply by decreasing the input gain to the integrator by a factor of �.

Fundamental to analog computation is the representation of a continuous
quantity in the primary system by a continuous quantity in the computer. For
example, a displacement x in meters might be represented by a potential V in
volts. The two are related by an amplitude ormagnitude scale factor, V = ↵x,
(with units volts/meter), chosen to meet two criteria (Ashley 1963, pp. 103–6,
Peterson 1967, ch. 4, Rogers & Connolly 1960, pp. 127–8, Weyrick 1969, pp.
233–40). On the one hand, ↵ must be su�ciently small so that the range of
the problem variable is accommodated within the range of values supported
by the computing device. Exceeding the device’s intended operating range
may lead to inaccurate results (e.g., forcing a linear device into nonlinear
behavior). On the other hand, the scale factor should not be too small, or
relevant variation in the problem variable will be less than the resolution of
the device, also leading to inaccuracy. (Recall that precision is specified as a
fraction of full-range variation.)

In addition to the explicit variables of the primary system, there are im-
plicit variables, such as the time derivatives of the explicit variables, and scale
factors must be chosen for them too. For example, in addition to displace-
ment x, a problem might include velocity ẋ and acceleration ẍ. Therefore,
scale factors ↵, ↵0, and ↵

00 must be chosen so that ↵x, ↵0
ẋ, and ↵

00
ẍ have an

appropriate range of variation (neither too large nor too small).
Once a scale factor has been chosen, the primary system equations are

adjusted to obtain the analog computing equations. For example, if we have
scaled u = ↵x and v = ↵

0
ẋ, then the integration x(t) =

R
t

0 ẋ(t
0)dt0 would be

computed by scaled equation:

u(t) =
↵

↵0

Z
t

0

v(t0)dt0.

This is accomplished by simply setting the input gain of the integrator to
↵/↵

0.

268 CHAPTER V. ANALOG COMPUTATION

In practice, time scaling and magnitude scaling are not independent
(Rogers & Connolly, 1960, p. 262). For example, if the derivatives of a
variable can be large, then the variable can change rapidly, and so it may
be necessary to slow down the computation to avoid exceeding the high-
frequency response of the computer. Conversely, small derivatives might
require the computation to be run faster to avoid integrator leakage etc. Ap-
propriate scale factors are determined by considering both the physics and
the mathematics of the problem (Peterson, 1967, pp. 40–4). That is, first,
the physics of the primary system may limit the ranges of the variables and
their derivatives. Second, analysis of the mathematical equations describing
the system can give additional information on the ranges of the variables. For
example, in some cases the natural frequency of a system can be estimated
from the coe�cients of the di↵erential equations; the maximum of the nth
derivative is then estimated as the n power of this frequency (Peterson 1967,
p. 42, Weyrick 1969, pp. 238–40). In any case, it is not necessary to have
accurate values for the ranges; rough estimates giving orders of magnitude
are adequate.

It is tempting to think of magnitude scaling as a problem unique to ana-
log computing, but before the invention of floating-point numbers it was also
necessary in digital computer programming. In any case it is an essential as-
pect of analog computing, in which physical processes are more directly used
for computation than they are in digital computing. Although the necessity
of scaling has been a source of criticism, advocates for analog computing
have argued that it is a blessing in disguise, because it leads to improved
understanding of the primary system, which was often the goal of the com-
putation in the first place (Bissell 2004, Small 2001, ch. 8). Practitioners of
analog computing are more likely to have an intuitive understanding of both
the primary system and its mathematical description (see Sec. G).

D Analog Computation in Nature

Computational processes—that is to say, information processing and control—
occur in many living systems, most obviously in nervous systems, but also
in the self-organized behavior of groups of organisms. In most cases natural
computation is analog, either because it makes use of continuous natural pro-
cesses, or because it makes use of discrete but stochastic processes. Several
examples will be considered briefly.

D. ANALOG COMPUTATION IN NATURE 269

D.1 Neural computation

In the past neurons were thought of binary computing devices, something like
digital logic gates. This was a consequence of the “all or nothing” response of
a neuron, which refers to the fact that it does or does not generate an action
potential (voltage spike) depending, respectively, on whether its total input
exceeds a threshold or not (more accurately, it generates an action potential
if the membrane depolarization at the axon hillock exceeds the threshold and
the neuron is not in its refractory period). Certainly some neurons (e.g., so-
called “command neurons”) do act something like logic gates. However, most
neurons are analyzed better as analog devices, because the rate of impulse
generation represents significant information. In particular, an amplitude
code, the membrane potential near the axon hillock (which is a summation
of the electrical influences on the neuron), is translated into a rate code
for more reliable long-distance transmission along the axons. Nevertheless,
the code is low precision (about one digit), since information theory shows
that it takes at least N milliseconds (and probably more like 5N msec.)
to discriminate N values (MacLennan, 1991). The rate code is translated
back to an amplitude code by the synapses, since successive impulses release
neurotransmitter from the axon terminal, which di↵uses across the synaptic
cleft to receptors. Thus a synapse acts as a leaky integrator to time-average
the impulses.

As previously discussed (Sec. C.1), many artificial neural net models have
real-valued neural activities, which correspond to rate-encoded axonal signals
of biological neurons. On the other hand, these models typically treat the
input connections as simple real-valued weights, which ignores the analog
signal processing that takes place in the dendritic trees of biological neurons.
The dendritic trees of many neurons are complex structures, which often
have tens of thousands of synaptic inputs. The binding of neurotransmitters
to receptors causes minute voltage fluctuations, which propagate along the
membrane, and ultimately cause voltage fluctuations at the axon hillock,
which influence the impulse rate. Since the dendrites have both resistance
and capacitance, to a first approximation the signal propagation is described
by the “cable equations,” which describe passive signal propagation in cables
of specified diameter, capacitance, and resistance (Anderson, 1995, ch. 1).
Therefore, to a first approximation, a neuron’s dendritic net operates as an
adaptive linear analog filter with thousands of inputs, and so it is capable
of quite complex signal processing. More accurately, however, it must be

270 CHAPTER V. ANALOG COMPUTATION

treated as a nonlinear analog filter, since voltage-gated ion channels introduce
nonlinear e↵ects. The extent of analog signal processing in dendritic trees is
still poorly understood.

In most cases, then, neural information processing is treated best as
low-precision analog computation. Although individual neurons have quite
broadly tuned responses, accuracy in perception and sensorimotor control is
achieved through coarse coding, as already discussed (Sec. C.4). Further,
one widely used neural representation is the cortical map, in which neurons
are systematically arranged in accord with one or more dimensions of their
stimulus space, so that stimuli are represented by patterns of activity over
the map. (Examples are tonotopic maps, in which pitch is mapped to cortical
location, and retinotopic maps, in which cortical location represents retinal
location.) Since neural density in the cortex is at least 146 000 neurons per
square millimeter (Changeux, 1985, p. 51), even relatively small cortical maps
can be treated as fields and information processing in them as analog field
computation. Overall, the brain demonstrates what can be accomplished
by massively parallel analog computation, even if the individual devices are
comparatively slow and of low precision.

D.2 Adaptive self-organization in social insects

Another example of analog computation in nature is provided by the self-
organizing behavior of social insects, microorganisms, and other populations
(Camazine et al., 2001). Often such organisms respond to concentrations, or
gradients in the concentrations, of chemicals produced by other members of
the population. These chemicals may be deposited and di↵use through the
environment. In other cases, insects and other organisms communicate by
contact, but may maintain estimates of the relative proportions of di↵erent
kinds of contacts. Because the quantities are e↵ectively continuous, all these
are examples of analog control and computation.

Self-organizing populations provide many informative examples of the use
of natural processes for analog information processing and control. For ex-
ample, di↵usion of pheromones is a common means of self-organizzation in
insect colonies, facilitating the creation of paths to resources, the construction
of nests, and many other functions (Camazine et al., 2001). Real di↵usion
(as opposed to sequential simulations of it) executes, in e↵ect, a massively
parallel search of paths from the chemical’s source to its recipients and al-
lows the identification of near-optimal paths. Furthermore, if the chemical

D. ANALOG COMPUTATION IN NATURE 271

degrades, as is generally the case, then the system will be adaptive, in e↵ect
continually searching out the shortest paths, so long as source continues to
function (Camazine et al., 2001). Simulated di↵usion has been applied to
robot path planning (Khatib, 1986; Rimon & Koditschek, 1989).

D.3 Genetic circuits

Another example of natural analog computing is provided by the genetic reg-
ulatory networks that control the behavior of cells, in multicellular organisms
as well as single-celled ones (Davidson, 2006). These networks are defined by
the mutually interdependent regulatory genes, promoters, and repressors that
control the internal and external behavior of a cell. The interdependencies
are mediated by proteins, the synthesis of which is governed by genes, and
which in turn regulate the synthesis of other gene products (or themselves).
Since it is the quantities of these substances that is relevant, many of the
regulatory motifs can be described in computational terms as adders, sub-
tracters, integrators, etc. Thus the genetic regulatory network implements
an analog control system for the cell (Reiner, 1968).

It might be argued that the number of intracellular molecules of a par-
ticular protein is a (relatively small) discrete number, and therefore that it
is inaccurate to treat it as a continuous quantity. However, the molecular
processes in the cell are stochastic, and so the relevant quantity is the prob-
ability that a regulatory protein will bind to a regulatory site. Further, the
processes take place in continuous real time, and so the rates are generally the
significant quantities. Finally, although in some cases gene activity is either
on or o↵ (more accurately: very low), in other cases it varies continuously
between these extremes (Hartl, 1994, pp. 388–90).

Embryological development combines the analog control of individual cells
with the sort of self-organization of populations seen in social insects and
other colonial organisms. Locomotion of the cells and the expression of spe-
cific genes is controlled by chemical signals, among other mechanisms (David-
son, 2006; Davies, 2005). Thus PDEs have proved useful in explaining some
aspects of development; for example reaction-di↵usion equations have been
used to describe the formation of hair-coat patterns and related phenomena
(Camazine et al., 2001; Maini & Othmer, 2001; Murray, 1977). Therefore
the developmental process is governed by naturally occurring analog compu-
tation.

272 CHAPTER V. ANALOG COMPUTATION

D.4 Is everything a computer?

It might seem that any continuous physical process could be viewed as analog
computation, which would make the term almost meaningless. As the ques-
tion has been put, is it meaningful (or useful) to say that the solar system
is computing Kepler’s laws? In fact, it is possible and worthwhile to make a
distinction between computation and other physical processes that happen
to be described by mathematical laws (MacLennan, 1994a,c, 2001, 2004).

If we recall the original meaning of analog computation (Sec. A), we see
that the computational system is used to solve some mathematical problem
with respect to a primary system. What makes this possible is that the com-
putational system and the primary system have the same, or systematically
related, abstract (mathematical) structures. Thus the computational system
can inform us about the primary system, or be used to control it, etc. Al-
though from a practical standpoint some analogs are better than others, in
principle any physical system can be used that obeys the same equations as
the primary system.

Based on these considerations we may define computation as a physical
process the purpose of which is the abstract manipulation of abstract objects
(i.e., information processing); this definition applies to analog, digital, and
hybrid computation (MacLennan, 1994a,c, 2001, 2004). Therefore, to deter-
mine if a natural system is computational we need to look to its purpose or
function within the context of the living system of which it is a part. One
test of whether its function is the abstract manipulation of abstract objects is
to ask whether it could still fulfill its function if realized by di↵erent physical
processes, a property called multiple realizability. (Similarly, in artificial sys-
tems, a simulation of the economy might be realized equally accurately by a
hydraulic analog computer or an electronic analog computer (Bissell, 2004).)
By this standard, the majority of the nervous system is purely computational;
in principle it could be replaced by electronic devices obeying the same dif-
ferential equations. In the other cases we have considered (self-organization
of living populations, genetic circuits) there are instances of both pure com-
putation and computation mixed with other functions (for example, where
the specific substances used have other—e.g. metabolic—roles in the living
system).

