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Chapter 1

Introduction

1.1 Motivation

1.1.1 Truly Massive Parallelism

AI is moving into a new phase characterized by a broadened understanding
of the nature of knowledge, and by the use of new computational paradigms.
A sign of this transition is the growing interest in neurocomputers, optical
computers, molecular computers and other massively parallel analog com-
puters. We have argued elsewhere (MacLennan, 1987a,b, 1988a,b) that the
new AI will augment the traditional deep, narrow computation with shallow,
wide computation. That is, the new AI will exploit massive parallelism, but
this means different things to different people; massive parallelism may be-
gin with a hundred, a thousand, or a million processors. Biological evidence
suggests that skillful behavior requires a very large number of processors, so
many in fact that it is infeasible to treat them individually; they must be
treated en masse. This has motivated us to propose (MacLennan, 1987b)
the following definition of massive parallelism: A computational system is
massively parallel if the number of processing elements is so large that it
may conveniently be considered a continuous quantity. That is, a system is
massively parallel if the processing elements can be considered a continuous
mass rather than a discrete ensemble (MacLennan, 1989).

How large a number is large enough to be considered a continuous quan-
tity? That depends on the purpose at hand. A hundred is probably never
large enough; a million is probably always large enough; a thousand or ten
thousand may be enough. One of the determining factors will be whether the
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4 CHAPTER 1. INTRODUCTION

number is large enough to permit the application of continuous mathematics
(see below).

We propose this definition of massive parallelism for a number of reasons.
First, skillful behavior seems to require significant neural mass.1 Second, we
are interested in computers, such as optical computers and molecular com-
puters, for which the number of processing elements is effectively continuous.
Third, continuous mathematics is generally easier than discrete mathemat-
ics. And fourth, we want to encourage a new style of thinking about paral-
lelism. Currently, we try to apply to parallel machines the thought habits
we have acquired from thinking about sequential machines. This strategy
works fairly well when the degree of parallelism is low, but it will not scale
up. One cannot think individually about the 1020 processors of a molecular
computer. Rather than postpone the inevitable, we think that it is time to
develop a theoretical framework for understanding massively parallel analog
computers. The principal goal of this paper is to outline such a theory.

1.1.2 Field Transformation

Our aim then is to develop a way of looking at massive parallelism that
encompasses a variety of implementation technologies, including neural net-
works, optical computers, molecular computers and other massively parallel
analog computers. What these all have in common is the ability to process in
parallel amounts of data so massive as to be considered a continuous quan-
tity. This suggests that we structure our theory around the idea of a field,
i.e. a continuous (dense) ensemble of data. We have in mind both scalar
fields (such as potential fields) and vector fields (such as gradient fields).
Any operation on such a field, either to produce another field or to produce
a new state of the field, can be considered massively parallel, if it operates
on all the elements of the field in parallel. Indeed, it would not be feasible
to serialize the processing of the field; modest degrees of parallelism cannot
cope with an infinite (or nearly infinite) number of field elements.

In the remainder of this chapter we explore field transformation comput-
ers, that is, computers characterized by the ability to perform (in parallel)
transformations on scalar and vector fields. This does not mean that field
computers are unable to perform scalar calculations; in fact many field trans-
formation computers have the scalar capabilities of conventional digital and

1Even a bee has some 106 neurons (DARPA, 1988, p. 33).
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analog computers. Scalars have many uses in field computation. For exam-
ple, we may want to use a scalar parameter to control the rate at which a field
transformation takes place (e.g., a reaction rate in a molecular computer).
Similarly, we may use a scalar representing the average intensity of a field to
control the contrast enhancement of that field. A scalar threshold value may
be used to suppress low level noise, and so forth.

It must be stressed that there are many field computers already in exis-
tence, for example, large neurocomputers and many optical computers. What
we are proposing is:

1. a name for the class of such computers

2. a theoretical framework for understanding massively parallel analog
computers

3. a basis for constructing general purpose computers of this type.

1.2 History

forthcoming

1.3 Suggestions for the reader

Chapters 2 through 6 cover standard material that is a prerequisite for under-
standing field computation, which is the focus of the chapters that follow. I
suggest that you skim the familiar material so that you can see the notational
conventions that we use.2

2Briefer presentations of field computation can be found in MacLennan (2009) and
MacLennan (2017).
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Chapter 2

Basic Concepts of Topology

This chapter introduces basic concepts from topology, and especially metric
spaces, that are a foundation for the later chapters. In particular we fo-
cus on notions of convergence and continuity that are useful in continuous
computation, that is, the study of continuous information representation and
processing. The concepts of separability and completeness are essential to
the later presentation of Hilbert Spaces (Ch. 5).

2.1 Metric spaces

2.1.1 Metric

Definition 2.1.1 (R∗) R∗ is the set of all nonnegative real numbers, R∗ =
{x ∈ R | x ≥ 0}.

Definition 2.1.2 (Metric) A metric is a function d : X×X → R∗ satisfy-
ing (for all x, y, z ∈ X):

Self-identity d(x, y) = 0 if and only if x = y.

Symmetry d(x, y) = d(y, x).

Triangle inequality d(x, y) + d(y, z) ≥ d(x, z).

Remark 2.1.1 Although these are very natural postulates for a distance
measure, they are not sacred, and in particular cases meaningful measures of
similarity or dissimilarity may not satisfy them. The triangle inequality is

7



8 CHAPTER 2. BASIC CONCEPTS OF TOPOLOGY

particularly problematic, and a measure that drops this requirement is called a
semimetric. Moreover, in psychological spaces symmetry may not hold (e.g.,
x may seem closer to y than y seems to be to x). Finally, the Self-identity
property implies that all differences are “measurable” (by the metric). A
pseudo-metric is function satisfying the weaker condition d(x, x) = 0 instead
of Self-identity.

Exercise 2.1.1 Give an example of a function that is a pseudo-metric but
not a metric.

Exercise 2.1.2 For a given nondirected graph, define the distance between
two vertices to be the number of edges in the minimum path between the
vertices. (If there is no path between the vertices, then set the distance to
∞ or to any number greater than the number of vertices.) Is this distance a
metric?

Exercise 2.1.3 For a given directed graph, define the distance from one
vertex to another to be the number of edges in the minimum path from the
one to the other (i.e. respecting the direction of edges). (If there is no path
from one vertex to the other, then set the distance to ∞ or to any number
greater than the number of vertices.) Is this distance a metric?

2.1.2 Examples

The most common metric is the L2 or Euclidean metric on an n-dimensional
vector space:

Definition 2.1.3 (Euclidean Metric) The L2 or Euclidean metric on Rn

is defined

L2(x,y) =

√√√√ n∑
k=1

(xk − yk)2.

Exercise 2.1.4 Show that L2 is a metric.

The Lp metrics are simple generalizations of the Euclidean metric.

Definition 2.1.4 (Lp Metrics) For any (real or integral) p ≥ 1,

Lp(x,y) = p

√√√√ n∑
k=1

|xk − yk|p.
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Exercise 2.1.5 The set of all points x ∈ R2 such that L2(x,y) = r defines a
circle of radius r around center y. Thus L2(x, 0) = 1 defines a unit circle at
the origin. Plot, by computer, the (two-dimensional) Lp-circle Lp(x, 0) = 1,
for p = 3, 4, 5, etc. What conclusions do you draw?

Exercise 2.1.6 Show that Lp is a metric for arbitrary p > 1. Hint: Expand
the pth power by the binomial theorem.

Consider a special case p = 1 of the preceding definition.

Definition 2.1.5 (L1 metric)

L1(x,y) =
n∑
k=1

|xk − yk|.

Exercise 2.1.7 Sketch (without use of a computer) a two-dimensional L1-
circle.

Exercise 2.1.8 Prove that L1 is a metric.

Hamming distance is widely used in coding and information theory as well
as in neural nets.

Definition 2.1.6 (Hamming distance) The Hamming distance between
two bit-strings of the same length is the number of bits that differ between
them.

Exercise 2.1.9 Show directly that Hamming distance is a metric

Exercise 2.1.10 Show that Hamming distance is equivalent to the L1 met-
ric.

Remark 2.1.2 To design an error-correcting code capable of correcting er-
rors of m or fewer bits, each legal code is surrounded by an L1-sphere of
illegal codes (so the legal codes have a Hamming distance of 2m). Then, if
an illegal code appears in a signal, it can be replaced by the legal code that is
nearest (in Hamming distance).

The Lp definition can also be extended to p =∞ by taking the limit p→∞.
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Definition 2.1.7 (L∞ metric)

L∞(x,y) = lim
p→∞

Lp(x,y) = maxnk=1|xk − yk|.

Exercise 2.1.11 Sketch (without use of a computer) a two-dimensional L∞-
circle.

Exercise 2.1.12 Prove that L∞ is a metric.

Sometimes the different components of a vector are not equally significant.
In these cases weighted Lp metrics can be used.

Definition 2.1.8 (R+) R+ is the set of positive real numbers, R+ = {x ∈
R | x > 0}.

Definition 2.1.9 (Weighted Lp metric) Let w ∈ Rn
+ be a positive weight

vector. Then, for p ≥ 1,

Lw
p (x,y) = p

√√√√ n∑
k=1

wk|xk − yk|p.

Exercise 2.1.13 Sketch a two-dimensional weighted L2 circle with the weight
vector w = (1, 2). In general, how does a weight vector affect the shape of an
Lp circle?

Exercise 2.1.14 Why are the elements of w required to be strictly positive
(i.e. wk > 0 for all k)?

Remark 2.1.3 The preceding definitions can be extended to n =∞, that is,
to infinite dimensional spaces, a subject that will be taken up in Ch. 3.

2.1.3 Metric space

Definition 2.1.10 (Metric space) A metric space is a pair (X, d), where
X is an arbitrary set (called the underlying set) and d : X×X → R∗ is a
metric on the underlying set.

Remark 2.1.4 Many different metric spaces can have the same underlying
set. For example, (Rn, Lp), p = 1, 2, 3, . . . are all different metric spaces with
the same underlying set.
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Exercise 2.1.15 What can you say about the differences between the metric
spaces (R, Lp) for p ≥ 1?

Definition 2.1.11 (Euclidean space En)

En = (Rn, L2).

That is, the n-dimensional Euclidean metric space is the space of n-dimensional
real vectors with the usual (Euclidean) metric.

Remark 2.1.5 Sometimes we call Rn a metric space, in which case we mean
Rn with its “usual” metric, that is, the Euclidean metric L2.

2.1.4 Discrete metric space

Definition 2.1.12 (Discrete metric space) For any set X, the discrete
metric is defined:

dd(x, x) = 0,

dd(x, y) = 1, if x 6= y.

Remark 2.1.6 With the discrete metric there are no degrees of closeness;
so far as the metric is concerned, the points are either identical or they are as
different as they can be. The discrete metric is implicit in the usual treatment
of alphabets in formal language theory: that symbols of the alphabet are either
identical or not; they are not considered close or far on the basis of alphabetic
order, shape, sound, ASCII code, or any other basis. Note, however, that the
discrete metric is not limited to finite or even countable sets. For example,
(R, dd) is the discrete metric space of real numbers, in which there is no sense
of a real number being closer or farther to any other real numbers; it is just
a set of independent points.

Exercise 2.1.16 Show that the discrete metric is in fact a metric.

2.1.5 Isometry

Definition 2.1.13 (Isometry or isometric mapping) A function f : X →
X ′ is an isometry or isometric mapping between metric spaces (X, d) and
(X ′, d′) if and only if

d(x, y) = d′[f(x), f(y)],

for all x, y ∈ X. That is, the function preserves distances.



12 CHAPTER 2. BASIC CONCEPTS OF TOPOLOGY

Remark 2.1.7 Many mappings between metric spaces are not isometric, yet
still satisfy some interesting relation between their metrics, e.g., d(x, y) =
cd′[f(x), f(y)] or d(x, y) = log d′[f(x), f(y)].

Definition 2.1.14 (Isometric spaces) Two metric spaces are said to be
isometric if there is an isometric mapping from one to the other.

Exercise 2.1.17 Show that isometry is an equivalence relation.

2.1.6 Function spaces

In many applications, especially in field computation, we deal with function
spaces, that is, spaces whose “points” are entire functions. Function spaces
will be considered in detail in chapters 3 and 5; here we just consider a couple
of examples. In making a metric space from a set of functions we have to
decide on an appropriate notion of distance for the functions. The signifi-
cance of different metrics can often be understood by thinking of the distance
between two functions as being a measure of the error in the representation
of one by the other. That is, if f is what we want and g is what we’ve got,
then d(f, g) measures the error in what we’ve got.

Definition 2.1.15 C∞[a, b] is the metric space comprising the set of contin-
uous, real-valued functions on [a, b] with the L∞ (or uniform) metric:

L∞(f, g) = sup{|f(x)− g(x)| | a ≤ x ≤ b}.

Note that sup means, roughly, the maximum, so

L∞(f, g) = max
a≤x≤b

|f(x)− g(x)|.

Remark 2.1.8 This metric space is appropriate when we are interested in
the maximum difference between two functions (in the worst case, so to
speak).

Definition 2.1.16 C1[a, b] is the metric space comprising the set of contin-
uous, real-valued functions on [a, b] with the L1 metric:

L1(f, g) =

∫ b

a

|f(x)− g(x)|dx.
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Remark 2.1.9 This metric space is appropriate when we interested in the
total (or average) difference between two functions. In other words, we might
be satisfied with an error that is, on the average, small, even it is large in
some cases.

Definition 2.1.17 C2[a, b] is the metric space comprising the set of contin-
uous, real-valued functions on [a, b] with the L2 metric:

L2(f, g) =
√ ∫ b

a

[f(x)− g(x)]2dx.

Remark 2.1.10 This Euclidean function space is appropriate for many phys-
ical problems (in which energy depends quadratically on some other quantity),
and is often chosen for mathematical convenience (since its derivative is lin-
ear).

Exercise 2.1.18 Suppose L2(f, g) < ε. Is there any limit on |f(x)−g(x)| for
a given value of x? What does this tell you about a function approximation
that is good in an L2 sense? Suppose L∞(f, g) < ε; what does this tell you
about |f(x)− g(x)| for particular values of x?

2.2 Topology

The theory of metric spaces deals with general models of nearness and dis-
tance based on a metric that quantifies distance. Topology generalizes these
ideas by dealing with nearness (neighborhoods) in a context that doesn’t
require a metric (i.e. a quantification of distance).

2.2.1 Open balls

Definition 2.2.1 (Open Ball Br(c)) The open ball with center c and ra-
dius r > 0 in a metric space (X, d) is defined:

Br(c) = {x ∈ X | d(x, c) < r}.

We call Br(c) an open ball around c.

Remark 2.2.1 Other names for the open ball Bε(c) are an open sphere and
an ε-neighborhood.
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Remark 2.2.2 (Closed balls and boundaries) It is sometimes convenient
to talk about closed balls or spheres around a point, {x ∈ X | d(x, c) ≤ r}.
Likewise, we can talk about the boundary of an open or closed ball: {x ∈ X |
d(x, c) = r}. Note that a closed ball includes its boundary, whereas an open
ball excludes it.

Remark 2.2.3 All of the points of an open ball are in its interior or, equiv-
alently, none of its points are on its boundary (and hence it excludes its
boundary. To see this, observe that around any point of the ball you can
place another open ball that lies entirely within the first. Conversely, observe
that for points on the boundary of a closed ball it is not possible to put an
open ball around them that lies entirely within the closed ball. Think about
this and draw pictures to make sure you understand it at an intuitive level;
it will pay off later.

Exercise 2.2.1 Prove the preceding remarks.

Exercise 2.2.2 What do the open balls Br(c) look like in the metric space
(R, Lp)?

Exercise 2.2.3 What do the closed balls look like?

Exercise 2.2.4 What are the boundaries of the (open or closed) balls?

Exercise 2.2.5 Describe the open balls in any discrete metric space.

2.2.2 Neighborhoods

Definition 2.2.2 (Neighborhood) A subset N of a space X is called a
neighborhood of x ∈ X if it contains some open ball around x. That is, N
is a neighborhood of x if and only if for some r > 0, Br(x) ⊆ N .

Remark 2.2.4 Notice that a point cannot be on the boundary of any of its
neighborhoods; a neighborhood of a point must provide some “space” around
that point.

Exercise 2.2.6 Show that each open ball around a point is a neighborhood
of that point.
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Exercise 2.2.7 Show that an open ball is a neighborhood of each of its
points.

Exercise 2.2.8 Give an example of a neighborhood that is not an open ball.

Exercise 2.2.9 Show that in a discrete metric space every set containing a
point is a neighborhood of that point.

Exercise 2.2.10 Show that the union of two neighborhoods of a point is a
neighborhood of that point. Extend your result to the union of any finite
family (set) of neighborhoods of the point. Does it also extend to infinite
families of neighborhoods?

Exercise 2.2.11 Show that the intersection of two neighborhoods of a point
is a neighborhood of that point. Extend your result to the intersection of
any finite family (set) of neighborhoods of the point. Does it also extend
to infinite families of neighborhoods? (Hint: Consider the family {B1/n(c) |
n = 1, 2, 3, . . .} of neighborhoods of c.)

2.2.3 Open and closed sets

Definition 2.2.3 (Open set) A subset of a space is called open if it is a
neighborhood of each of its points.

Definition 2.2.4 (Closed set) The complement of an open set is called a
closed set.

Remark 2.2.5 Intuitively, an open set excludes its boundary. Thus, open
intervals (a, b) are examples of open sets in E; they exclude their boundaries
{a, b}. Conversely, closed sets include their boundaries, so the closed in-
tervals [a, b] are examples of closed sets in E. Sets that both include and
exclude some of their boundary are neither open nor closed; examples are the
half-open intervals [a, b) and (a, b] in E.

Exercise 2.2.12 Given the foregoing remarks, it may seem that a set could
not be both open and closed. However, ∅ and R are both open and closed in
E. Explain how this can be.

Exercise 2.2.13 Show that in a discrete metric space every subset is open
and every subset is closed.
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Exercise 2.2.14 Show that any union (finite or infinite) of open sets is
open.

Exercise 2.2.15 Show that any finite intersection of open sets is open.

Exercise 2.2.16 Give an example of an infinite family of open sets whose
intersection is not open.

Exercise 2.2.17 Prove that any (finite or infinite) intersection of closed sets
is closed.

Exercise 2.2.18 Prove that any finite union of closed sets is closed.

Exercise 2.2.19 Give an example of an infinite union of closed sets that is
not closed.

2.2.4 Closure and interior of a set

The following are informal definitions to help you understand open and closed
sets.

Definition 2.2.5 (Interior) The interior of a set is all of its points except
its boundary points.

Example 2.2.1 For example, in E, (a, b) is the interior of (a, b), (a, b], [a, b)
and [a, b].

Definition 2.2.6 (Closure) The closure of a set is all of its points as well
as all of its boundary points.

Example 2.2.2 For example, in E, [a, b] is the closure of (a, b), (a, b], [a, b)
and [a, b].

Answer the following questions on the basis of your intuitive understanding
of these concepts (i.e., don’t give formal proofs).

Exercise 2.2.20 Is the interior of a set open or closed?

Exercise 2.2.21 Is the closure of a set open or closed?

Exercise 2.2.22 What is the union of a set and its boundary?

Exercise 2.2.23 What is the (set) difference of a set and its boundary?

Exercise 2.2.24 What is the intersection of the closure of a set and the
closure of its complement.
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2.2.5 Topological spaces

Topological spaces are more general than metric spaces because they allow
us to specify the neighborhood properties of a space directly in terms of its
open sets without the need of a metric. N.B. Previously the open sets were
defined in terms of a metric (by way of open balls); here the open sets will
be given as part of the definition of the topology.

Definition 2.2.7 (Toplogical space) A topology (X, T ) comprises an un-
derlying set X and a topology T , which is a family of subsets of X (called
the open subsets of X) satisfying:

1. The empty set is open, i.e., ∅ ∈ T .

2. The whole space is open, i.e., X ∈ T .

3. The intersection of any finite number of open sets is open. That is, if
S1, . . . , Sn ∈ T then

⋂n
k=1 Sk ∈ T .

4. The union of any (finite or infinite) collection of open sets is open.
That is, if S ⊆ T , then

⋃
S∈S S ∈ T .

Remark 2.2.6 As before, the closed sets are those whose complements are
open in the topology. Notice that a set can be both open and closed in a
topology; in particular the empty set and the whole space are both open and
closed in all topologies. As before, some subsets of a space may be neither
open nor closed.

Remark 2.2.7 This definition of a topological space specifies the topology
through its open sets. The same topology can also be specified through its
closed sets, through its neighborhood system, through its interior operator,
through its closure operator, and in other ways.

Remark 2.2.8 A metric space has a “natural topology” in which the open
sets are just those resulting from arbitrary unions of open balls. Alternately,
we can take the open sets to be all those subsets for which every point in the
subset can be surrounded by an open ball in the subset. Either way, this is
called the metric topology for the (metric) space.

Definition 2.2.8 (Discrete topology) The discrete topology for a set X
is T = P(X), the set of all subsets of X.
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Exercise 2.2.25 Show that the metric topology of a discrete metric space is
the discrete topology. Conversely, one can define a discrete metric on any
discrete topological space.

Definition 2.2.9 (Subspace) A topological space (X ′, T ′) is called a sub-
space of a topological space (X, T ) if X ′ ⊆ X and

T ′ = {S ∩X ′ | S ∈ T }.

That is the T ′ is the relativization of T to the subset, and it is called the
relative topology on X ′ ⊆ X.

Exercise 2.2.26 Show that the relative topology is in fact a topology.

2.2.6 Bases

Proposition 2.2.1 A subset of a topological space is open if and only if it
is a union of open balls.

Exercise 2.2.27 First part of proof: Show that any union of open balls is
open. (Trivial)

Exercise 2.2.28 Second part of proof: Show that an arbitrary open set U is
a union of open balls. Hint: Each point x ∈ U is surrounded by an open ball
Bε(x) ⊆ U .

Exercise 2.2.29 Describe in words the open sets in E.

Definition 2.2.10 (Base) A family of open sets is called a base for a topol-
ogy if every open set is a (possibly infinite) union of sets in the base. That
is, B ⊆ T is a base for (X, T ) if for every U ∈ T there is a F ⊆ B such that
U =

⋃
F .

Remark 2.2.9 A topology may have many bases, each of which is capable of
generating the entire topology. (Analogously, a vector space can have many
bases, and each basis is capable of generating the entire vector space. A
vector space is generated from a basis by linear operation — vector addition
and scalar multiplication — whereas a topology is generated from a base by
the union operation.)

Proposition 2.2.2 The open balls of a metric space are a base for the metric
topology.
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2.3 Convergence and limits

2.3.1 Convergence in metric spaces

Definition 2.3.1 (Convergence in metric spaces) In a metric space (X, d)
a sequence of points x1, x2, . . . is said to converge to the limit x, written
xn → x, if and only if d(x, xn)→ 0, that is, 0 = limn→∞ d(x, xn). More pre-
cisely, for any ε > 0 there is a positive N such that d(x, xn) < ε for n > N .
That is,

∀ε > 0 ∃N > 0 ∀n > N : d(x, xn) < ε.

Proposition 2.3.1 In a metric space, the limit, if it exists, is unique (i.e.
a sequence cannot converge to two limits). Hence, if xn → x we can write
x = limn→∞ xn.

Exercise 2.3.1 Prove this proposition. Hint: Assume the sequence has two
limits x 6= x′, let ε = 1

2
d(x, x′) and derive a contradiction.

Proposition 2.3.2 In a metric space, xn → x if and only if, for each ε > 0,
xn is eventually in Bε(x) (that is, there is a positive N such that xn ∈ Bε(x)
for all n > N).

Proposition 2.3.3 In a metric space, xn → x if and only if, for each neigh-
borhood U of x, xn is eventually in U .

Exercise 2.3.2 Prove these propositions.

Proposition 2.3.4 In a metric space, the closure of a subset is the set of
all limits of sequences in the subset.

Remark 2.3.1 Of course, the limits of some of these sequences lie in the
interior, but the important point is that we may have sequences lying in the
interior with limits on (but not outside) the boundary. This is the primary
significance of the boundary. For example, in (0, 1) ⊂ E, we can have se-
quences converging to 0, 1, or any point inside the interval, but not to any
points less than 0 or greater than 1.

Remark 2.3.2 To prove the preceding proposition, suppose xn ∈ U and
xn → x; therefore, for any ε > 0, xn is eventually in Bε(x). Therefore
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every such ball intersects U (since it contains some of the xn, which are in
U). Either x is in U or it’s not; if it is, there is nothing to prove. If it’s
not, then it must be on the boundary of U , since we’ve shown that every
ε-neighborhood of it intersects U .

Proposition 2.3.5 The metric topology is determined by the convergent se-
quences of points.

Remark 2.3.3 The convergent sequences define the closures of subsets, and
thus the closed subsets, and thus the topology. This observation reveals some
of the intimate connections between distance, neighborhoods and convergence
that is captured by the notion of a topological space. (The preceding propo-
sition does not hold for arbitrary topological spaces, but only for those that
satisfy the “first countability axiom,” which will not be discussed here.)

2.3.2 Convergence in topological spaces

The preceding propositions motivate the following definition.

Definition 2.3.2 (Convergence in topological spaces) In a topological
space a sequence is said to converge to a limit if it is eventually in every
neighborhood of that limit. That is, a sequence of points x1, x2, . . . converges
to the limit x, written xn → x, if and only if for any neighborhood U of x
there is a positive N such that xn ∈ U for all n > N .

Remark 2.3.4 In some topological spaces it is possible for a sequence to
converge to two different points, xn → x and xn → x′, but x 6= x′. Since
this behavior is very unintuitive, the remainder of this section will develop
an example; it is not, however, necessary for the remainder of the material.

Definition 2.3.3 (Finite complement topology) In the finite complement
topology for a set, the only open sets are those whose complements are finite.
Equivalently, the finite subsets are equivalent to the closed sets.

Exercise 2.3.3 Show that the finite complement topology is, in fact, a topol-
ogy.

Exercise 2.3.4 Let (X, T ) be a topological space in which X is infinite and
T is the finite complement topology. Show that in such a space every neigh-
borhood is infinite and has a finite complement.
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Exercise 2.3.5 Suppose that in this space xn → x and yn → y. (For exam-
ple, if X = R, we might take 1− 1/n→ 1 and −1 + 1/n→ −1.) Show that
the sequence x1, y1, x2, y2, . . . converges to both x and y. (For example, the
sequence 1

2
,− 1

2
, 2

3
,− 2

3
, 3

4
,− 3

4
, . . . converges to both +1 and −1.) Hint: Pick

a neighborhood U of x; we must show xn, yn, . . . is eventually in U . Since
xn → x we know xn is eventually in U , so the problem is to show that yn is
also eventually in U . Recall now, that U has a finite complement.

Remark 2.3.5 This peculiar behavior can happen because in this space the
neighborhoods are “very large” and in fact have to overlap; so the neighbor-
hoods cannot shrink down (and become nonoverlapping) in the way we expect
for convergence. In topological terminology, the space is not Hausdorff, which
means that any two distinct points have nonoverlapping neighborhoods. For-
tunately, metric spaces and most of the other topological spaces we have to
deal with are Hausdorff.

2.4 Continuity

Intuitively, a function is continuous if infinitesmal variations of its input lead
to infinitesmal variations of its output (no “cliff effects”).

Definition 2.4.1 (Continuous function) A function f : X → X ′ between
(possibly identical) metric spaces (X, d) and (X ′, d′) is called continuous at
x ∈ X if and only if, for each positive ε there is a δ such that d′[f(x), f(y)] < ε
whenever d(x, y) < δ. f is called continuous when it is continuous at every
x ∈ X. More precisely,

∀ε > 0 ∃δ > 0 ∀y ∈ X : d(x, y) < δ =⇒ d′[f(x), f(y)] < ε.

Remark 2.4.1 This is, of course, the standard “ε-δ definition” of continuity,
extended to metric spaces. The following propositions extend it to topological
spaces.

Definition 2.4.2 (Image of a set) If f : X → X ′ and S ⊆ X, then the
image of S under f is defined f [S] = {f(x) | x ∈ S}.

Proposition 2.4.1 In a metric space, f is continuous at x if and only if,
for each positive ε there is a δ such that f [Bδ(x)] ⊂ Bε(f(x)).
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Proposition 2.4.2 In a metric space, f is continuous at x if and only if,
for each neighborhood V of f(x) there is a neighborhood U of x such that
f [U ] ⊂ V .

Remark 2.4.2 That is, if the variation of the input is limited to U then the
variation of the output will be limited to V .

The preceding motivate the following definition of continuity for topological
spaces.

Definition 2.4.3 (Continuous topological map) A mapping f from a
topological space (X, T ) to a topological space (X ′, T ′) is called continuous at
x ∈ X if and only if, for each neighborhood V of f(x) there is a neighborhood
U of x such that f [U ] ⊂ V .

Remark 2.4.3 There are many equivalent ways of defining continuous maps
on topological spaces.

Definition 2.4.4 A map is said to be continuous on a set if it is continuous
at every point in that set.

2.5 Homeomorphism

Remark 2.5.1 Suppose that f is a continuous, one-to-one mapping of (X, T )
into (X ′, T ′). In effect, f continuously embeds X in X ′, possible “deforming”
it in the process, but not “tearing” it. If there is also a continuous, one-to-one
function g : X ′ → X, then we see that each space can be continuously embed-
ded in the other. In this sense they are equivalent (ignoring the continuous
deformations). These observations motivate the following definitions.

Definition 2.5.1 (Homeomorphism) A homeomorphism is a continuous,
one-to-one, onto mapping with a continuous inverse.

Remark 2.5.2 N.B. A homeomorphism is not the same as a homomorphism!

Definition 2.5.2 (Homeomorphic spaces) Two spaces are called home-
omorphic is there is a homeomorphism between them.
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Remark 2.5.3 Homeomorphic spaces are considered topologically equiva-
lent, because topology is most concerned with properties that are preserved by
homeomorphisms (“continuous deformations”). This is the reason topology is
sometimes called “rubber sheet geometry” and is the source of the old canard
about topologists being unable to tell a doughnut from a coffee cup (because
they are topologically equivalent). Properties that hold across homeomorphic
spaces are called topological invariants.

Remark 2.5.4 There are many equivalent ways of defining homeomorphism
and homeomorphic, which can be found in topology texts. For our purposes
it is sufficient to remember that there must be a correspondence between the
two sets that is one-to-one and continuous in both directions.

2.6 Separability

Definition 2.6.1 (Dense) A subset S of a space X is said to be dense in
that space if and only if the closure of S is X

Remark 2.6.1 Since the closure of S includes, in addition to S, all the
limits of sequences in S, we see that if every element of X can be reached by
a sequence in S, then S is dense in X. Indeed, in a metric space the closure
of S is exactly the set of all limits of sequences in S (Prop. 2.3.4). In other
words, S is dense in X if S is sufficient to generate X either in itself or by
means of convergent sequences.

Example 2.6.1 The set S = (−1, 0) ∪ (0, 1) is dense in [−1, 1] since the
points −1, 0 and 1 are all limits of sequences in S.

Example 2.6.2 The rational numbers are dense in the reals, since every real
is the limit of a sequence of rationals (e.g. its decimal approximations).

Definition 2.6.2 (Separable) A space is called separable if it has a count-
able, dense subset.

Example 2.6.3 The reals are separable because the rationals are a countable,
dense subset.

Remark 2.6.2 The significance of a space being separable is that it can be
generated (via limits) from a countable set, and a countable set can, in prin-
ciple, be specified by finite strings over a finite alphabet. (Why?)
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2.7 Completeness

2.7.1 Complete metric space

Definition 2.7.1 (Fundamental or Cauchy sequence) A sequence x1, x2,
. . . in a metric space (X, d) is called Cauchy or fundamental if d(xm, xn)→ 0
as m,n→∞.

Remark 2.7.1 Notice that Cauchy sequences need not have limits. For ex-
ample, in the space Q of rational numbers with the usual metric (d(q, r) =
|q − r|), a sequence of rational approximations to

√
2, such as 1, 1.4, 1.41,

1.414,. . . , is Cauchy but does not have a limit in Q (since
√

2 6∈ Q).

Definition 2.7.2 (Complete) A metric space is complete if every Cauchy
sequence in the space converges to a point of the space.

Remark 2.7.2 In other words, a complete space includes all its limits. Thus,
for example, the real numbers with the usual metric are complete, but the ra-
tionals are not complete.

Exercise 2.7.1 Show that, with the usual metric, [0, 1] is complete but (0, 1)
is not.

Exercise 2.7.2 Show that the integers with the usual metric are complete.

2.7.2 Completion of metric spaces

Definition 2.7.3 (Completion) A metric space (X ′, d′) is a completion of
a metric space (X, d) if X ′ is complete and X is isometric to a subset of X ′.

Remark 2.7.3 The fact that X is isometric to a subset Y of X ′ means that
the members of X and Y are “essentially the same”; they can be thought
of as different names for the same thing. Therefore, since X ′ is complete,
it has limits for all the sequences in Y , and these limits can added to X in
order to complete it. For example, if f : (X, d) → (X ′, d′) is an isometric
mapping and x1, x2, . . . is a Cauchy sequence in X, then f(x1), f(x2), . . . will
be a Cauchy sequence in X ′. (Why?) Therefore lim f(xn) exists in X ′ and
we can adjoin this to X to provide a limit for the original sequence xn. (This
“adjoining” is a formal trick for adding elements to a set without interfering
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with the elements already there; in effect they are “colored” differently so that
there is no possibility of confusion.) The domain of f can then be extended
to include the adjoined element, so that f(limxn) = lim f(xn).

Proposition 2.7.1 (Uniqueness) The completion of a metric space (X, d)
is “essentially unique” in that the subsets corresponding to X in comple-
tions must be isometric. That is, if X is isometric to Y in the completion
(X ′, d′), and X is isometric to Z in the completion (X ′′, d′′), then Y and Z
are isometric. (Why?)

Proposition 2.7.2 Every metric space can be completed.

Remark 2.7.4 Sketch of proof: Let (X, d) be a metric space and let (X∗, d∗)
be the space of “Cauchy-sequence equivalence-classes” over X. That is, the
elements of of X∗ are sets of equivalent Cauchy sequences in X, where two
Cauchy sequences xn, yn are called equivalent if d(xn, yn) → 0. (Show this
is an equivalence relation.) The metric on X∗ is defined:

d∗(S, T ) = lim
n→∞

d(sn, tn),

where s ∈ S and t ∈ T . That is, the distance between two equivalence classes,
S and T , of Cauchy sequences is the distance between the limits of any two
representatives, s and t, of these classes. It is necessary to show that this
function is well-defined, that is, that is gives the same result no matter what
representatives are chosen, and that the function is a metric.

Exercise 2.7.3 Show that d∗ is well-defined and a metric.

Remark 2.7.5 The space (X∗, d∗) is complete. (Try to prove it!) Further-
more, it is a completion of (X, d). To see this, notice that x ∈ X can be
embedded in X∗ by identifying it with the equivalence class of the (stationary
or constant) Cauchy sequence x, x, x, . . .. (Show that stationary sequences
are Cauchy.) Finally, it’s necessary to show that the set of equivalence classes
of stationary Cauchy sequences is dense in (X∗, d∗). (Give it a try.)

Remark 2.7.6 In this way, real numbers (including irrational numbers) can
be considered no more than new names for Cauchy sequences of rational
numbers. This is the way mathematicians “construct” the real numbers from
the rationals. Since rational numbers can be defined as pairs of integers,
in this way the reals can be reduced to integers, which is the way Dedekind
and other 19th mathematicians endeavored to “arithmetize geometry” (thus
reducing the continuum to a discrete formal system).
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Remark 2.7.7 In the same way, any metric space (X, d) can be completed
by replacing the elements of X by equivalence classes of stationary sequences,
and by adjoining to the space the equivalence classes of Cauchy sequences.
Further, since all completions are essentially the same (isometric), the con-
struction of equivalence classes of Cauchy sequences is (essentially) the only
way to complete a space.

Proposition 2.7.3 Every metric space can be considered the dense subset
of a complete metric space. (That is, by ignoring as irrelevant the isometry
that embeds the original space in its completion.)

Remark 2.7.8 Completion, as its name suggests, is the end of the road,
at least so far as limits are concerned. Since a complete space includes all
the limits of Cauchy sequences, there is no way these sequences can lead to
additional elements.

2.8 Connectedness

2.8.1 Connection

Definition 2.8.1 (Connected space) A topological space (X, T ) is con-
nected if it has no disjoint, closed proper subsets A,B ⊂ X such that X =
A ∪B.

Proposition 2.8.1 Connectedness is a topological invariant.

Definition 2.8.2 (Connected set) A subset S of a topological space is
connected if it is connected as a subspace of the topological space.

Example 2.8.1 Thus, R and (0, 1) are connected subsets of E but [0, 1] ∪
[2, 3], (−1, 0) ∪ (0, 1) and {−1, 1} are not.

Exercise 2.8.1 Show that a topological space is connected if and only if it
has no open, disjoint proper subsets whose union is the space. Hint: Review
the definition of a closed set in a topology.

Definition 2.8.3 (Disconnected) A space or set is called disconnected if
it is not connected.
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Exercise 2.8.2 Show examples of various connected and disconnected sub-
sets of E2 to illustrate the preceding definitions.

Definition 2.8.4 (Separated sets) Two nonempty sets in a space are said
to be separated if the intersection of each with the closure of the other is
empty.

Remark 2.8.1 That is, two sets are not separated if one can be reached by
a convergent sequence in the other.

Exercise 2.8.3 Give example of various separated and nonseparated pairs
of sets in E2.

Proposition 2.8.2 A set is disconnected if and only if it is the union of two
(or more) separated sets.

Proposition 2.8.3 Let 2 = {0, 1}. A topological space (X, T ) is connected
if and only if the only continuous maps from X to 2 are constant maps.

Remark 2.8.2 Sketch of proof: Since {0} and {1} are open in 2, their
inverse images A = f−1[{0}] and B = f−1[{1}] are disjoint, open sets in X
for which X = A ∪ B. Therefore X is disconnected. Conversely, if X is the
union of disjoint open sets A, B, then we can define f(x) = 0 for x ∈ A and
f(x) = 1 for x ∈ B. This function is continuous, since the inverse images
of the open sets of 2 (namely, ∅, {0}, {1}, 2) are open.

Remark 2.8.3 This proposition says that a continuous function cannot map
a connected space to two different points. It implies that discrete categories
cannot be defined by a continuous function over a connected space. That is,
under conditions of continuity, exact categorization is impossible.

Exercise 2.8.4 Show that any two disjoint sets in a discrete topology are
separated.

Definition 2.8.5 (Connected component) A (connected) component of
a set is a maximal connected subset of it. The component of a point in the
space is the (unique) component that contains it.

Exercise 2.8.5 Why is the component of a point unique?

Remark 2.8.4 A connected space has one component.

Proposition 2.8.4 The components of a discrete topology are singleton sets.
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2.8.2 Continua and discontinua

Different topologists define “continuum” differently, but all require a contin-
uum to be connected. Hausdorff (Set Theory, 173) calls any closed, connected
set a continuum (an open, connected set being called a domain). More gen-
erally (e.g. MT 264) a continuum is required to be compact (a concept I have
avoided in this course) as well as connected. Some authors (e.g. EM 81C,
MEGT 158) further require a continuum to have more than one point. For
our purposes, Hausdorff’s definition is adequate:

Definition 2.8.6 (Continuum) A continuum is a closed, connected set.

Definition 2.8.7 (Totally disconnected) A set is totally disconnected if
its components are singleton sets.

Remark 2.8.5 A discrete topology is totally disconnected.

2.8.3 Path connection

There is another, slightly more restricted definition of connection, which is
often more useful.

Definition 2.8.8 (Path or arc) A continuous function p : [0, 1] → X is
called a path or arc in the space (X, T ). The initial point of the path is
xi = p(0) and the terminal point of the path is xt = p(1). The path is said
to join or connect xi to xt

Remark 2.8.6 Notice that a path may intersect itself any number of times.

Remark 2.8.7 One natural interpretation of a path is as a continuous tra-
jectory through a continuum state space.

Remark 2.8.8 A path is a homeomorphic image of [0, 1] with the usual met-
ric. Indeed, this is a common definition of a path.

Definition 2.8.9 (Path-connected) A space is called path-connected (arc-
connected, pathwise-connected, etc.) if from any point in the space there is
a path to any other point in the space. A set is path-connected if it is path-
connected as a subspace (i.e. in the relative topology).
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Remark 2.8.9 Therefore, in a path-connected space, any point is reachable
from any other point. Alternately, any point can be continuously transformed
into any other point of the space.

Remark 2.8.10 Path-connected components can be defined in the same way
as (connected) components.

Remark 2.8.11 The preceding definitions of connection are both quite in-
tuitive, and one might wonder if they are equivalent; they are not. Con-
sider the following set: Y ∪ C, where Y is the y-axis between −1 and 1,
Y = {(0, y) | −1 ≤ y ≤ 1}, and C is the graph of the positive cosine-
reciprocal function, C = {(x, y) | y = cos(1/x), x > 0}. Notice that C
oscillates more and more rapidly as it approaches the y-axis, but it never
actually touches it. Therefore, Y ∪ C is not path connected, since there are
no paths between points in Y and points in C. On the other hand, it is con-
nected, as we can see by noting that C is approaching Y , and therefore the
closure of C is not disjoint from Y .

However,

Proposition 2.8.5 Every path-connected set is connected.

Exercise 2.8.6 Prove this proposition. Hint: Suppose the set is the union
of two disjoint subsets. You know there is a path from any point in one to
any point in the other. Show from this that the subsets cannot be separated.

2.8.4 Processes

We need to be able to talk about continuous processes in topological spaces,
but we do not have the usual mechanisms for defining them, such as differ-
ential equations.

Definition 2.8.10 (Process) A process on a topological space S (the state
space) is a continuous function f : S×R→ S satisfying the group properties:

f(s, 0) = s,

f [f(s, t), u] = f(s, t+ u).

The intuitive meaning of f(s, t) is the state of the system t time units after it
is in state s. The two preceding equations follow from this intuitive definition.
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Exercise 2.8.7 Explain in words why you would expect each of these equa-
tions to be true.

Remark 2.8.12 Notice that for any t 6= 0 a process f defines a path from s
to f(s, t).

Exercise 2.8.8 Prove the preceding remark.

Definition 2.8.11 (Trajectory) If there is some t > 0 such that f(si, t) =
sf , then we may speak of a trajectory from si to sf . Notice that by this
definition of trajectory and process, a trajectory cannot interset itself (i.e. go
in two different directions from a the point of intersection).

Exercise 2.8.9 Explain why.

2.9 References

Sources for this chapter include the Encyclopedic Dictionary of Mathematics
(Mathematical Society of Japan, 1980, secs. 81A, B, C, 273C, D, J, 408B, G),
McCarty (1967, chs. 3, 4, 6), Mendelson (1975, chs. 2, 3, 4), Moore (1964,
chs. 2, 3, 6), and Moore (1985, ch. 3).



Chapter 3

Banach Spaces

This chapter is a sort of mid-point between the preceding chapter, on topol-
ogy, and Ch. 5 on Hilbert spaces, for many of the properties commonly
associated with Hilbert spaces are in fact properties of the larger class of
Banach spaces. This more general framework is useful in applications of
field computation in which the postulates of Hilbert spaces might not apply.
We begin with a description of normed linear spaces, which are appropriate
for many image-like information representations. In general, all we need are
appropriate notions of adding, scaling, and measuring the “size” of things.
Next we turn to Banach spaces, which have the additional property of being
complete, that is, containing the limits of convergent sequences. This gives
us very general notions of differentiation and a Banach-space version of Tay-
lor’s theorem. Therefore we can apply these useful ideas to continuous and
other non-standard information representations and develop an approxima-
tion theory that is useful in defining one notion of universal field computation
(Ch. 9).

3.1 Linear spaces

3.1.1 Definitions

Definition 3.1.1 (Field) Briefly, an (algebraic) field is a set on which sum
and product operations are defined that satisfy the usual properties (both are
commutative and associative, product distributes over sum, additive identity
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0, additive inverses, multiplicative inverses, multiplicative identity 1).1

Example 3.1.1 The rationals (Q), reals (R), and complex numbers (C) are
the best-known examples of algebraic fields (and the ones we will have most
use of).

Definition 3.1.2 (Linear space) A linear space over K comprises a field
K (of “scalars”), a set L (of “vectors”), and two operations, a sum ⊕ :
L×L→ L and a (scalar) product ⊗ : K×L→ L. The operators satisfy the
following properties (for a, b ∈ K and x,y, z ∈ L):

associative sum: (x⊕ y)⊕ z = x⊕ (y ⊕ z).

zero element: There is a zero element 0 ∈ L satisfying

0⊕ x = x = x⊕ 0.

additive inverses: For every x ∈ L there is a −x ∈ L such that

−x⊕ x = 0 = x⊕−x.

(This is implied by the additive inverses in the field.)

commutative sum: x⊕ y = y ⊕ x.

right distribution: a⊗ (x⊕ y) = (a⊗ x)⊕ (a⊗ y).

left distribution: (a+ b)⊗ x = (a⊗ x)⊕ (b⊗ x), where + is the addition
operation of the field.

associative product: a ⊗ (b ⊗ x) = (a × b) ⊗ x, where × is the product
operation of the field.

unit product: 1 ⊗ x = x, where 1 is the unitary element (multiplicative
identity) of the field. (It is easy to show 0⊗x = 0 and −x = (−1)⊗x;
do it!)

1In this chapter, “field” refers to an algebraic field, as opposed to the fields that are
the subject of field computation as defined in Ch. 11.2.1.
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Remark 3.1.1 The terms “scalar” and “vector” are meant to be suggestive,
but it should not be assumed that the elements of a linear space are scalars
and vectors of the familiar kind (they need not even be numbers); we will
sometimes say “generalized vector” to stress this point. Indeed any set of
objects may form a linear space if they can be “scaled” and “summed” in
accord with the preceding definition.

Remark 3.1.2 K is called the basic field or ground field of the linear space.
A linear space over the real numbers is called a real linear space, and one
over the complex numbers a complex linear space.

Notation 3.1.1 For convenience, when confusion is unlikely, we write ax
for a ⊗ x and x + y for x ⊕ y. Further, we will write −x for −1 ⊗ x and
x− y for x⊕−y.

Definition 3.1.3 (Linear dependence and independence) A set of vec-
tors {x1, . . .xn} is linearly independent if a1x1 + · · · anxn = 0 implies a1 =
· · · = an = 0. Conversely, they are linearly dependent if there are ak, not all
zero, such that a1x1 + · · · anxn = 0.

Remark 3.1.3 The significance, of course, of linear dependence is that the
vectors can be written as linear combinations of the other vectors. For exam-
ple, if a1x1 + · · · anxn = 0 with a1 6= 0, then x1 = −a−1

1 (a2x2 + · · ·+ anxn).

3.1.2 Examples

Example 3.1.2 The most familiar example of a linear space is the vector
space of n-dimensional vectors (either real or complex).

Example 3.1.3 The preceding example can be extended to the linear space
of infinite sequences of elements of a field K. (Give definitions for the sum
and product operations of this linear space.)

Example 3.1.4 The set of K-valued functions is a linear space over K.
(Define the sum and product operations of this linear space.)

Example 3.1.5 Linear spaces can be defined for various important subsets
of the space of K-valued functions, for example continuous functions and
differentiable functions.
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Remark 3.1.4 Thus the set of spatially continuous images (fields, in the
sense of field computation), is a linear space. Describe the sum and product
operations in intuitive terms (e.g., what is their effect on visual images).

Exercise 3.1.1 Show that the preceding are linear spaces. (The major prob-
lem is to show that the operations are closed, e.g., that the sum of two con-
tinuous functions is continuous.)

Exercise 3.1.2 Define the linear space of n-term polynomials with coeffi-
cients in K.

Exercise 3.1.3 Show that the space of m× n matrices forms a linear space
with the usual definitions of scalar product and matrix addition.

Definition 3.1.4 (Linear function) A complex-valued function f : X →
C is called linear if for all x, y ∈ X and a, b ∈ C, f(ax+by) = af(x)+bf(y).

Exercise 3.1.4 Show that the set of all linear functions on X forms a linear
space.

Remark 3.1.5 There are few purely linear systems in nature. Usually some
quantity cannot be increased without bound, either because some “substance”
will run out, or because it will begin to behave nonlinearly — as when a high
voltage arcs through a capacitor or a high current vaporizes a conductor.

As a rule of thumb, it’s best to treat any linear model as an approximation.
Further, it is unwise to depend on any properties of linear models that do not
hold (at least approximately) for approximately linear models. One very use-
ful class of approximately linear model is the saturating linear model, which is
linear for moderate quantities, but approaches limits for extreme quantities.
An example is a sigmoid function.

3.2 Normed linear spaces

3.2.1 Norms

3.2.1.1 Definitions

A norm measures the “size” or “magnitude” of an element of a linear space.
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Definition 3.2.1 (Norm) An operation N : L → R∗ on a real or complex
linear space L is a norm if and only if:

zero norm: N(x) = 0 if and only if x = 0.

scaling: N(a⊗ x) = |a|N(x).

triangle inequality: N(x⊕ y) ≤ N(x) +N(y).

Notation 3.2.1 N(x) is usually written ‖x‖, possibly with subscripts to dis-
tinguish different norms.

Remark 3.2.1 The absolute value is a norm on the reals.

Exercise 3.2.1 Show that for any norm ‖ ·‖ on R, there is a positive η such
that ‖x‖ = η|x| for all x ∈ R. What is the value of η?

Exercise 3.2.2 Show that a norm is a continuous mapping.

3.2.1.2 Examples

Definition 3.2.2 (Lp norms) The Lp norms of n-dimensional real or com-
plex vectors are defined:

‖x‖p = p

√√√√ n∑
k=1

|xk|p.

More concisely, ‖x‖pp =
∑
xk. As usual, ‖x‖∞ = maxk |xk|. L2 is called the

Euclidean norm.

Exercise 3.2.3 Show that that Lp norms are in fact norms.

Exercise 3.2.4 What is the relation between Lp norms and Lp metrics?

Definition 3.2.3 (Lp product norms) If L is a cartesian product of normed
linear spaces Lk, that is, L = L1× · · ·×Ln, then an Lp norm can be defined
as follows:

‖X‖p = p

√√√√ n∑
k=1

‖Xk‖pk,

where ‖Xk‖k represents the norm on Lk (possibly different in each case).
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Exercise 3.2.5 Show that the Lp product norm is in fact a norm.

Definition 3.2.4 C[a, b] is the space of all continuous real-valued functions
on [a, b].

Definition 3.2.5 (Uniform norm) For f ∈ C[a, b], the uniform norm is
defined:

‖f‖ = max
a≤x≤b

|f(x)|

Exercise 3.2.6 Show that the uniform norm is in fact a norm.

3.2.2 Normality

Definition 3.2.6 (Normalized) A (generalized) vector x is normalized if
its norm is 1, ‖x‖ = 1. A nonzero vector can always be normalized by
dividing by its norm, that is, x/‖x‖ is normalized.

Exercise 3.2.7 Use the definition of a norm to show that x/‖x‖ is normal-
ized (for x 6= 0).

Remark 3.2.2 Normalization considers (generalized) vectors independently
of their absolute size, that is independently of scaling.

Exercise 3.2.8 For various values of p ≥ 1, describe the effect of Lp-normalization
on two-dimensional vectors.

Exercise 3.2.9 Describe the effect of normalization on two-dimensional vi-
sual images. Describe the effect on acoustic signals of finite duration.

3.2.3 Normed linear space

Definition 3.2.7 (Normed linear space) A normed linear space is a real
or complex linear space together with a norm on that space.

Exercise 3.2.10 Show that C[a, b] with the uniform norm is a normed linear
space.

Exercise 3.2.11 If you know some numerical analysis, then show that C[a, b]
is separable. Hint: Apply the Weierstrass approximation theorem.
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Proposition 3.2.1 A normed linear space is a metric space under the norm-
metric d(x,y) = ‖x− y‖.

Exercise 3.2.12 Prove this proposition.

Definition 3.2.8 (Translation and scaling invariance) A metric is trans-
lation invariant if

d(x + z,y + z) = d(x,y).

It is scaling invariant if

d(ax, ay) = |a|d(x,y).

Exercise 3.2.13 Draw diagrams to illustrate the concepts of translation and
scaling invariant metrics.

Proposition 3.2.2 The norm-metric is translation and scaling invariant.

Exercise 3.2.14 Prove this proposition.

Definition 3.2.9 (Topologically equivalent norms) Two norms, ‖·‖ and
‖ · ‖′, are topologically equivalent if there are positive real numbers ζ, η such
that for all x ∈ L,

ζ‖x‖ ≤ ‖x‖′ ≤ η‖x‖.

Exercise 3.2.15 Explain why such norms should be called “topologically equiv-
alent.” Hint: Suppose a sequence converges by one norm. What can you say
about convergence under topologically equivalent norms?

Exercise 3.2.16 Show that in En, the L2-norm is topologically equivalent to
the L∞-norm.

Exercise 3.2.17 Show that in En, all norms are topologically equivalent.

Proposition 3.2.3 Suppose f : X → Y , where X and Y are normed linear
spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively. If there are positive reals ζ,
η such that for all x,y ∈ X,

ζ‖x− y‖X ≤ ‖f(x)− f(y)‖Y ≤ η‖x− y‖X ,

then f is a homeomorphism, and X and Y are homeomorphic.

Exercise 3.2.18 Prove this. Hint: What does the inequality say about the
continuity of f and f−1?
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3.3 Banach spaces

Definition 3.3.1 (Banach space) A Banach space is a complete normed
linear space.

Remark 3.3.1 Thus the significance of a Banach space is that Cauchy se-
quences are guaranteed to converge to limits; that is, if ‖xm−xn‖ → 0, then
we know limn→∞ xn exists. In particular, this means that operations such as
differentiation can be defined.

Exercise 3.3.1 Show that En is a Banach space.

3.4 Differentiation in Banach spaces

3.4.1 Fréchet derivative

Definition 3.4.1 (Fréchet differentiation) Suppose X and Y are two Ba-
nach spaces and U is an open subset of X. Then T : U → Y is Fréchet
differentiable at φ if there is a bounded linear operator D : X → Y such
that the following holds. For all α ∈ X such that φ + α ∈ U , there is an
E : X → Y such that

T (φ+ α) = T (φ) +D(α) + E(α)

and

lim
‖α‖→0

‖E(α)‖
‖α‖

= 0.

Under these circumstances, D is called the Fréchet derivative of T at φ; it
is denoted by T ′(φ). The Fréchet derivative is a locally linear approximation
to T ; T ′(φ)(α) = D(α) is called the Fréchet differential of T .

Remark 3.4.1 Since a linear operator is continuous if and only if it is
bounded, Fréchet derivatives are (by definition) continuous.

Proposition 3.4.1 The derivative of a linear operator is that operator: L′(φ) =
L.

Remark 3.4.2 Note that T ′ : X → L(X, Y ), where L(X, Y ) is the space of
all continuous (bounded) linear operators from X to Y .
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Remark 3.4.3 Higher order derivatives are defined in the obvious way. Sup-
pose T : X → Y . Since T ′ : X → L(X, Y ), it is easy to see that the higher
derivatives have the types:

T ′′ : X → L(X,L(X, Y )),
T (3) : X → L(X,L(X,L(X, Y ))),

and so forth. Note that each successive derivative is of “higher type” than its
predecessor.

3.4.2 Gâteaux derivative

Definition 3.4.2 (Gâteaux differentiation) Suppose X and Y are Ba-
nach spaces, U ⊆ X is open, and T : U → Y . Then T has a Gâteaux
derivative at φ ∈ U if, for all α ∈ U the following limit exists:

dT (φ, α) = lim
t→0

T (φ+ tα)− T (φ)

t
=

d

dt
T (φ+ tα)|t=0.

We write dT (φ, α) for the Gâteaux derivative of T at φ in the “direction” α.

Proposition 3.4.2 The Gâteaux derivative, if it exists, is unique.

3.4.3 Properties of derivatives

Proposition 3.4.3 Every Fréchet derivative is a Gâteaux derivative. Since
the Gâteaux derivative is unique, the two derivatives are identical if the
Fréchet exists.

Definition 3.4.3 (“Uncurried” derivatives) The spaces

L(X,L(X, · · · L(X,L(X, Y )) · · ·))

[with k nestings of L(X,−)] are isomorphic to the spaces L(Xk, Y ), and
we will often make use of this fact. We use dkT to denote that k-th order
“uncurried” derivative of T :

dkT : X → L(Xk, Y ),
dkT (φ)(α1, . . . , αk) = T (k)(φ)(α1) · · · (αk).

Proposition 3.4.4 The derivative of a composition is given by the following
equation (shown in both curried and uncurried forms):

(T ◦ U)′(φ)(α) = T ′[U(φ)][U ′(φ)(α)],

d(T ◦ U)(φ, α) = dT [U(φ), dU(φ, α)].
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3.5 Taylor theorem in Banach spaces

We consider now a generalization of the familiar Taylor theorem from real
analysis. It permits the expansion of a function on a Banach space in an
infinite series about a point in that space. If the Banach space is a function
space, this theorem permits expanding an operator around a particular func-
tion. (Thus, in field computation, it permits expanding a field transformation
around a fixed field.)

Proposition 3.5.1 (Taylor) Suppose U is any open subset of a Banach
space X and T : X → Y is a map which is Cn in U (that is, the first n
derivatives of T exist). Let φ ∈ U and α ∈ X be such that φ + rα ∈ U for
all r ∈ [0, 1]. Then:

T (φ+ α) =
n−1∑
k=0

T (k)(φ)(α)k

k!
+Rn(φ, α),

where

Rn(φ, α) =

∫ 1

0

(1− r)n−1T (n)(φ+ rα)(α)n

(n− 1)!
dr.

Here ‘(α)k’ denotes k occurrences of the argument α. Also note that T (0) = T .
In uncurried form the Taylor expansion is:

T (φ+ α) =
n−1∑
k=0

dkT (φ,
n︷ ︸︸ ︷

α, . . . , α)

k!
+Rn(φ, α),

where

Rn(φ, α) =

∫ 1

0

(1− r)n−1dnT (φ+ rα,

n︷ ︸︸ ︷
α, . . . , α)

(n− 1)!
dr,

and the appropriate number of α arguments (zero or more) must be supplied
for dkT .

3.6 References

Sources for this chapter include the Encyclopedic Dictionary of Mathematics
(Mathematical Society of Japan, 1980, sec. 256A) and Moore (1985, chs. 5,
16).



Chapter 4

Basic Complex Analysis

Although real numbers are sufficient for most applications of field computa-
tion, complex numbers are sometimes required, as in Fourier analysis and the
application of field computation is in quantum computation. Therefore the
goal of this chapter is to provide an intuitive understanding of basic complex
analysis, especially as it applies in Hilbert spaces; a systematic presentation
of complex analysis is beyond its scope. In addition to standard material,
this chapter includes a brief discussion of hyperbolic trigonometry and its
applications in special relativity theory, which is intended to build intuition
by stressing the analogies with ordinary (circular) trigonometry.

4.1 Argand diagram

As everyone knows, complex numbers involve i =
√
−1. However, it will be

better at this point to forget about
√
−1 and understand complex numbers

by means of the Argand diagram (Fig. 4.1). As a matter of history, mathe-
maticians were dubious about imaginary numbers, and questioned their le-
gitimacy, until familiarity with the Argand diagram showed that they could
be thought of as ordinary two-dimensional vectors. For in the Argand dia-
gram we simply represent the complex number x+ iy as a vector (x, y). (In
this sense “i” can be thought of as a place holder or tag to distinguish the
Y-coordinate from the X-coordinate.) Then operations on complex numbers
can be interpreted as operations on two-dimensional vectors, without con-
cern for

√
−1. When complex numbers are represented in this way, they are

said to lie in the complex plane. Real numbers lie along the positive and

41
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x

y
r

z

q Re

Im

Figure 4.1: Argand diagram. z = x+ iy = reiθ.

negative X-axis, and (pure) imaginary numbers along the positive and neg-
ative Y-axis; other points represent complex numbers with both (nonzero)
real and imaginary parts. Therefore, in the complex plan the X-axis is called
the real axis and the Y-axis is called the imaginary axis. (Why we should
bother with complex numbers, and not simply make do with two-dimensional
vectors, will become apparent as we proceed.)

Remark 4.1.1 Notice that, unlike the real numbers, there is no natural
sense in which the complex numbers can be ordered.

Definition 4.1.1 (Cartesian components) The < : C→ R and = : C→
R operators extract the Cartesian components (real and imaginary parts, re-
spectively) of a complex number:

<(x+ iy) = x,

=(x+ iy) = y.

4.2 Geometrical Interpretations

The simplest use of the Argand diagram is to understand the addition and
subtraction of complex numbers.
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Definition 4.2.1 (Complex addition) Addition (or subtraction) of com-
plex numbers is equivalent to vector addition in the Argand diagram:

(x+ iy) + (x′ + iy′) = (x+ x′) + i(y + y′).

Definition 4.2.2 (Complex multiplication) (x + iy)(x′ + iy′) = (xx′ −
yy′) + i(xy′ + yx′).

Remark 4.2.1 The definition of multiplication may seem mysterious, but it
is motivated by the equation i2 = −1. Thus,

(x+ iy)(x′ + iy′) = xx′ + iyx′ + iy′x+ i2yy′ = (xx′ − yy′) + i(xy′ + yx′).

Further, we will see that it has important implications independent of
√
−1.

Definition 4.2.3 (Complex conjugate) The complex conjugate z of a com-
plex number z is obtained by negating its imaginary part:

x+ iy = x− iy.

The notation z∗ is also used for the complex conjugate.

Remark 4.2.2 The complex conjugate reflects the vector across the real (X)
axis. Symmetry suggests that there ought to be an operation to reflect a
complex number x+ iy across the imaginary (Y), yielding −x+ iy, but it is
not especially useful, so it doesn’t have a name. Of course, simple negation
reflects a complex number across both axes simultaneously, −(x+ iy) = −x−
iy.

Exercise 4.2.1 Prove the following:

x = (x∗)∗ = x

x+ y = x+ y

xy = x y

x/y = x/y

Exercise 4.2.2 Show that

<z =
z + z

2
and =z =

z − z
2i

.
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The Argand diagram suggests that the magnitude (“length”) of a complex
number is a significant quantity. The length, for course, is

√
x2 + y2, but

this can be expressed conveniently in terms of the complex conjugate (which
is one of the reasons the complex conjugate is useful), since:

(x+ iy)(x− iy) = x2 + ixy − ixy − i2y2 = x2 + y2.

Therefore we have:

Definition 4.2.4 (Magnitude) |z| =
√
zz.

Remark 4.2.3 Notice that this is consistent with the usual definition of the
absolute value of a real number, since for a real r, r = r; hence |r| =

√
rr =√

r2. (Recall that, by convention,
√

represents the nonnegative square root.)

Remark 4.2.4 The complex magnitude is a norm.

Remark 4.2.5 The distance between complex numbers is |z − z′|; it is the
norm metric.

Exercise 4.2.3 What would be wrong with defining the magnitude of a com-
plex number by |z| =

√
z2. Would it be a norm? Would |z − z′| be a metric?

Exercise 4.2.4 Show that |<z| ≤ |z| and |=z| ≤ |z|.

Exercise 4.2.5 Show that |z − w| ≥ ||z| − |w||.

Proposition 4.2.1 The reciprocal of a complex number is given by

(x+ iy)−1 =
x

x2 + y2
− iy

x2 + y2
. (4.1)

Exercise 4.2.6 Derive the preceding formula by solving wz = 1 for w; note
that the real and complex parts of the equation can be solved separately.

Exercise 4.2.7 Write z−1 in terms of the complex conjugate and the mag-
nitude. Does this simplify deriving Eq. 4.1?

Exercise 4.2.8 Derive the formula for dividing two complex numbers; you
should get a formula in the form X + iY .

Remark 4.2.6 The complex numbers form an (algebraic) field; that is, there
are both additive and multiplicative identities and inverses, both operations
are communtative and associative, and multiplication distributes over addi-
tion.
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4.3 Polar representation

4.3.1 Defined

Of course two-dimensional vectors can be represented in polar coordinates as
well as in rectangular coordinates, but the polar representation is especially
relevant to complex numbers. The radius is, of course, the magnitude of the
complex number, also called the modulus.

Definition 4.3.1 (Magnitude or modulus) mod z = |z| =
√
x2 + y2.

The angle is measured counterclockwise from the positive X-axis and is called
the argument, phase, amplitude or angle of the complex number. It can be
defined as follows:

Definition 4.3.2 (Argument or phase) arg(x+ iy) = arctan(y/x).

Remark 4.3.1 The mathematically most convenient way to measure angles
is in radians, which is defined to be the area within a circle enclosed by twice
the angle divided by the square radius of the circle. That is, if A is the area
enclosed by the angle, then its radian measure is θ = 2A/r2. Since the circle
has area πr2, an angle of π radians corresponds to 180◦ (since twice the angle
includes the whole area), π/2 radians corresponds to 90◦, 2π radians to 360◦,
etc. In general, if α is an angle in degrees, then θ = 2π(α/360◦).

Notation 4.3.1 Because we are often interested in angles that are fractions
or multiples of a complete cycle (2π radians), I have invented a kind of
monogram, 2π, that I will use for 2π whenever it represents a complete cycle
(360◦).1

Remark 4.3.2 We write arctan(y/x) so that the signs of x and y can be used
to determine the quadrant of the complex plane in which the number falls.
Thus arctan(+1/ + 1) = π/4, arctan(+1/ − 1) = 3π/4, arctan(−1/ − 1) =
5π/4, and arctan(−1/+ 1) = 7π/4, even through they all represent only two
slopes, +1 and −1.

1It turns out that the convention of using a single symbol for 2π goes back at least as
far as H. Laurent’s Traité D’Algebra (1889). In recent years some mathematicians have
proposed using τ (standing for one turn) for 2π, and others have advocated for a different
monogram: ππ. See Palais (2001) and http://www.math.utah.edu/~palais/pi.html

(accessed 2012-05-10).
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Remark 4.3.3 It is often useful to consider arg a mutiple-valued function
(like arcsin, arccos, etc.). Thus, for example,

arg(−1) = ±π,±3π,±5π, . . .

Then, it is necessary to be clear about the range of arg’s values; unless oth-
erwise stated we will take it to be [0, 2π). When the range is not important,
we may equations such as

arg z = θ (mod 2π)

to indicate that angles are to be compared modulo 2π.

Remark 4.3.4 If z is a complex number with magnitude r and phase θ, it’s
easy to see that the real part is given by <z = r cos θ and the imaginary part
by =z = r sin θ.

Remark 4.3.5 Notice every complex number has multiple polar represen-
tations (a property, of course, of any polar representation), since sin θ =
sin(2π + θ) and cos θ = cos(2π + θ). In general, for any n = 0,±1,±2, . . .,
sin θ = sin(2πn + θ) and cos θ = cos(2πn + θ). We will see that this period-
icity in the phase of complex numbers makes them especially convenient for
representing periodic phenomena such as waves.

Exercise 4.3.1 Given z = reiθ, show geometrically that

r cos θ =
z + z

2
, r sin θ =

z − z
2i

.

4.3.2 cis function

Suppose r = |z| and θ = arg z; then it’s easy to see:

z = <z + i=z = r cos θ + ir sin θ = r(cos θ + i sin θ).

This equation shows, in effect, how the complex number can be reconstituted
from it magnitude and argument. For this purpose the “cis” (cos +i sin,
pronounced “sis”) function is often used.

Definition 4.3.3 (cis function) cis θ = cos θ + i sin θ.
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Thus z = r cis θ, or, more generally,

z = |z| cis(arg z). (4.2)

Proposition 4.3.1 cis θ cisφ = cis(θ + φ).

Exercise 4.3.2 Prove this. Hint: recall from trigonometry,

sin(θ + φ) = sin θ cosφ+ cos θ sinφ,

cos(θ + φ) = cos θ cosφ+ sin θ sinφ.

Remark 4.3.6 The equation cis θ cisφ = cis(θ + φ) suggests that cis has
some similarities to the exponential function; we shall see that this is more
than coincidental.

4.4 Complex exponentials

4.4.1 Euler’s Formula

4.4.1.1 Imaginary Exponentials

For the most part complex numbers have the same properties as real numbers,
but of course it’s necessary to analyse each property individually; here we
will assume complex numbers are like real numbers unless stated otherwise.
However, it is informative to look (informally) at the effect of taking the
exponential of an imaginary number, exp(iθ) = eiθ. To do this we use the
familiar power series for ex:

1 + x+
x2

2!
+
x3

3!
+ · · · .

Substituting iθ for x we have:

eiθ = 1 + iθ +
i2θ2

2!
+
i3θ3

3!
+
i4θ4

4!
+ · · ·

= 1 + iθ − θ2

2!
− iθ

3

3!
+
θ4

4!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
− · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
,

where in the last line the real terms have been separated from the imaginary
terms. As it turns out, the first parenthesized formula is the series for cos θ
and the second is that for sin θ. Thus we discover,
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Proposition 4.4.1 (Euler’s Formula) eiθ = cos θ + i sin θ = cis θ.

It’s now easy to discover the exponential of an arbitrary complex number
x+ iy:

ex+iy = exeiy = ex cis y.

There is, however, an even more fruitful way to look at the complex expo-
nential, since from Eq. 4.2 we see that any complex number can be written
as a complex exponential:

z = |z|ei arg z.

Or, looked at another way, reiθ is a complex number with magnitude (radius)
r and phase angle θ.

Exercise 4.4.1 Show that |ex+iy| = |ex|.

Exercise 4.4.2 Use Euler’s formula to prove that the following formulas are
correct for real θ:

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
. (4.3)

They also hold (by definition) for complex numbers.

Notice that −1 has a magnitude of 1 and a phase angle of π (i.e. 180◦);
thus we have the famous equation,

eπi = −1.

Since a 2π (360◦) rotation brings us back where we started, we also have the
less famous formula,

e2πi = 1

Obviously a phase angle that is any integral multiple of 2π will bring us back
to 1. Similarly,

eπi/2 = i,

e3πi/2 = −i.

Exercise 4.4.3 Show reiθ = rei(2πm+θ) for m = 0, 1, . . ..

Exercise 4.4.4 Show (reiθ)∗ = re−iθ.

Exercise 4.4.5 Show reiθ = re−i(2π−θ).
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4.4.1.2 Multiplication

Proposition 4.4.2 Complex numbers can be multiplied by multiplying their
magnitudes and adding their phase angles:

(reiθ)(seiφ) = (rs)ei(θ+φ).

Remark 4.4.1 This proposition provides a geometric interpretation of com-
plex multiplication, based on the proportion,

1 : z :: w : wz.

To multiply geometrically, construct a triangle with the sides 1 and z. Then
construct a similar triangle on w, with the 1 of the first triangle correspond-
ing to the w of the second. The result wz will be the side of the second
triangle corresponding to the side z of the first. (Interestingly, this is exactly
analogous to the construction Descartes used for defining the product of two
real magnitudes; see ch. 4 of my book in progress, Word and Flux.)

Exercise 4.4.6 Do the construction suggested by the preceding remark, and
show that the magnitudes and phase angles are correct, as given in the propo-
sition.

Remark 4.4.2 Therefore a complex number, as a vector, can be rotated by
multiplying by a suitable imaginary power of e. That is, to rotate z counter-
clockwise through an angle of θ, use eiθz; for a clockwise rotation use e−iθz.

Exercise 4.4.7 Give a rule for dividing complex numbers in terms of their
magnitudes and phase angles.

Remark 4.4.3 We have seen that we can consider the complex number x+iy
as a two dimensional vector (x, y) with ordinary vector addition and a special
multiplication rule. Similarly, we can consider the complex number reiθ as a
pair (r, θ) with a special operation that multiplies the magnitudes and adds the
phase angles. In particular, whenever you have pairs of numbers for which
you want to add the first components and multiply the second components, it
may be worthwhile to think of them as complex numbers in polar coordinates.
We will see an example shortly (Section 4.4.2).
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4.4.1.3 Powers and Roots

Proposition 4.4.3 (De Moivre’s Theorem) A complex number can be
raised to the p ≥ 1 power by raising its magnitude to the p power and by
multiplying its phase by p: (reiθ)p = (rp)eipθ.

Roots can be extracted in a similar way, but complex number bring some
additional complications, as we will see by considering the “n n-th roots of
unity.” Consider first the square-root; we want to consider complex numbers
z satisfying z2 = 1. Writing the equation in polar form, we have

1 = (reiθ)2 = r2e2iθ.

To solve this, we must have r = 1, but we may have θ be any angle such
that 2θ = 2πm (for some m = 0, 1, . . .). If we restrict our attention to θ in
the range [0, 2π) (the principal square-roots), we see that θ = 0, π both solve
the equation. Therefore, 1 has two square roots, e0i = 1 and eπi = −1. This
is obvious enough, since 12 = (−1)2 = 1.

Now however we will apply the same method to determine the cube-roots
of unity. Since (reiθ)3 = r3ei3θ, we again have r = 1, but now seek θ ∈ [0, 2π)
such that 3θ = 2πm. Hence, θ = 0, (1/3)2π and (2/3)2π are solutions.

Exercise 4.4.8 Confirm that these θ are solutions.

Hence, we find that 1 has three cube-roots, two of which are complex:

1, e2πi/3, e2πi2/3.

In general we can see that 1 has n (principal) n-th roots, having phase
angles satisfying nθ = 2πm (m = 0, 1, . . .), so θ = 2πm/n. Hence,

Proposition 4.4.4 The n principal n-th roots of unity are:

1, ei2π/n, ei2π2/n, . . . , ei2π(n−1)/n.

In general, the principal values are ei2πm/n, m = 0, 1, . . . , n− 1.

Proposition 4.4.5 The n principal n-th roots of a complex number z = reiθ

are:
n
√
r, n
√
r ei(θ+2π)/n, n

√
r ei(θ+2π2)/n, . . . , n

√
r ei[θ+2π(n−1)]/n.
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In general, the principal values are

n
√
r ei(θ+2πm)/n = n

√
r cis

(
θ

n
+ 2π

m

n

)
for m = 0, 1, . . . , n− 1.

Exercise 4.4.9 Prove this proposition.

4.4.2 Periodic Change

4.4.2.1 Introduction to Periodic Change

The polar representation of complex numbers makes them especially conve-
nient for representing periodic processes, especially those involving sinusoidal
change.

Remark 4.4.4 It is generally convenient to measure the rate of periodic
change in radians per second, its angular velocity or angular frequency. This
is generally symbolized by ω, so we may write sinωt. In some cases it is more
meaningful to measure the rate of periodic change by its frequency, measured
in cycles per second or Hertz. This is generally symbolized by f or ν; since
there are 2π radians per cycle, sinωt = sin 2πft = sin 2πνt, for example.

Suppose we have an object rotating counter-clockwise at ω radians per sec-
ond; then its motion in the plane of rotation can be written z(t) = eiωt.
This assumes that at time t = 0 the object is at an angle of zero, that is, at
location (1, 0), since z(0) = eiω0 = 1. If instead it starts at the angle φ we
simply write

z(t) = ei(ωt+φ) = eiφeiωt.

The factor eiφ simply advances the phase of the rotation by φ radians. Obvi-
ously, arbitrary phase shifts correspond to different imaginary exponentials.

A complex exponential representation of a periodic change may be ad-
vantageous even is it is not a circular motion in two dimensions. In some
cases, two different aspects of the change correspond to the real and imag-
inary parts of a complex number. For example, in simple harmonic motion
(such as a pendulum or oscillating spring), the position of the object is pro-
portional to sinωt and its velocity is proportional to cosωt. Therefore, the
position and velocity can be combined into one complex number and written

cosωt+ i sinωt = cisωt = eiωt.
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(I’ve assumed that the position and velocity are measured in suitable units
so that the motion in the complex plane is circular.)

Since the state of a simple harmonic oscillator is determined entirely by
its displacement and velocity, the complex number eiωt corresponds to its
state. In this case the complex plane is the (Poincaré) phase space of the
oscillator, since it represents all its possible states. The curve eiθ = 1, that
is, the unit circle, is this system’s trajectory or orbit in phase space; it shows
the possible sequence of states independent of time.

The complex exponential representation can yield additional insight into
the structure of a periodic process. For example, in Newtonian mechanics
the kinetic energy of a motion is proportional to the velocity squared, K ∝
cos2 ωt in this case. With a suitable choice of units we can write K = cos2 ωt.
Also, in many simple harmonic systems the restoring force is proportional to
the displacement (F ∝ − sinωt), so the potential energy, which is the integral
of the force, is proportional to the square of the displacement, U ∝ sin2 ωt;
with suitable units, U = sin2 ωt. Hence the total energy in the system is

E = K + U = cos2 ωt+ sin2 ωt = 1.

That is the total energy is conserved; the cos2 and sin2 terms reflect the
fraction of the energy in the kinetic or potential form, respectively. That
is, K = E cos2 ωt and U = E sin2 ωt. Further, as eiωt rotates, we can see
the energy shift back and forth between kinetic energy (proportional to the
square of the real component, representing velocity) and potential energy
(proportional to the square of the imaginary component, representing dis-
placement).

Remark 4.4.5 For the record, K = mv2/2 and U = kx2/2, where k is the
force constant of an ideal spring, F = −kx (Hookes Law). In this example,
v(t) = ω cosωt and x(t) = sinωt, where the angular frequency is determined
by ω2 = k/m.

Even when there aren’t two components corresponding to the real and
imaginary parts, it may be advantageous to treat a sinusoidal motion as the
real (or imaginary) part of a complex exponential, since it is often easier to
manipulate exponentials than sines and cosines. That is, it may be convenient
to treat a real signal cosωt as <eiωt. As you probably know, periodic signals,
such as sounds, can be broken down into sines and cosines (or into sines with
phase shifts). Therefore, they can equally, and often more conveniently, be
broken down into complex exponentials.



4.4. COMPLEX EXPONENTIALS 53

Finally, as you probably know, Fourier analysis involves breaking a peri-
odic wave into sines and cosines, or into sinusoids at various phases. There-
fore, it is not surprising that it can also be viewed as an analysis of a signal
into complex exponentials with complex coefficients. We will take up these
topics in Ch. 6, Fourier Analysis; here we mention them only to motivate the
study of complex exponentials.

Exercise 4.4.10 Let z = ρeiθ. Show that

zeiωt + ze−iωt = 2ρ cos(θ + ωt) = 2ρ sin(θ + ωt+ 2π/4).

Hint: Write e±iωt in cis form. This shows that a “conjugate pair of complex
exponentials” is equivalent to an “amplitude and phase-shifted sinusoid.”

Exercise 4.4.11 Show that

a cosωt+ b sinωt = zeiωt + ze−iωt, where z =
a− ib

2
.

Hint: Write the sine and cosine in their complex exponential forms. Thus
a mixture of a sine and a cosine is equivalent to a conjugate pair of com-
plex exponentials, which the preceding exercise shows to be equivalent to an
amplitude and phase-shifted sinusoid.

Remark 4.4.6 These two exercises show the equivalence of: (1) a mixture
of a sine and cosine of the same frequency (with parameters a and b), (2) an
amplitude and phase-shifted sinusoid (with parameters ρ and θ), and (3) a
conjugate pair of complex exponentials (with parameters <z and =z). There-
fore, a Fourier series for a signal can be equivalently viewed as a superposi-
tion of: (1) in-phase sines and cosines, (2) sinusoids of the same kind but
differing phases, or (3) conjugate pairs of complex exponentials.

4.4.2.2 Phasors

In this section I will discuss briefly a technique used in electrical engineer-
ing for analyzing circuits; it also has applications to understanding signal
processing in the dendritic trees of neurons. Many passive electrical compo-
nents, such as resistors, capacitors and inductors (coils) are linear. So also,
to a first approximation, the passive conductance and membrane capacitance
of dendrites is linear. Linearity means that if we know the behavior of a sys-
tem L on complex exponentials (i.e. sines and cosines) of various frequencies
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L(eiωkt), then we know its behavior on any periodic signal s(t) =
∑

k cke
iωt.

This is because,

L[s(t)] = L

(∑
k

cke
iωkt

)
=
∑
k

ckL(eiωkt).

It turns out that resistors, capacitors and inductors have only two effects
on sine waves: to attenuate them and to shift their phase; so also RLC
(resistor-inductor-capacitor) circuits have only these two effects. Therefore,
the effects of these circuits and their components are conveniently represented
by complex numbers Z = Aeiθ, where A represents an amplitude change and
θ represents a phase shift.

Remark 4.4.7 The impedance of a R-ohm resistor is R; that is, it does not
affect the phase.

Remark 4.4.8 At a frequency of ω rad./sec., the impedance of a L-henry
inductor is iωL.

Remark 4.4.9 At a frequency of ω rad./sec., the impedance of a C-farad
capacitor is 1/iωC.

Exercise 4.4.12 Write the impedance 1/iωC in rectangular form, that is,
in the form R + iX.

Remark 4.4.10 When an impedance Aeiθ is written in rectangular coordi-
nates R+ iX, the real part R is called a resistance and the imaginary part X
is called a reactance. Therefore, any arbitrary RLC circuit, no matter how
complicated has the effect of a resistance combined with a reactance. If the
reactance is positive, it is called an inductive reactance; if it is negative, it is
called a capacitive reactance. That is, an arbitrary RLC circuit behaves like
a resistor combined with either an inductor (which causes phase leading) or
a capacitor (which causes phase lagging)

Electrical engineers often use the phasor notation A∠θ, read “A angle
θ” for Ae2πiθ/360◦ . The notation may be used for a circuit that causes an
amplitude change A and a phase shift of θ degrees, or for a periodic signal (at
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a certain frequency) of amplitude A and phase θ◦. The notation is convenient
because of the simple operation rules:

A∠θ ×B∠φ = AB∠(θ + φ),

A∠θ/B∠φ = (A/B)∠(θ − φ).

With this notation, voltage, current and impedance (voltage divided by cur-
rent) can all be treated as phasor quantities.

4.4.2.3 Differential Equations

In section 4.4.1.1 we saw the relation between the MacLauren series for the
exponential, sine and cosine functions; here we look at the relation between
these functions from another perspective. These functions can also be defined
in terms of simple differential equations. For example f(x) = sinx is the
unique solution of f ′′(x) = −f(x) with initial conditions f(0) = 0 and f ′(0) =
1. Likewise, f(x) = cosx is the unique solution of the same equation but
with initial conditions f(0) = 1, f ′(0) = 0.

Exercise 4.4.13 Show that f(t) = sinωt is a solution to f ′′(t) = −ω2f(x)
with initial conditions f(0) = 0 and f ′(0) = ω. (You are not asked to prove
uniqueness.)

Exercise 4.4.14 Show that f(t) = cosωt is a solution to f ′′(t) = −ω2f(x)
with initial conditions f(0) = 1 and f ′(0) = 0. (You are not asked to prove
uniqueness.)

These differential equations give us an alternate way of deriving Euler’s for-
mula from reasonable expectations about the meaning of eiθ. To see this,
write

eiθ = E(θ) + iF (θ); (4.4)

we will solve for E and F . Since e0 = 1 we must have E(0) = 1 and
F (0) = 0. Now differentiate Eq. 4.4 (assuming, or postulating, it differenti-
ates normally), to get

ieiθ = E ′(θ) + iF ′(θ).

Substitute θ = 0 and we discover (Show in detail!) that E ′(0) = 0 and
F ′(0) = 1. Differentiating a second time yields

−eiθ = E ′′(θ) + iF ′′(θ).
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Combining this and Eq. 4.4 shows

E ′′(θ) + iF ′′(θ) = −E(θ)− iF (θ).

Hence, E ′′(θ) = −E(θ) with E(0) = 1 and E ′(0) = 0, so we know E = cos;
similarly, F ′′(θ) = −F (θ) with F (0) = 0 and F ′(0) = 1, so F = sin.

Exercise 4.4.15 Show that f(t) = cisωt is a solution of f ′(t) = iωf(t) with
initial condition f(0) = 1.

The ordinary (real) exponential function, f(x) = ex is the unique solution
to the differential equation f ′(x) = f(x) with the initial condition f(0) =
1. Further, if f(t) = ceρt, then f ′(t) = ρf(t) and f(0) = c. This is the
fundamental equation of exponential growth (or decay), which says that the
increase (or decrease) in a quantity is proportional to the current quantity.
The real number c is the initial quantity and the real number ρ is the rate of
growth (for ρ > 0) or decay (for ρ < 0).

The foregoing is still true in the system of complex numbers: f(z) = ez is
the unique solution of f ′(z) = f(z) with f(0) = 1. More generally, for w ∈ C,
cewt is the unique solution of f ′(t) = wf(t) with initial condition f(0) = c (a
complex number). The complex number c represents the initial state of the
system, comprising a magnitude and phase. However, the meaning of the
complex “rate” w requires some explanation.

Write w in rectangular form, w = ρ+iω. Then the exponential trajectory
ewt is seen to be a product of an exponential change in magnitude and a
periodic cycle:

ewtc = e(ρ+iω)tc = eρt+iωtc = eρteiωtc

Thus w = ρ + iω defines a rate of exponential change ρ and an angular
frequency ω.

The parameter w in ewt is sometimes called a complex frequency, since
both its components are rates and its imaginary component is a rate of
rotation. As we will see in Ch. ??, the “poles and zeros” of filters, which
determine their behavior, are complex frequencies. Further, we will see that
many systems can be reduced to a sum of complex exponentials, and are thus
completely characterized by a set of complex frequencies.

The two components of a complex frequency can be termed its linear rate
and its angular frequency. Therefore, we can say that many systems are a
superposition of elementary systems, each determined by a linear rate and
an angular frequency. In this sense, rectilinear and circular motion are the
two primary motions from which almost all complex motions are composed.
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Remark 4.4.11 It is interesting that Aristotle, based on Plato’s teachings,
distinguished two fundamental motions: rectilinear and circular. This is pre-
cisely what we have in a complex frequency: if it is real, we have rectilinear
motion; if it is imaginary, we have circular motion. Aristotle said that change
in the “sublunary phenomena” (i.e. on the earth) are characterized by recti-
linear motion (e.g. a dropped object), whereas the “celestial phenomena” (i.e.
in the heavens) are characterized by circular motion (e.g. the motion of the
stars). Newton’s accomplishment was to show that a single law accounted for
both kinds of motion (terrestrial and celestial).

We may further subdivide the kinds of change based on the signs of the
rates: If w = ρ > 0 we have an increase; if w = ρ < 0 we have a decrease;
if w = iω 6= 0 we have a rotation (counterclockwise for ω > 0, clockwise for
ω < 0). If w = ρ+ iω, then we have a combination of rectilinear and circular
motion (a spiral outward or inward).

It will be worthwhile to look at these possibilites from the perspective
of the differential equation f ′(t) = wf(t) or, more compactly, ż = wz. As
before, let the initial condition be z(0) = c, a complex number.

First suppose w = ρ is real; then the differential equation is ż = ρz,
which means that the change in z is in the same direction as z (for ρ > 0),
or in the opposite direction (for ρ < 0). (Note that δz = ρz is a little vector
parallel, or antiparallel, to z; when added to z it increases or decreases its
length, but leaves its direction unchanged.) This sort of process causes z to
move rectilinearly at an exponential rate: z(t) = eρtc. Thus the initial state
c grows or shrinks exponentially in time. We can see this clearly if we write
the initial state in polar form, c = aeiφ; then z(t) = aeρt × eiφ; that is, the
angle is independent of time.

Exercise 4.4.16 Draw z, δz and z + δz in this case.

Next suppose w = iω is imaginary; then the differential equation is ż = iωz.
Recall that multiplication by i is equivalent to a counterclockwise rotation
through 90◦. Therefore, δz = iωz can be thought of as a little vector perpen-
dicular to the end of z; it points in a counterclockwise direction for ω > 0 and
clockwise for ω < 0. When added to z it causes it to rotate (counterclockwise
or clockwise) without changing its length. This sort of process causes z to
move circularly, z(t) = eiωtc. Thus the initial state c rotates periodically
with constant magnitude. Putting c = aeiφ we have, z(t) = aei(ωt+φ); the
magnitude is constant a, but the rotation starts with a phase angle φ.
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Exercise 4.4.17 Draw z, δz and z + δz.

In the general case w = ρ+iω, we have δz = ρz+iωz, which is a composite of
motion ρz parallel to z and motion iωz perpendicular to the end of z. In this
case we get a combination of exponential change and rotation, z(t) = eρteiωtc.
If we write the initial state in polar form, c = aeiφ, then

z(t) = aeρt × ei(ωt+φ).

We see the initial magnitude a changing exponentially by eρt and the initial
phase angle φ rotating by ωt.

Exercise 4.4.18 Draw z, δz and z + δz .

4.4.3 Complex Logarithms

4.4.3.1 Definition

Since the exponential of a complex number scales the real part exponentially
to give the magnitude, and converts the imaginary part into a phase angle,
we would expect the logarithm of a complex number to reverse this process,
deriving the real part from the logarithm of the magnitude and the imaginary
part from the phase angle. That is, since exp(x + iy) = exeiy, we expect
ln(exeiy) = x+ iy, or equivalently:

ln(reiθ) = ln r + iθ.

This is basically correct, but there are some complications we must consider.
The basic problem is that the complex exponential is a periodic function;

therefore it is not one-to-one, and so it does not have a unique inverse. In
particular, we can see that

ln(reiθ) = ln r + i(θ +m2π),

for m = 0,±1,±2, . . .. There are several ways we can deal with this.
First we may choose to restrict the angle to lie in a particular range, such

as [0, 2π) or [−π, π). Thus we may talk of the principal value of the logarithm,
as we talk of the principal value of the arcsine, arccosine, etc. (Often the
principal value of the logarithm is written “Ln,” just as the principal value of
the arcsine is written “Arcsin,” etc.) This convention has the disadvantage
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that the identity ln(eiθ) = iθ does not hold unless θ is restricted to the chosen
range.

Second, we may simply accept that the logarithm is a multiple-valued
function; they are not unknown in mathematics and its applications, for ex-
ample we have f(x) = ±

√
x and f(x) = sin−1 x. To use multiple-valued

functions without encountering contradictions, it’s necessary to restrict at-
tention to a particular value, as determined by context, stipulation, or con-
straints of the application. In this case we can write ln(eiθ) = iθ, provided
it’s understood that the appropriate value of the logarithm must be used.

There is a third, more formal but nevertheless interesting solution, which
will be discussed in Section 4.4.3.3.

Exercise 4.4.19 Show eln z = z, for any of these interpretations of the com-
plex logarithm.

Exercise 4.4.20 Show

ln(zw) = ln z + lnw (mod 2π).

4.4.3.2 Geometrical Interpretations

For any integral values of m, observe that

ex+iy = ex+i(y±2πm).

Hence the values of ex+iy repeat at vertical intervals of 2π. Therefore, if we
restrict attention to any infinitely wide “band” of height 2π, the logarithm
will be single valued. These bands (which need not have their boundaires at
multiples of π or other “reasonable” places) are called branches of the complex
logarithm. Therefore, if we restrict attention to z in a single branch, we will
have ln(ez) = z.

It will strengthen our intuitive understanding of the complex exponential
and logarithm to look at how they transform various subsets of the complex
plane.

First, observe that the exponential function maps a branch of the loga-
rithm onto the entire complex plane except for the origin (since ez = 0 has
no solution, and so ln 0 is undefined). Conversely, the logarithm maps the
complex plane (minus the origin) onto its chosen branch.
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4.4.3.3 Riemann Surfaces

forthcoming

4.4.3.4 Complex Powers

With the complex exponential and logarithm we can define arbitrary powers
of complex numbers.

Definition 4.4.1 (Complex Powers) If z and w are complex numbers (z 6=
0), then zw is defined zw = ew ln z.

Remark 4.4.12 The complex power is multiple-valued because it is defined
in terms of the complex logarithm. Therefore it’s necessary to restrict atten-
tion, by context or stipulation, to a particular branch of the function (either
the logarithm or the power).

Proposition 4.4.6 The power zw is single valued if and only if w is an
integer.

Proposition 4.4.7 If w = p/q is a rational number in lowest terms, then
zw has exactly q values, namely the q principal q-roots of zp.

Proposition 4.4.8 If w is irrational real or complex, then zw has an infinity
of values differing by e2πmwi.

Remark 4.4.13 We have already seen (Prop. 4.4.5) that a complex number
has n principal n-th roots. This is consistent with the definition of the n-th
root in terms of complex powers, restricted to a branch of the logarithm:

n
√
z = z1/n = e(ln z)/n.

If z = reiθ, then, for m = 0, 1, . . . , n− 1,

n
√
z = n
√
r ei(θ+2πm)/n = n

√
r cis

(
θ

n
+ 2π

m

n

)
.

Notice that the roots have equal magnitude and angles evenly distributed
around a cycle at angles 2πθ/n and beginning at θ/n.

Exercise 4.4.21 Plot the principal values of 6
√
−64i.
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4.5 Hyperbolic Geometry

4.5.1 Hyperbolic Functions

4.5.1.1 Hyperbolic Angles

We have seen an intimate connection between the complex exponential and
the (circular) trigonometric functions (sine, cosine, etc.); in this section we
will explore an equally intimate connection with the hyperbolic trigonometric
functions. First, we review the derivation of the circular functions.

Draw a circle x2 + y2 = r2 and draw a radius at angle θ above the X-axis
(Fig. 4.1, p. 42). Drop perpendiculars x and y to the X- and Y-axes. We
know from trigonometry that

cos θ = x/r, sin θ = y/r, tan θ = y/x.

Finally, we have seen (Rem. 4.3.1) that the radian measure of an angle is
twice the ratio of the included area to the radius squared.

Now we will undertake a similar construction, but based on the hyperbola
rather than the circle; our first task is to define an appropriate measure of
angles, in hyperbolic radians. Consider the (equilateral) hyperbola x2− y2 =
r2, which has its arcs lying within the left and right half planes. Draw a
ray from the origin at an angle of less than 45◦ from the X-axis, so that
it intersects the right-hand half of the hyperbola. (We will deal later with
angles greater than 45◦.) As we did with the circular angle, we measure the
hyperbolic angle by the area bounded by the curve between the radius and
the X-axis; in particular the hyperbolic radian measure κ will be the ratio of
twice the area to the square radius.

Proposition 4.5.1 Suppose a radius intersects the hyperbola x2 − y2 = r2

at the point (x, y). Then the hyperbolic radian measure of the angle of the
ray is ln

(
x+y
r

)
.

Exercise 4.5.1 To determine this, first show that the area B under the curve
of the hyperbola out to x is

B =
xy

2
− r2

2
ln

(
x+ y

r

)
.
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Exercise 4.5.2 Show that the required area

A =
r2

2
ln

(
x+ y

r

)
by subtracting B from the area of the triangle (x, y, r).

It then follows that the angle in hyperbolic radians is κ = 2A/r2 = ln
(
x+y
r

)
.

Now, just as for the circular functions, we will define the hyperbolic func-
tions in terms the ratios x/r, y/r and y/x. For simplicity, use a unit circle,
so r = 1 and κ = ln(x+ y). Then,

coshκ = x, sinhκ = y, tanhκ = y/x.

We therefore have two equations in two unknowns:

1 = x2 − y2, (4.5)

κ = ln(x+ y). (4.6)

Exercise 4.5.3 Show that the solutions are

x =
eκ + e−κ

2
, y =

eκ − e−κ

2

(Thus we can “solve triangles” with the hyperbolic functions as well as with
the circular, except that we don’t have protractors for measuring hyperbolic
angles!) We have proved:

Proposition 4.5.2

coshκ =
eκ + e−κ

2
, (4.7)

sinhκ =
eκ − e−κ

2
, (4.8)

tanhκ =
eκ − e−κ

eκ + e−κ
. (4.9)

These formulas are similar to the corresponding Eq. 4.3 for the circular sine
and cosine, to which they should be carefully compared. The preceding
derivation only applies to angles in the first octant (0◦ – 45◦). However, by
allowing x and y to be negative, it is automatically extended to all angles
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within 45◦ of the X-axis. It is extended to angles within 45◦ of the Y-axis by,
in effect, duplicating the above derivation with the hyperbola y2 − x2 = 1,
which has its arc in the upper and lower halfplanes. That is, interchange x
and y.

The equations Eq. 4.9 are true in all octants, and in fact are often stip-
ulated as the definition of the functions. In particular, although we have
justified these equations on the basis of a real-valued hyperbolic angle, we
can use them to define the hyperbolic functions for any complex argument
(just as can be done with the exponential formulas for the circular functions,
Eq. 4.3).

4.5.1.2 Hyperbolic Functions

Exercise 4.5.4 Explore and discuss the domain and range of the hyperbolic
sine, cosine and tangent over the reals; sketch their shapes (don’t plot by
computer; use the hyperbolic law of triangles).

Exercise 4.5.5 Prove the following symmetry properties: First, the hyper-
bolic cosine (like the circular cosine) is an even function, that is, cosh(−κ) =
coshκ. Second, the hyperbolic sine (like the circular sine) is an odd function,
that is, sinh(−κ) = − sinhκ. As a consequence, the hyperbolic tangent (like
the circular tangent) is also odd, tanh(−κ) = − tanhκ.

Exercise 4.5.6 Prove cosh2 κ − sinh2 κ = 1. What is the corresponding
property of the circular functions?

Exercise 4.5.7 Prove

tanh(κ+ λ) =
tanhκ+ tanhλ

1 + tanhκ tanhλ
.

What is the corresponding property of circular functions?

Exercise 4.5.8 Prove sech2 κ = 1−tanh2 κ, where sechκ = 1/ coshκ. What
is the correponding circular property?

Exercise 4.5.9 Prove csch2 κ = coth2 κ − 1, where cschκ = 1/ sinhκ and
cothκ = 1/ tanhκ. What is the corresponding circular property.
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4.5.2 Special Relativity Theory

In this section we will consider briefly special relativity since (1) it illus-
trates the use of a mixed real/imaginary coordinate system, (2) it makes use
of hyperbolic geometry and (3) it suggests ways of treating space and time
together, which has relevance to wavelet processing and spatiotemporal in-
formation processing in the brain (see my report, “Gabor Representations of
Spatiotemporal Visual Images”).

4.5.2.1 The Fundamental Invariance

Special relativity, which deals with the geometry of spacetime, is easier to
understand by comparison with the geometry of ordinary space. First, notice
that in ordinary space certain properties are dependent on the coordinate
system we use, whereas others are not. For example, the x and y coordinates
of a point (or vector) depend on the choice of axes, since they are projections
of that point (or vector) onto the axes.

Exercise 4.5.10 Diagram this situation.

On the other hand, the distance between points (or the length of a vector)
is independent of the coordinate system. Thus, if (x, y) and (x′, y′) are the
coordinates of the same vector in two different coordinate systems, we can
assert the invariant x2 +x2 = x′2 +y′2. We say that length is invariant under
a transformation of coordinates.

In ordinary space there are two different ways we can measure the incli-
nation of a line. If we measure it by slope, then the measure depends on the
coordinate system, since the slope is y/x, which quantities are not invariant.

Exercise 4.5.11 Diagram this situation.

Further, slopes are not additive: if m and m′ are the slopes of the same line
in two different coordinate system, and µ is the slope of the primed system
with respect to the unprimed, we might expect m = µ + m′, but this is not
the case.

Exercise 4.5.12 In fact, the law of combination is:

m = µ+m′

1−µm′ or m′ = m−µ
1+mµ

.
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Does this look familiar? Derive it by trigonometry. Notice also that m ≈
µ + m′ if µ ≈ 0; that is, if the coordinate systems deviate only slightly from
each other, then slopes are approximately additive.

On the other hand, ordinary (circular) angles are additive, since they are
invariant under coordinate transformation. Therefore, if a line has angles a
and a′ with respect to the X-axes of two coordinate systems, and α is the
angle of the primed X′-axis to the X-axis, then a′ = α + a.

Exercise 4.5.13 Diagram this situation.

In relativity, events are located in four-dimensional spacetime; they have
coordinates (x, y, z, t). Now we will make several convenient assumptions.
First, since relativistic effects occur in the direction of motion, and not per-
pendicular to the direction of motion, we will restrict our attention to a
single space axis s, oriented in the direction of motion; thus spacetime coor-
dinates will take the form (s, t). This will make spacetime geometry easier
to visualize and draw, and will simplify the mathematical notation.

Second, since time is an axis like the other three, we will measure them
all in the same units, meters, which will simplify the formulas. (Imagine the
needless complexity that would result from measuring north- south distances
in miles and east-west distance in kilometers.) This raises the question of
how to convert seconds to meters; what is the conversion factor? It turns
out that it is the speed of light, c ≈ 3× 108 m/s. We will see that this is not
an arbitrary choice, but is in fact fundamental to the fabric of spacetime. If
T is time in seconds and t is time in meters, then t = cT .

Finally, in accord with the measurement of time in meters, velocity be-
comes a pure number (meters/meter), for which relativity theory uses the
symbol β. If V = s/T is time in ordinary units, we can see that β = s/t =
s/(cT ) = V/c. Thus β can also be interpreted as velocity relative to the
speed of light. By “natural units” I will mean the measurement of time in
meters and velocity as a pure number.

Remark 4.5.1 In our lives we range cover a vast distance along the time
axis compared to our range on the spatial axes. Since there are about π× 107

seconds in a year, we go about πc× 107 ≈ 3π× 1015 ≈ 1016 meters in a year
(i.e. one light-year). In our lifetimes we cover about 7× 1017 meters on the
time axis (that is, about 70 light-years, something between the distances to
Aldebaràn and to Regulus). In the same amount of time the solar system
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moves about 7 × 1014 m. relative to the cosmic background radiation (since
our motion with respect to it is about 3× 105 m/s in the direction of Virgo).
It is this large discrepency, a ratio of 103, between our mobility in time and
space that leads to the undetectability of relativistic effects under ordinary
conditions. Therefore, our average velocity, in natural units, is β ≈ 10−3

(i.e. speed relative to background radiation divided by speed of light).

Although we measure it in spatial units, the time axis is not just another
space axis; indeed we may say that time is imaginary with respect to the
spatial axes, since one consequence of the relativity postulates is that the
fundamental invariant is s2 + (it)2 = s2 − t2.

Remark 4.5.2 This invariant follows from the first postulate of relativity
theory, which says that the velocity of light in a vacuum is the same in all
reference frames. To see this suppose that a reflective object is moving to the
right past us at a velocity β. When it is directly opposite us at a distance
of r, suppose that it is struck by light from source distance s to our left.
The distance, as measured in our reference frame, traveled by the light is
d =

√
r2 + s2, so is the time, in our frame, that it took to travel it (since

the speed of light = 1 in natural units): t =
√
r2 + s2. Within the reference

frame of the reflective object, however, the source appears to be a distance s′

to the left, so the distance the light travelled is d′ =
√
r2 + s′2; likewise the

time is t′ =
√
r2 + s′2. Now observe:

t2 − s2 = (r2 + s2)− s2 = r2,

t′2 − s′2 = (r2 + s′2)− s′2 = r2.

We see that t2 − s2 = t′2 − s′2.

This quantity, s2 − t2, which is invariant under a change between reference
frames in relative motion, is called the spacetime interval between two events;
it is analogous to the Euclidean distance x2 + y2, which is invariant under
change of the spatial coordinate system.

Spacetime intervals can be classified according to whether s2 − t2 is pos-
itive, negative or zero. If it is positive, the interval is called space-like and
the proper distance σ is defined σ2 = s2 − t2. If it is negative, the interval
is called time-like and the proper time τ is defined τ 2 = t2 − s2. If the in-
terval is zero, it is called light-like. We will see that time-like intervals can
be crossed by subluminary signals (signals travelling less than the speed of
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light), and light-like intervals can be crossed only by things travelling at the
speed of light. Space-like intervals could be crossed only by things travelling
faster than light, which, so far as physics has been able to establish, do not
exist. Therefore, space-like intervals are causally independent; causality can
operate only across time-like and light-like intervals (i.e., those for which
t2 − s2 ≥ 0). Therefore, we will restrict our attention to this case (without
loss of generality, however).

Exercise 4.5.14 The invariant t2 − s2 = constant should remind you of an
identity that you have seen recently. What does it suggest about the formal
relation of the quantities t and s?

4.5.2.2 Meaning of the Hyperbolic Angle

The invariance of spacetime interval means that, for a given pair of events,
τ 2 = t2 − s2 is constant, no matter what their distance separation s and
time separation t in a given reference frame. That is, the possible s and t
measurements in various reference frames is constrained by τ 2 = t2−s2. This
means that the possible (s, t) pairs lie on an equilateral hyperbola, whose arcs
lie in the positive and negative t halfplanes. From this we see, by the law of
triangles for hyperbolas, that (for some hyperbolic angle κ):

s = τ sinhκ,

t = τ coshκ.

From these, the invariance of the spacetime interval follows from the prop-
erties of the hyperbolic functions:

t2 − s2 = τ 2(cosh2 κ− sinh2 κ) = τ 2.

Now we must consider the meaning of the hyperbolic angle κ. Observe
that the velocity can be written in terms of hyperbolic functions:

β =
s

t
=
τ sinhκ

τ coshκ
= tanhκ.

Thus, κ = arctanh β, and so it is called the velocity parameter; we may say
that the velocity parameter is the hyperbolic arctangent of the velocity (in
natural units). The significance of the velocity parameter is that it measures
the hyperbolic angle between the time axes in the two reference frames. Just
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as a slope m is related to a corresponding angle θ by the circular tangent,
m = tan θ, so a velocity is related to a corresponding velocity parameter by
the hyperbolic tangent, β = tanhκ. The appearance of the circular functions
in spatial rotations is a consequence of the isotropy of x and y; the appearance
of the hyperbolic functions in spacetime transformations is a consequence of
the anisotropy of s and it (i.e., time is imaginary with respect to space).

4.5.2.3 Comparison of Lorentz & Galilean Transforms

forthcoming
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Chapter 5

Hilbert Spaces

This chapter presents the most important concepts from the theory of Hilbert
spaces, which provides the principal mathematical background for field com-
putation. Hilbert spaces extend the familiar ideas of finite-dimensional vec-
tors and matrices to the infinite-dimensional case and, from another per-
spective, to continuous quantities defined over continuous spaces, that is, to
fields. As for finite-dimensional spaces, the notion of an inner product is fun-
damental, and so we begin with the general notion of an inner product and
associated concepts of orthogonality and bases. We state or prove several
important results from Hilbert spaces that are useful for implementing field
computations. The material in this chapter is also essential in the application
of field computation to quantum computation.

5.1 Inner product spaces

5.1.1 Inner products

Definition 5.1.1 (Inner product) An inner product is a binary operation
on a real or complex linear space, · : X×X → C, satisfying (for x,y, z ∈ X
and scalar a ∈ C):

(a) positive definite:

x · x > 0, if x 6= 0, (5.1)

x · x = 0, if x = 0. (5.2)

69
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(b) conjugate symmetry:

x · y = y · x. (5.3)

(c) linearity in first argument:

(ax) · y = a(x · y), (5.4)

(x + y) · z = (x · z) + (y · z). (5.5)

Notation 5.1.1 The inner product x · y is often written 〈x,y〉, especially
when it is defined over a function space.

Remark 5.1.1 If the linear space is real, then properties (b) and (c) are
replaced by symmetry (commutativity) and bilinearity (linearity in both ar-
guments):

(b′) symmetry:

x · y = y · x (5.6)

(c′) bilinearity:

(ax + by) · z = a(x · z) + b(y · z) (5.7)

Exercise 5.1.1 Show that for complex vector z, 〈−z, z〉 = 〈z,−z〉. (By
“vector” we mean an element of any linear space.)

Exercise 5.1.2 Show x · (by) = b(x · y) for complex vectors. (This is called
antilinearity in the second argument; see next.)

Definition 5.1.2 (Antilinear) A function f on a linear space L over the
complex numbers is called antilinear if for all x ∈ L, z ∈ C, f(zx) = zf(x).
This terminology is extended in the obvious way to functions of more than
one argument, such as the inner product.

Definition 5.1.3 (Sesquilinear) A binary operation is called sesquilinear
if it is linear in one argument and antilinear in the other. (The prefix “sesqui-
” means “one and a half.”) Therefore, the complex inner product is sesquilin-
ear.

Exercise 5.1.3 Show that x · (y + z) = (x · z) + (x · y) for complex vectors.
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Definition 5.1.4 (Inner-product space) An inner-product space is a real
or complex linear space with an inner product.

Exercise 5.1.4 If x and y are n-dimensional real vectors, show that

x · y =
n∑
k=1

xkyk

is an inner product. This demonstrates that En is an inner-product space.

Exercise 5.1.5 If U and V are real column vectors, show that UTV is an
inner product.

Exercise 5.1.6 If x and y are n-dimensional complex vectors, show that

x · y =
n∑
k=1

xkyk

is an inner product.

Definition 5.1.5 The space `2 is the inner-product space of square-summable
complex sequences, that is, sequences x = (x1, x2, . . .) for which

∞∑
k=1

|xk|2 <∞,

with the inner product

〈x,y〉 =
∞∑
k=1

xkyk.

Exercise 5.1.7 Show that `2 is in fact an inner-product space.

In physics, especially quantum mechanics, it is customary to use a different
notation for complex inner products, which is very useful.

Definition 5.1.6 (Dirac’s bracket notation)

〈x | y〉 = 〈y,x〉 = y · x (5.8)

Notice that the order of the arguments is reversed. As a consequence,

〈x | y〉 = 〈x,y〉. (5.9)
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Exercise 5.1.8 Show that 〈ax | y〉 = a〈x | y〉 and 〈x + y | z〉 = 〈x |
z〉+ 〈y | z〉.

Definition 5.1.7 (adjoint matrix) The adjoint or conjugate transpose M †

of a complex matrix M is obtained by taking the complex conjugate of every
element of its transpose. That is,

(M †)ij = Mji. (5.10)

If we let the complex conjugate apply element-wise to an entire matrix, (M)ij =

Mij, then M † = MT = M
T

. The conjugate transpose is also called the Her-
metian transpose.

Remark 5.1.2 The matrix-definition of the adjoint (Def. 5.1.7) can be ex-
tended to the infinite dimensional case, i.e., to linear operators on a Hilbert
space (see Sec. 5.2.7, p. 89).

Exercise 5.1.9 Show that the adjoint operation is antilinear: (aL+ bM)† =
aL† + bM †.

Exercise 5.1.10 If U and V are complex column vectors, show that 〈U |
V 〉 = U †V is an inner product.

Notation 5.1.2 (Dirac’s bra and ket notations) In quantum mechanics,
the notation |V 〉 is often used to denote a column vector, and 〈V | is used to
represent its adjoint, 〈V | = |V 〉†.1 In effect, the | 〉 frame reminds us that we
are dealing with a column vector, and 〈 | reminds us that we are dealing with
a row vector that is the adjoint of the corresponding | 〉. More generally, 〈V |
is called the dual vector of |V 〉. The notation 〈V | is called a bra and is read
“bra V ,” and |V 〉 is called a ket and read “V ket.” (The reasons why will be
apparent from the following exercise.)

Exercise 5.1.11 If U and V are complex column vectors, show that 〈U |
V 〉 = 〈U | |V 〉 (the matrix product of 〈U | and |V 〉).

1More generally, 〈V | represents the co-vector of |V 〉 in the continuous dual space of the
vector space from which |V 〉 is drawn. See Sec. 5.2.5.2 (p. 86).
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Exercise 5.1.12 For real-valued f, g ∈ C[a, b], show that

〈f, g〉 =

∫ b

a

f(x)g(x)dx

is an inner product.

Exercise 5.1.13 Show that, for complex-valued functions f and g,

〈f | g〉 =

∫ b

a

f(x)g(x)dx

is an inner product. (The extension of the bra-ket notation to functions is
discussed in Sec. 5.2.5.2.)

Remark 5.1.3 Exercise 4.2.3 (p. 44), which you thought about earlier (Right?),
reveals the reason that complex valued inner-products are defined in terms of
the complex conjugate, u ·v =

∑
ukvk, 〈u, u〉 =

∫
u(t)v(t)dt, etc. Otherwise,

the inner-product norm (‖u‖ =
√
〈u, u〉) would not always be real.

Definition 5.1.8 The notation 〈x | L | y〉 is defined by the following equiv-
alent products:

〈x | L | y〉 = 〈x| (L|y〉) = (〈x|L) |y〉. (5.11)

Exercise 5.1.14 For a complex matrix M and complex column vectors x,y
show that:

〈x |M | y〉 = x†My =
∑
ij

xiMijyj. (5.12)

Exercise 5.1.15 For a complex matrix M and complex vectors x,y show
that:

〈x |M | y〉∗ = 〈x∗ |M∗ | y∗〉 = 〈y |M † | x〉. (5.13)

5.1.1.1 Schwarz inequality

Proposition 5.1.1 (Schwarz inequality) An inner product satisfies

|x · y| ≤
√

x · x √y · y. (5.14)

That is, |x · y|2 ≤ |x · x| |y · y|. This is also known as the Cauchy-Schwarz-
Buniakowski (C.S.B) inequality or, more briefly, as the Schwarz inequality.
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Exercise 5.1.16 Prove the Schwarz inequality Hint: For x · y 6= 0, let
a = (x · y)/|x · y| and let b ∈ R; then apply bilinearity to get a quadratic
equation with one real root. The result follows from the equations nonpositive
discriminant.

Proposition 5.1.2 (Schwarz equality) The Schwarz inequality becomes
an equality if and only if the vectors are linearly dependent:

|x · y|2 = |x · x| |y · y|.

Exercise 5.1.17 Prove the Schwarz equality.

5.1.2 Inner product norm

Definition 5.1.9 (Inner-product norm) The inner-product norm is de-
fined ‖x‖ =

√
x · x or ‖x‖2 = x · x.

Exercise 5.1.18 Show that the inner-product norm is in fact a norm. Hint:
For the triangle inequality, expand both sides of ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2 in
terms of the inner product, and then apply the Schwarz inequality.

Remark 5.1.4 Thus an inner-product space is a normed linear space under
the inner-product norm. Hence it is also a metric space (under the norm
metric).

Remark 5.1.5 (Schwartz inequality) In terms of the inner-product norm,
the Schwarz inequality is

|x · y| ≤ ‖x‖ ‖y‖. (5.15)

Remark 5.1.6 The space `2 can be considered the infinite-dimensional ana-
log of En, since the infinite-dimensional vectors in `2 have finite magnitude
(‖ξ‖ <∞ for all ξ ∈ `2).

5.1.3 More on complex inner products

In this section I will try and build some intuition for complex-valued inner-
products defined over complex linear spaces. We will suppose that we have
some generalized vectors z and w with complex-valued components zx and
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wx. These might be finite-dimensional vectors, z = (z1, . . . , zn) and w =
(w1, . . . , wn) (over the domain Ω = {1, . . . , n}), or they might be infinite
dimensional vectors or continuous functions, zx = z(x) and wx = w(x) over
some domain Ω. In particular, the vectors might be two complex-valued
signals evolving in time, zt = z(t) and wt = w(t). Therefore, in the following
discussion I will refer to the generalized vectors z and w as signals.

Correspondingly, the inner product might be a discrete sum 〈z,w〉 =∑
x∈Ω zxwx or an integral 〈z,w〉 =

∫
Ω
zxwxdx. I will write the inner product

as an integral, since it includes the summation as a special case (when the
integral is defined by Lebesgue integration).

To understand the effect of the complex inner product, first write the
signal elements in polar form: zx = rxe

iθx , wx = sxe
iφx . Therefore the inner

product is:

〈z,w〉 =

∫
Ω

rxe
iθx sxeiφxdx,

=

∫
Ω

rxe
iθxsxe

−iφxdx,

=

∫
Ω

rxsxe
i(θx−φx)dx.

This will be clearer if we write it in terms of the cis function:

〈z,w〉 =

∫
Ω

rxsx cis(θx − φx)dx.

Now notice that if α is any phase angle, then cis θ = eiα is the corresponding
phase vector, that is, the phase angle expressed as a vector (complex number)
on the unit circle. Therefore, in the inner product the expression cis(θx−φx)
is a phase vector representing the difference in phase between the signals at
x (e.g. at time x). Thus 〈z,w〉 is like an average phase vector, in which the
phase differences at a point, cis(θx−φx), are weighted by the joint magnitudes
of the signals at that point, rxsx. Therefore phase differences are discounted
where the signals are weak, but accounted more significance where they are
strong.

The meaning of the inner product may become clearer by considering
several examples. Consider the inner product of a signal with itself, which
we know must be the square magnitude of the signal, 〈z, z〉 = ‖z‖2 = ‖r‖2,
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which is a real number. Observe:

〈z, z〉 =

∫
Ω

z2
x cis(θx − θx)dx,

= ‖z‖2 cis 0.

so the average phase vector is proportional to 1 = cis 0; that is, there is no
phase difference between the signals. Further, we can see that if z ≈ w, with
only small phase differences, then 〈z,w〉 ≈ 〈r, s〉 cis ε, where cis ε ≈ 1 is a
phase vector representing little if any average phase difference.

For our second example, suppose w = −z, that is, the signals are 180◦

out of phase. Observe,

wx = −zx = −1× rxeiθx = eiπ × rxeiθx = rxe
i(θx+π).

Therefore the inner product is

〈z,w〉 =

∫
Ω

r2
x cis[θx − (θx + π)]dx,

= cis(−π)‖r‖2.

That is, the average phase vector is proportional to cis(−π) = −1, repre-
senting a phase difference of −π = −180◦ between z and w. (Of course
cis(−π) = cis π, that is, a phase difference of −180◦ is the same as a phase
difference of 180◦; this is not the case for other angles.)

Exercise 5.1.19 Recall (Sec. 5.1.1) that for complex inner products commu-
tativity is replaced by 〈z,w〉 = 〈w, z〉. Based on the interpretation of inner
product in terms of phase vectors, explain why this must be so.

Similarly, we can see that if w ≈ −z, then 〈z,w〉 ≈ 〈r, s〉 cis(−π ± ε), that
is, there is an average phase shift of approximately 180◦.

In summary, the inner product between two complex-valued signals is pro-
portional to the average vector of the phase difference between the signals,
weighted by their joint signal strength. Thus the inner product tends to be
positive real to the extent the signals are in phase, negative real to the extent
they are 180◦ out of phase (i.e. opposite in sign), and complex to the extent
that they have a more complex average phase relation.

Remark 5.1.7 We mention in passing that the quantum mechanical wave-
function Ψ(x, t) does not give the probability of a particle being in a given
place x at a given time t; rather, since the wavefunction is complex-valued, the
probability is given by the square of the wavefunction: |Ψ(x, t)|2 = Ψ(x, t)Ψ(x, t),
or ‖Ψ‖2 = 〈Ψ | Ψ〉.
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5.1.4 Orthonormality

In the following, “vector” refers to any element of a real or complex inner-
product space.

Definition 5.1.10 (Orthogonal) Two nonzero vectors are orthogonal if
and only if their inner product is zero, x · y = 0.

Definition 5.1.11 (Orthonormality) A set of vectors is orthonormal (ab-
breviated ON) if they are normal and pairwise orthogonal. That is {x1,x2, . . .}
is ON if ‖xk‖ = 1 and xj · xk = 0 for j 6= k.

Definition 5.1.12 (Kronecker delta) The Kronecker delta is defined:

δjj = 1,

δjk = 0, if j 6= k.

Remark 5.1.8 The Kronecker delta can be used like a conditional expression
in a programming language. For example, δjkA + (1 − δjk)B = A if j = k
and = B if j 6= k.

Proposition 5.1.3 A set of vectors {x1,x2, . . .} is orthonormal if and only
if xj · xk = δjk.

Exercise 5.1.20 Simplify
∑n

k=1 AjδjkBk.

Notation 5.1.3 I will sometimes write δj for a (finite or infinite) sequence
with a 1 in the jth position and 0 in all the rest. Thus (δj)k = δjk.

Exercise 5.1.21 Show that the vectors δ1, . . . , δn ∈ En are ON.

Exercise 5.1.22 Show that the sequences (infinite-dimensional vectors) δ1,
δ2, . . .∈ `2 are ON.
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5.1.5 Approximate Orthogonality

As defined in mathematics, orthogonality is an exact property: two vectors
either are orthogonal or they are not.2 However, in practical applications
of linear mathematics, especially in biology, imprecision in information rep-
resentation and processing implies that exact orthogonality cannot be de-
pended upon. In these applications, approximate orthogonality is more rele-
vant, and we are more concerned that algorithms work under conditions of
approximate rather than exact orthogonality. Further, we will find that in
some cases approximate orthogonality is better than exact orthogonality. To
illustrate this, we begin with a simple result from Hamming (1986).

Proposition 5.1.4 If we pick any of the 2n bipolar vectors in {−1,+1}n,
they are almost surely nearly orthogonal; specifically, as n increases, the co-
sine of the angle between the vectors approaches 0 almost certainly (by the
weak law of large numbers), which is to say, the angle goes to 90◦.

Remark 5.1.9 The truth of this is easy to see. Pick two random vectors
x,y ∈ {−1,+1}n and consider the inner product 〈x,y〉 =

∑n
k=1 xkyk. The

products xkyk will be +1 or −1 with equal probability. The expectation value
of the sum is the mean, which is 0. The cosine of the angle between the
vectors is given by

cos θ =
〈x,y〉
‖x‖‖y‖

=

∑
±1

n
,

since ‖x‖ = ‖y‖ =
√
n (Why?). Hence the expectation value of the cosine

goes to zero with increasing n.

Next, I will extend this result to random real vectors.

Proposition 5.1.5 Suppose two random vectors in Rn are chosen with zero
mean and standard deviation proportional to 1/n (to maintain normalization
on the average). With increasing n, both the cosine of the angle and the vari-
ance of 〈x,y〉 approach zero, that is, the vectors are more likely approximately
orthogonal.

Remark 5.1.10 It’s easy to see that the expectation value of 〈x,y〉 is zero
and that the cosine decreases with n, since E{‖x‖} = E{‖y‖} = 1/n. The

2This section is based on MacLennan (1993, sect. 6.2).
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variance is computed as follows:

Var{〈x,y〉} =
n∑
k=1

E{x2
k}E{y2

k} =
n∑
k=1

1

n2

1

n2
=

1

n3
.

Biological neurons and other analog systems are limited to low-precision cal-
culation; therefore the difference between exact orthogonality and approx-
imate orthogonality can have little relevance for them. Therefore, several
investigators have seen the need for a notion of ε-orthogonality; the following
discusses the Kainen’s formulation (1992), who also cites related ideas.

Definition 5.1.13 (ε-orthogonality) Two vectors are ε-orthogonal if their
inner product is less than ε, that is, 〈x,y〉 ≤ ε.

Proposition 5.1.6 (Kainen) The number of normalized ε-orthogonal n-
dimensional vectors increases exponentially in n. Specifically, if N(n) is the
number of such vectors, then

(1− ε)−1/2 ≤ lim
n→∞

N(n)1/n ≤ (1− ε)−1/2.

Remark 5.1.11 For example, for ε = 0.1 we have

1.00504 ≤ lim
n→∞

N(n)1/n ≤ 1.0541.

Hence, asymptotically,

1.0541n ≥ N(n) ≥ 1.00504n.

Therefore, if N(5000) ≥ 8.2×1010 and N(10 000) ≥ 6.7×1021. Thus a 5000-
dimensional space (small by brain standards, less than 0.04 sq. mm) has 82
billion 0.1-orthogonal vectors, but only 5000 exactly orthogonal vectors.

Remark 5.1.12 The moral of this story is that in very high-dimensional
spaces, such as we find in the brain, vectors that are orthogonal to within
brain precision can be found by selecting random vectors. That is, random
selection is a good way to develop orthogonal representations.
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5.2 Hilbert spaces

5.2.1 Completeness

Let Sr be the continuous function:

Sr(x) =


0 if x < 0
sin(rx) if 0 ≤ x ≤ π/(2r)
1 otherwise

.

Notice that Sr increases from 0 to 1 over a distance proportional to 1/r.
(Graph the function if you don’t see this.) Next consider the sequence of
functions S1, S1/2, S1/3, . . .. Is this sequence Cauchy? (Don’t prove it; just
answer intuitively.) What would the limit of this sequence have to be? Notice
that the limit is not continuous, so it is not a member of C[−a, a], which shows
that C[−a, a] is not complete.

Definition 5.2.1 (Hilbert space) A Hilbert space is a complete inner-
product space.

Remark 5.2.1 Since a Hilbert space is complete, we know that every Cauchy
sequence in the space has a limit in the space. Further, if an inner-product
space is incomplete, it can be made into a Hilbert space by the completion
process described in Sec. 2.7.2.

Remark 5.2.2 One of the main purposes of the theory of Hilbert spaces
is to extend the familiar linear algebra of finite-dimensional vector spaces
to infinite-dimensional function spaces. In general, spatially or temporally
continuous signals (“fields,” in the sense of field computation) are best treated
as functions, and so it is convenient to treat spaces of such signals as Hilbert
spaces.

Exercise 5.2.1 Show that n-dimensional Euclidean space En is a Hilbert
space.

Exercise 5.2.2 Show that the space `2 of square-summable sequences is a
Hilbert space.

We have seen that the space C[a, b] of continuous functions is not complete,
since the limit of a sequence of continuous functions may be discontinuous.
On the other hand, we have also seen that every metric space has a unique
(up to isomorphism) completion. Therefore we can define a Hilbert space
that is the completion of C[a, b].
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Definition 5.2.2 The Hilbert space H[a, b] is the completion of the space
C[a, b] of continuous functions over [a, b].

Clearly H[a, b] contains discontinuous functions, such as the unit step U =
limn→∞ S1/n.

5.2.2 Orthonormal Bases

Definition 5.2.3 (Complete ON set) An ON subset of a Hilbert space is
called complete if each nonzero element of the space is nonorthogonal to at
least one element of the set. Conversely, if {υ1, υ2, . . .} is a complete ON set
and for all k, 〈ξ, υk〉 = 0, then ξ = 0.

Definition 5.2.4 (Orthonormal basis) An orthonormal basis is a com-
plete ON set.

Remark 5.2.3 In very rough terms, nonorthogonal vectors have some “over-
lap” (think of ordinary finite-dimensional vectors). Thus an ON set is com-
plete if it has some overlap with every (nonzero) vector; it doesn’t leave any
out.

Proposition 5.2.1 A complete ON set is a maximal ON set, in the sense
that any larger set that contains it is not ON.

Exercise 5.2.3 Why?

Proposition 5.2.2 Every complete ON set in a Hilbert space has the same
cardinal number.

Definition 5.2.5 (Dimension of a Hilbert Space) The dimension of a
Hilbert space is the cardinality of a complete ON set in the space.

Remark 5.2.4 For a finite-dimensional space, such as En, the dimension is
a finite number (i.e. n is the dimension of En) just as one would expect. The
dimension of an infinite-dimensional space is an infinite cardinal number.
For example, the dimension of `2 is ℵ0 (read “aleph nought” or “aleph null”),
the cardinality of the integers.

Exercise 5.2.4 Show that ℵ0 is the cardinality of `2.
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Proposition 5.2.3 A Hilbert space contains an ON basis if and only if it is
separable.

Remark 5.2.5 We will not sketch a proof of this proposition; however its
truth will become clear from the following discussion.

Proposition 5.2.4 The set of all polynomials with rational coefficients is a
countable, dense subset of H[a, b]; hence, H[a, b] is separable.

Exercise 5.2.5 Justify this proposition by (1) explaining why the set of poly-
nomials with rational coefficients is countable, and (2) explaining why it is
dense (based on your knowledge of numerical analysis).

5.2.3 Generalized Fourier coefficients

Proposition 5.2.5 (Generalized Fourier series) If ξ1, ξ2, . . . is an ON
basis, then

φ =
∑
k

〈φ, ξk〉ξk =
∑
k

〈ξk | φ〉 |ξk〉 = |φ〉.

This is called a generalized Fourier series for φ and the ck = 〈φ, ξk〉 = 〈ξk | φ〉
are called its generalized Fourier coefficients.

Exercise 5.2.6 Prove this. Observe that since the ξk are an ON basis, there
exist ck such that φ =

∑
k ckξk.

Remark 5.2.6 Consider the generalized Fourier expansion, |φ〉 =
∑

k ck|ξk〉,
where ck = 〈ξk | φ〉. Notice that the coefficient ck is the result of applying the
linear operator 〈ξk|, which extracts the |ξk〉 component, to the vector |φ〉.

Remark 5.2.7 The term “generalized Fourier coefficient” is used because
the “ordinary” Fourier series is based on a particular basis, the sine and
cosine functions.

Definition 5.2.6 (Trigonometric Basis) For functions over [0, 1], the trigono-
metric basis can be defined:

ξ0(t) = 1,

ξ2k−1(t) =
√

2π sin(2πkt), for k = 1, 2, . . .,

ξ2k(t) =
√

2π cos(2πkt), for k = 1, 2, . . ..
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Proposition 5.2.6 (Parseval relation) If ξ1, ξ2, . . . is an ON basis, then

〈φ, ψ〉 =
∑
k

〈φ, ξk〉〈ψ, ξk〉.

That is, if φ =
∑
ckξk and ψ =

∑
dkξk, then 〈φ, ψ〉 =

∑
ckdk = 〈c,d〉.

Proposition 5.2.7 (Parseval equality) If ξ1, ξ2, . . . is an ON basis, then

‖φ‖2 =
∑
k

|〈x, ξk〉|2.

That is, if φ =
∑
ckξk, then ‖φ‖2 =

∑
|ck|2 = ‖c‖2.

Exercise 5.2.7 Prove the preceding propositions.

Exercise 5.2.8 Show that if the ξk are an ON basis, then

〈φ | ψ〉 =
∑
k

〈φ | ξk〉〈ξk | ψ〉.

Proposition 5.2.8 Any separable Hilbert space is isometric (and therefore
isomorphic) to `2.

Remark 5.2.8 Since a separable Hilbert space has an ON basis (ξ1, ξ2, . . .),
we can expand any element φ of the space into a generalized Fourier se-
ries. Notice that the sequence of generalized Fourier coefficients c = (〈φ, ξ1〉,
〈φ, ξ2〉, . . .) belongs to `2 (Why?). Furthermore, c and φ have the same norm
(Why?). Thus φ can be isometrically mapped into `2.

Conversely, if c = (c1, c2, . . .) ∈ `2, then it can be isometrically mapped
into H[a, b] as φ =

∑
k ckξk. Explain why.

Proposition 5.2.9 All Hilbert spaces with the same dimension are isometric
(and therefore isomorphic).

Remark 5.2.9 This is because any element of the one space can be isomet-
rically mapped to a sequence of generalized Fourier coefficients as long as
the dimension of the space. This sequence can then be used as generalized
Fourier coefficients to map into the second space.
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Proposition 5.2.10 Every separable Hilbert space is either finite-dimensional,
which case it is isometric to Cn, where n is its dimension, or it is infinite-
dimensional, in which case it is isometric to `2.

Exercise 5.2.9 Prove the preceding proposition.

Remark 5.2.10 Prop. 5.2.10 is fundamental for field computation, because
it means that spatially continuous fields can be represented as discrete ensem-
bles of complex coefficients, which also supports representation by discrete
ensembles of neurons, as is discussed in later (Ch. 12). Separable Hilbert
spaces are where the continuous meets the discrete, and so they are funda-
mental in understanding the relation of discrete and continuous information
representation and processing.

5.2.4 Spanning vectors and orthogonal subspaces

The following concepts are familiar from linear algebra; the theory of Hilbert
spaces extends them to infinite-dimensional spaces.

Definition 5.2.7 (Span) Suppose ξ1, . . . ξn ∈ H are linearly independent.
The span of ξ1, . . . ξn is the set S = span{ξ1, . . . ξn} of all linear combinations∑
ckξk of these vectors. The set S is said to be spanned by these vectors.

Definition 5.2.8 (Orthogonal Complement) If S ⊂ H, then the orthog-
onal complement of S is the set of all vectors that are orthogonal to every
element of S.

Proposition 5.2.11 If T is the orthogonal complement of S, then the Hilbert
space can be written as the direct sum of S and T , H = S ⊕ T . This means
that every φ ∈ H can be written as a sum of orthogonal σ ∈ S and τ ∈ T .

Proposition 5.2.12 Let S = span{ξ1, . . . , ξn} in a Hilbert space H. For any
φ ∈ H there is a ψ ∈ S that is closest to φ (in an L2 sense), and ν = φ− ψ
is orthogonal to every element of S.

Remark 5.2.11 Thus, in the finite dimensional subspace S there is a best
approximation ψ to φ, and the remainder ν has no “overlap” with this space.
This is easy to see in the finite-dimensional case. Let S = {ξ1, ξ2} ⊂ E3.
Then S is a plane in three-dimensional space. For a given φ, ν is a perpen-
dicular vector from φ to this plane and ψ is the point in the plane intersected
by this perpendicular.
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Proof: Here is a sketch of a proof of Proposition 5.2.12. Can we find a ψ
such that ν = φ − ψ is orthogonal to every element of S? Thus, we need,
for all k, ν · ξk = 0. Since ψ is in the span of ξ1, . . . ξn there are ck such
that ψ =

∑
ckξk. We solve for ψ as follows: since (φ− ψ) · ξk = 0, we know

φ · ξk = ψ · ξk, for all k. Therefore,

φ · ξk =

(∑
j

cjξj

)
· ξk, (5.16)

=
∑
j

(ξk · ξj)cj. (5.17)

Now let Mkj = ξk · ξj and dk = φ · ξk. In these terms Eq. 5.17 can be written
dk =

∑
jMkjcj, or d = Mc. Therefore we can determine ψ by solving for c.

Notice that if the ξk are ON, then M = I and c = d. However, we know
only that the ξk are linearly independent, but in this case it can be shown
that M is nonsingular. Therefore there is a unique solution c = M−1d.

It remains to show that this ψ minimizes ‖φ − ψ‖. Therefore, let χ be
any other vector in S; we will show that ‖φ − χ‖ is minimized only when
χ = ψ.

‖φ− χ‖2 = ‖(φ− ψ)− (χ− ψ)‖2,

= ‖φ− ψ‖2 − (φ− ψ) · (χ− ψ)− (χ− ψ) · (φ− ψ) + ‖χ− ψ‖2.

Since χ and ψ are both in S, so is χ − ψ, which is therefore orthogonal to
φ−ψ, which is in the orthogonal complement of S; hence (φ−ψ) · (χ−ψ) =
0 = (χ− ψ) · (φ− ψ). Therefore,

‖φ− χ‖2 = ‖φ− ψ‖2 + ‖χ− ψ‖2.

All the terms are nonnegative; therefore, since ‖φ−ψ‖ is fixed, ‖φ− χ‖ will
be minimized when χ = ψ.

�

Remark 5.2.12 The preceding proposition is also true if S is not a finite-
dimensional subspace.
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5.2.5 Linear functionals

5.2.5.1 Bounded functionals

Definition 5.2.9 (Functional) A functional is a complex-valued function
on a normed linear space.

Remark 5.2.13 (Linear Functionals) In this section we will be especially
concerned with linear functionals.

Definition 5.2.10 (Bounded linear functional) A linear functional L :
X → C is bounded if there is a positive real number b such that |L(x)| ≤ b‖x‖
for all x ∈ X.

Remark 5.2.14 For an example of an unbounded linear functional, con-
sider:

L(φ) = φ′(x),

where x is a particular point, a ≤ x ≤ b, and φ′ is the derivative of φ. This
is an unbounded linear functional defined on the differentiable functions in
C[a, b].

Proposition 5.2.13 A linear functional is bounded if and only if it is con-
tinuous.

Exercise 5.2.10 Prove the preceding proposition. Hint: First show it is
continuous at 0; then show that if it’s continuous at 0 it must be continuous
at all x ∈ X.

5.2.5.2 Riesz representation theorem

Definition 5.2.11 (Representer) If a bounded linear functional L : X →
C on an inner-product space X can be written L(x) = 〈x, r〉 = 〈r | x〉, for a
fixed r ∈ X and all x ∈ X, then r is called a representer of L.

Proposition 5.2.14 A representer, if it exists, is unique.

Exercise 5.2.11 Prove this proposition. Hint: Assume there are two repre-
senters.
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Remark 5.2.15 The following proposition proves that there is a representer
for every bounded linear functional L. It’s illuminating to express this in
Dirac’s bra-ket notation. Then the representer will be a bra 〈r| so that for
any vector |x〉 (which we write as a ket),

L|x〉 = 〈r||x〉 = 〈r | x〉.

That is, L and 〈r| are functionally identical, and so bounded linear func-
tionals can be identified with bras. Indeed, 〈r| is generally defined to be the
linear functional L for which L|x〉 = 〈r | x〉. The space of bounded linear
functionals or bras 〈r| is the continuous dual space of the space of vectors or
kets |r〉.

Proposition 5.2.15 (Riesz representation theorem) A bounded linear
functional on a Hilbert space has a unique representer in that space.

Proof: First define the null space of L,

N(L) = {x ∈ H | L(x) = 0} (5.18)

If N(L) = H, then let r = 0 and the theorem is proved. If on the other
hand N(L) 6= H, then let M be the orthogonal complement of N(L) so that
H = M ⊕N(L). Let s be any normalized element of M .

Exercise 5.2.12 Explain why we know that such an s must exist.

We claim that r = L(s)s is the representer required. To prove this we will
first show that for all x, L(x)s−L(s)x ∈ N(L). Observe, by the linearity of
L:

L[L(x)s− L(s)x] = L[L(x)s]− L[L(s)x],

= L(x)L(s)− L(s)L(x),

= 0.

Since s is from the orthogonal complement of N(L), which we’ve shown to
contain L(x)s− L(s)x, we know that the latter is orthogonal to s. Thus,

0 = s · [L(x)s− L(s)x],

= s · L(x)s− s · L(s)x.

Hence, L(x)(s · s) = L(s)(s · x); since s is normalized,

L(x) = L(s)s · x.
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�

Definition 5.2.12 The usual norm for a bounded linear functional L on a
normed linear space is:

‖L‖ = sup
x 6=0

|L(x)|
‖x‖

= sup
‖x‖=1

|L(x)|.

(For our purposes, sup = max.)

Proposition 5.2.16 In a Hilbert space, the norm of a bounded linear func-
tional is the norm of its representer. That is ‖〈x|‖ = ‖|x〉‖.

Exercise 5.2.13 Prove this proposition.

5.2.6 Convergence in function spaces

There are a number of useful notions of convergence in function spaces. In the
following definitions, we consider the space F of functions from a nonempty
set D to a normed linear space X with norm ‖ · ‖X . Let ‖ · ‖F be a norm of
F . We can then distinguish the following notions of convergence φn → φ in
the function space.

Definition 5.2.13 (Strong Convergence) ‖φn − φ‖F → 0. This is con-
vergence in the norm of the function space.

Definition 5.2.14 (Pointwise Convergence) ‖φn(x) − φ(x)‖X → 0 for
all x ∈ D.

Definition 5.2.15 (Uniform (Pointwise) Convergence) For all x ∈ D,
‖φn(x) − φ(x)‖X converges uniformly to 0; that is, for every ε > 0, we can
select an N independent of x, such that ‖φn(x)− φ(x)‖X < ε for all n > N
and x ∈ D.

Remark 5.2.16 If we think of the relation between ε and N as representing
the rate of convergence, then uniform convergence means that the rate is the
same over the entire domain.
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5.2.7 Adjoint operators and outer products

The adjoint operation is extended from matrices to arbitrary linear operators
on Hilbert spaces as follows:

Proposition 5.2.17 (adjoint of linear operator) Every continuous lin-
ear operator L has a unique continuous linear adjoint operator L† satisfying
Lx · y = x · L†y for all x, y in the Hilbert space.

Proof: Define the bounded sesquilinear3 functional φ(y, x) = y · Lx. Then,
for each y, consider the linear functional ψy(x) = φ(y, x). By the Riesz rep-
resentation theorem, this functional has a unique representer ry (depending
on y) such that ψy(x) = x · ry. Therefore define L†(y) = ry. It remains to
show that this satisfies the conditions. Observe:

x · L†y = ry = ψy(x) = φ(y, x).

Taking complex conjugates of both sides, we have φ(y, x) = L†y · x. From
the definition of φ:

y · Lx = L†y · x. (5.19)

Taking conjugates of both sides yields:

Lx · y = x · L†y. (5.20)

�

Remark 5.2.17 In Dirac’s notation, the definition of the adjoint of L is the
operator M satisfying

〈y | L | x〉 = 〈y |M∗ | x〉 = 〈x |MT | y〉∗. (5.21)

Exercise 5.2.14 For any continuous linear operator L and general vectors
x,y show that:

〈x | L | y〉∗ = 〈y | L† | x〉. (5.22)

Definition 5.2.16 (Dirac outer product or dyad) The Dirac outer prod-
uct or dyad |x〉〈y| is the linear operator defined

|x〉〈y| (|z〉) = |x〉〈y| |z〉 = |x〉 〈y | z〉 (5.23)

for all z. That is, |x〉〈y|, when applied to |z〉, returns |x〉 weighted by 〈y | z〉.
Equivalently, |x〉〈y| scales the vector |x〉 by the linear functional 〈y|.

3For “sesquilinear,” see Def. 5.1.3 (p. 70).
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Notation 5.2.1 The dyad |x〉〈y| may be abbreviated |x〉〈y| and pronounced
“x-ket bra-y” or “x ketbra y.”

Proposition 5.2.18 If |u〉 and |v〉 are finite-dimensional column vectors,
then

|u〉〈v| = uv†. (5.24)

That is,

(|u〉〈v|)jk = ujvk. (5.25)

If |u〉 is m× 1 and |v〉 is n× 1, then |u〉〈v| is m× n. This notation extends
to the infinite dimensional case in the obvious way.

Proposition 5.2.19 (completeness relation) If |ξ1〉, |ξ2〉, . . . is an ON ba-
sis for a Hilbert space, then

I =
∑
k

|ξk〉〈ξk|, (5.26)

where I is the identity operation on the space.

Proof: Observe, for an arbitrary |φ〉 in the Hilbert space,(∑
k

|ξk〉〈ξk|

)
|φ〉 =

∑
k

(|ξk〉〈ξk||φ〉) =
∑
k

|ξk〉〈ξk | φ〉,

which is the generalized Fourier decomposition of |φ〉.

�

Definition 5.2.17 (normal) An operator L : H → H is normal if L†L =
LL†. The same applies to square matrices.

Definition 5.2.18 (Hermitian or self-adjoint) An operator L : H → H
is Hermitian or self-adjoint if L† = L. The same applies to square matrices.

Exercise 5.2.15 Show that every Hermitian operator is normal.
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5.2.8 Commutators and the uncertainty principle

Definition 5.2.19 (commutator) If L,M : H → H are linear operators,
then their commutator is defined:

[L,M ] = LM −ML. (5.27)

Remark 5.2.18 In effect, [L,M ] distills out the non-commutative part of
the product of L and M . If the operators commute, then [L,M ] = 0, the
identically zero operator. Constant-valued operators always commute (cL =
Lc), and so [c, L] = 0.

Definition 5.2.20 (anti-commutator) If L,M : H → H are linear oper-
ators, then their anti-commutator is defined:

{L,M} = LM +ML. (5.28)

If {L,M} = 0, we say that L and M anti-commute, LM = −ML.

Exercise 5.2.16 Show that [L,M ] and {L,M} are bilinear operators (linear
in both of their arguments).

Exercise 5.2.17 Show that [L,M ] is anticommutative, i.e., [M,L] = −[L,M ],
and that {L,M} is commutative.

Exercise 5.2.18 Show that LM = [L,M ]+{L,M}
2

.

Definition 5.2.21 (mean of measurement) If M is a Hermitian opera-
tor representing measurement, then the mean value of the measurement of a
state |ψ〉 is

〈M〉 = 〈ψ |M | ψ〉.

Definition 5.2.22 (variance and standard deviation of measurement)
If M is a Hermitian operator representing measurement, then the variance
in the measurement of a state |ψ〉 is

Var{M} = 〈(M − 〈M〉2)〉 = 〈M2〉 − 〈M〉2.

As usual, the standard deviation ∆M of the measurement is defined

∆M =
√

Var{M}.
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Proposition 5.2.20 If L and M are Hermitian operators on H and |ψ〉 ∈
H, then

4〈ψ | L2 | ψ〉 〈ψ |M2 | ψ〉 ≥ |〈ψ | [L,M ] | ψ〉|2 + |〈ψ | {L,M} | ψ〉|2.

More briefly, in terms of average measurements,

4〈L2〉〈M2〉 ≥ |〈[L,M ]〉|2 + |〈{L,M}〉|2.

Proof: Let x+ iy = 〈ψ | LM | ψ〉. Then,

2x = 〈ψ | LM | ψ〉+ (〈ψ | LM | ψ〉)∗

= 〈ψ | LM | ψ〉+ 〈ψ |M †L† | ψ〉
= 〈ψ | LM | ψ〉+ 〈ψ |ML | ψ〉 since L,M are Hermitian

= 〈ψ | {L,M} | ψ〉.

Likewise,

2iy = 〈ψ | LM | ψ〉 − (〈ψ | LM | ψ〉)∗

= 〈ψ | LM | ψ〉 − 〈ψ |ML | ψ〉
= 〈ψ | [L,M ] | ψ〉.

Hence,

|〈ψ | LM | ψ〉|2 = 4(x2 + y2)

= |〈ψ | [L,M ] | ψ〉|2 + |〈ψ | {L,M} | ψ〉|2.

Let |λ〉 = L|ψ〉 and |µ〉 = M |ψ〉. By the Cauchy-Schwarz inequality, ‖λ‖ ‖µ‖ ≥
|〈λ | µ〉| and so 〈λ | λ〉 〈µ | µ〉 ≥ |〈λ | µ〉|2. Hence,

〈ψ | L2 | ψ〉 〈ψ |M2 | ψ〉 ≥ |〈ψ | LM | ψ〉|2.

The result follows.

�

Proposition 5.2.21 Prop. 5.2.20 can be weakened into a more useful form:

4〈ψ | L2 | ψ〉 〈ψ |M2 | ψ〉 ≥ |〈ψ | [L,M ] | ψ〉|2,

or 4〈L2〉〈M2〉 ≥ |〈[L,M ]〉|2
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Proposition 5.2.22 (uncertainty principle) If Hermitian operators P and
Q′ are measurements, then

∆P ∆Q ≥ 1

2
|〈ψ | [P,Q] | ψ〉|.

That is, ∆P ∆Q ≥ |〈[P,Q]〉|/2.

Proof: Let L = P − 〈P 〉 and M = Q− 〈Q〉. By Prop. 5.2.21 we have

4 Var{P}Var{Q} = 4〈L2〉〈M2〉
≥ |〈[L,M ]〉|2

= | 〈[P − 〈P 〉, Q− 〈Q〉]〉 |2

= |〈[P,Q]〉|2.

Hence,

2 ∆P∆Q ≥ |〈[P,Q]〉|

�

5.2.9 Separable Hilbert spaces and Hilbert-Schmidt op-
erators

5.2.9.1 Separable Hilbert spaces

Separability is important for the use of discrete implementations, such as
neural networks, for field transformations.

Proposition 5.2.23 A bounded linear operator between separable Hilbert
spaces can be represented by an infinite matrix.

Remark 5.2.19 We can prove this easily and in the process derive the ma-
trix. Suppose ξ1, ξ2, . . . is an ON basis for the Hilbert space H. Then any
|φ〉 ∈ H can be expanded in a generalized Fourier series, |φ〉 =

∑
ck|ξk〉.

Therefore, a linear operator L : H → H′ applied to |φ〉 can be expanded:

L|φ〉 = L

(∑
k

ck|ξk〉

)
=
∑
k

ckL|ξk〉.
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Therefore also the result L|φ〉 of the can be written L|φ〉 =
∑
dj|ζj〉, where

ζ1, ζ2, . . . is an ON basis for H′. Clearly, then, getting the (infinite) vector d
from c is sufficient to get L|φ〉 from |φ〉. Now observe,

dj = 〈ζj | L | φ〉 = 〈ζj|
∑
k

ckL|ξk〉 =
∑
k

ck〈ζj | L | ξk〉.

Now define the infinite matrix,

Mjk = 〈ζj | L | ξk〉,

and we see that

dj =
∑

Mjkck,

or d = Mc. These infinite series converge because L is continuous (and so
preserves limits).

Remark 5.2.20 Therefore, a bounded linear operator between separable Hilbert
spaces can be represented as a discrete arrangement of continuous values,
namely, an infinite matrix of complex numbers.

Remark 5.2.21 Recall that any infinite-dimensional separable Hilbert space
is isometric to `2. As a consequence, we can treat the elements of such a
space as (possibly infinite-dimensional) complex vectors, and bounded linear
operators on such spaces as (possibly infinite-dimensional) complex matrices.
Therefore, except where we are dealing with the physical representations of
fields and field transformations, it will be convenient to ignore the difference
between function spaces and infinite-dimensional vector spaces.

Proposition 5.2.24 For each k,
∑

j |Mjk|2 <∞.

Exercise 5.2.19 Prove this proposition.

5.2.9.2 Hilbert-Schmidt operators

The following definition and propositions are essential for field computation
because they determine when multilinear field transformations can be ex-
pressed as products of fields (see Sec. 7.4.1, p. 155).
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Definition 5.2.23 (Hilbert-Schmidt integral operator) A linear oper-
ator L : H[a, b] → H[a, b] is a Hilbert-Schmidt integral operator if and only
if there is a function K : [a, b]2 → C (called the kernel of L) such that for all
t ∈ [a, b],

(Lφ)(t) =

∫ b

a

K(t, s)φ(s)ds,

and ‖K‖2
2 <∞; that is, ∫ b

a

∫ b

a

|K(t, s)|2dsdt <∞.

In this case, K is called a Hilbert-Schmidt kernel.

Remark 5.2.22 By analogy with matrix-vector multiplication, it is conve-
nient to write Kφ for the integral operator

∫ b
a
K(t, s)φ(s)ds.

Remark 5.2.23 Hilbert-Schmidt operators are important for field computa-
tion, because each can be expressed as a “multiplication” by a fixed field (its
kernel); see Sec. 7.4.1 (p. 155).

Proposition 5.2.25 Hilbert-Schmidt operators are bounded; in particular,

‖L‖ < ‖K‖2.

Proposition 5.2.26 Each Hilbert-Schmidt operator on H[a, b] has a matrix
representation with respect to any ON basis of H[a, b]. Further, if M is the
matrix, then ‖M‖2 = ‖K‖2.

Proposition 5.2.27 (spectral decomposition of normal matrices) If the
matrix M is normal, then it can be unitarily diagonalized. Specifically,
M = UDU †, where D = diag(λ1, . . . , λn) is a diagonal matrix of the eigenval-
ues of M , and U = (e1, . . . , en) is the matrix of corresponding orthonormal
eigenvectors, which is unitary. If M is Hermitian, then the eigenvalues are
real.

Remark 5.2.24 Since the eigenvectors are orthonormal,

M |φ〉 =
n∑
k=1

λk〈ek | φ〉. (5.29)

That is, normal M scales each of the eigenvector components of |φ〉 indepen-
dently of the others.
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Proposition 5.2.28 (spectral decomposition of compact Hermitian operators)
If L is a compact Hermitian operator on a Hilbert space H, then there is an
orthonormal basis of H consisting of the eigenvectors ζ1, ζ2, . . . of L with
corresponding real eigenvalues λ1, λ2, . . .. The set of eigenvectors is at most
countably infinite with λk −→ 0. As a consequence,

L|φ〉 =
∑
k

λk〈ζk | φ〉. (5.30)

Remark 5.2.25 Hilbert-Schmidt integral operators are both bounded and
compact.

5.2.10 Tensor products

The tensor products of functions and Hilbert spaces are important in field
computation and quantum mechanics, in which they describe the state space
of composite systems.

Definition 5.2.24 (tensor product of vectors) Suppose |φ〉 ∈ H and |φ′〉 ∈
H′. Then the tensor product |φ〉 ⊗ |φ′〉 is the bilinear operator |φ〉 ⊗ |φ′〉 :
H×H′ → C defined:

|φ〉 ⊗ |φ′〉(|ψ〉, |ψ′〉) = 〈φ | ψ〉〈φ′ | ψ′〉 (5.31)

for all |ψ〉 ∈ H, |ψ′〉 ∈ H′. The expression “|φ〉⊗ |φ′〉” may be read “φ tensor
φ′.”

Definition 5.2.25 (inner product of tensor products)

〈φ⊗ φ′ | ψ ⊗ ψ′〉 = 〈φ | ψ〉〈φ′ | ψ′〉. (5.32)

Proposition 5.2.29 The tensor product satisfies the following properties:

(c|φ〉)⊗ |ψ〉 = c(|φ〉 ⊗ |ψ〉) = |φ〉 ⊗ (c|ψ〉),
(|φ〉+ |ψ〉)⊗ |χ〉 = (|φ〉 ⊗ |χ〉) + (|ψ〉 ⊗ |χ〉),
|φ〉 ⊗ (|ψ〉+ |χ〉) = (|φ〉 ⊗ |ψ〉) + (|φ〉 ⊗ |χ〉).

Notation 5.2.2 When confusion is unlikely, the tensor product |φ〉 ⊗ |ψ〉
may be abbreviated |φ〉|ψ〉 or even |φ, ψ〉 or |φψ〉.
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The tensor product of separable Hilbert spaces can be defined as the space
spanned by the tensor products of their respective basis vectors.

Definition 5.2.26 (tensor product of Hilbert spaces) Suppose the vec-
tors |ζj〉 are a basis for H and the vectors |ηk〉 are a basis for H′. Consider
the space L of all finite linear combinations of tensor products of the basis
vectors, |ζj〉 ⊗ |ηk〉. The Hilbert space tensor product H⊗H′ is defined to be
the completion of L under the inner product in Def. 5.2.25.

Proposition 5.2.30 Suppose the vectors |ζj〉 are a basis for H and the vec-
tors |ηk〉 are a basis for H′. An arbitrary |ψ〉 ∈ H⊗H′ can be expanded in a
generalized Fourier series:

|ψ〉 =
∑
jk

cjk |ζj〉 ⊗ |ηk〉, (5.33)

where cjk = 〈ζj ⊗ ηk | ψ〉.

5.2.11 Urysohn’s theorem

Proposition 5.2.31 (Urysohn) A separable metric space is homeomorphic
to a subset of the Hilbert space E∞. In this sense each separable metric space
can be embedded in E∞.

We’ll sketch the proof, which is illuminating. Suppose we have a separable
metric space (X, d). First observe that we can assume the metric is bounded
by 1; that is, for all x, y ∈ X, d(x, y) ≤ 1. If this is not the case, then we can
define

d′(x, y) =
d(x, y)

1 + d(x, y)
, (5.34)

which is a metric (Show this!). (This is a useful formula, worth remember-
ing, for converting an unbounded metric to a bounded metric.) This metric
induces the same topology on X since d(x, y)→ 0 if and only if d′(x, y)→ 0.

Since X is separable it has a countable, dense subset C. Since C is count-
able, we can enumerate its elements, C = {c1, c2, . . .}. The correspondence
H between X and E∞ is defined as follows. For x ∈ X define the sequence
ξ = H(x) by ξn = d(x, cn)/n for n = 1, 2, . . .. Notice that the cn act like a
countable set of “benchmarks” and that H replaces x by its distance to each
of these benchmarks (suitably scaled to ensure the result has a finite norm).
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We must show that H is a homeomorphism (i.e. a continuous one-to-one map
with a continuous inverse). The remainder of the proof may be skimmed if
it’s not interesting.

Exercise 5.2.20 Show that H is a one-to-one function. Hint: Suppose ξ =
H(x) and ζ = H(z) for x 6= z. Show that for a suitable choice of n we are
guaranteed that ξn 6= ζn and therefore that ξ 6= ζ.

Next we must show that H is continuous. Suppose ξ = H(x), ζ = H(z) and
d(x, z) < ε.

Exercise 5.2.21 Show that for all n, |ξn− ζn| < ε/n. Hint: First show that
|d(x, cn)− d(z, cn)| < ε.

Exercise 5.2.22 Show that

‖ξ − ζ‖2 ≤ ε2
∞∑
n=1

1

n2
.

The infinite series is convergent; in fact, since
∑∞

n=1
1
n2 = π2/6, we have

established ‖ξ − ζ‖ ≤ επ/
√

6. This shows that H is uniformly continuous
(and therefore continuous).

Finally we must show that H−1 is continuous. Let ξ ∈ H[X] and x =
H−1(ξ). We must show that for each ε > 0 there is a δ > 0 such that d(x, z) <
ε whenever z = H−1(ζ) and ‖ξ, ζ‖ < δ. Let an arbitrary ε be chosen. Find
the minimum n such that d(x, cn) < ε/3. (Such an n is guaranteed to exist;
why?) We claim that δ = ε/3n will satisfy the requirements.

Exercise 5.2.23 Show that |d(x, cn) − d(z, cn)| < ε/3. Hint: Show that
|ξn − ζn| < δ. What follows from that?

Exercise 5.2.24 Show that d(z, cn) ≤ |d(x, cn) − d(z, cn)| + d(x, cn). Hint:
Use the triangle inequality to show |A| ≤ |B − A|+ |B|.

Exercise 5.2.25 Show that d(x, z) < ε. Apply the triangle inequality to
d(x, cn) and d(z, cn).

ThereforeH−1 is continuous (although not, in general, uniformly continuous).

Remark 5.2.26 Because of the construction of ξ = H(x), we can see that
the metric space is homeomorphic to a subset of a particular space Q∞:

Definition 5.2.27 (Fundamental Parallelopiped) In the Hilbert space
E∞, the set Q∞ of all ξ such that |ξn| ≤ 1/n is called the fundamental
parallelopiped.
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Chapter 6

Gabor Representations

6.1 Introduction

This is the last chapter of general background material before turning to
the topic of field computation proper, which occupies the remainder of the
book. The issue is the representation of of continuous fields (images, signals)
extended in one or more continuous dimensions, including time. We begin
with a fundamental way of quantifying the information carrying capacity of
a signal, which was developed by Gabor and is complementary to Shannon’s
better known measure. This has interesting, mathematically rigorous, con-
nections to the Heisenberg uncertainty principle and to wave-particle duality,
which are important for applications in quantum computation. Interestingly,
Gabor-like representations seem to be used by the brain, especially in pri-
mary visual cortex, and so we review the evidence for this. In any case,
Gabor wavelets have proved to be valuable multi-resolution representations
in many practical applications. While all the mathematical essentials are
here (especially in the appendices to the chapter), our principal goal is to
build intuition for the material.

Dennis Gabor is best known as the father of holography, in recognition
of his development of its theory in 1947. In this chapter, however, we are
concerned with his theory of communication, published in 1946 (Gabor 1946),
two years before Claude Shannon’s more famous theory (Shannon 1948).
Gabor’s theory was not simply an anticipation of Shannon’s (as was Hartley’s,
for example); rather it addresses a completely different aspect of the nature of
communication. It also provides a basis for the representation and processing

101
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of information in vision and perhaps other sensory modalities. This aspect
will be our concern here.

First we review Gabor’s Uncertainty Principle, which defines limits on the
representation of any signal. Next we discuss the representation of signals in
terms of Gabor elementary functions (Gaussian-modulated sinusoids), which
is optimal in terms of the uncertainty principle and has several advantages
over representations based on Fourier series and the Sampling Theorem. Af-
ter reviewing John G. Daugman’s research supporting the presence of Gabor’s
representations in mammalian vision, we discuss its pros and cons compared
to wavelet-based representations. Finally we present an extension of the
Gabor representation and apply it to the representation and processing of
spatiotemporal patterns in the visual cortex.

6.2 The Gabor Uncertainty Principle

Gabor proved his uncertainty principle by applying to arbitrary signals the
same mathematical apparatus as used in the Heisenberg-Weyl derivation of
the uncertainty principle in quantum mechanics. We give our own version of
this proof in the chapter appendix (Sec. 6.12.1, p. 144); here our intent is to
build intuition, so we present several informal derivations.

Suppose we are trying to measure the frequency of a tone. Intuitively,
the longer the sample we take, the more accurate will be our measurement
(Fig. 6.1), which suggests that the error in measuring the frequency, ∆f , is
inversely related to the duration of the measurement, ∆t. This intuition can
be made a little more precise by considering a very basic kind of frequency
measurement. Suppose we have a device that counts every time our signal
reaches a maximum; then the number of maxima in an interval of time ∆t
will be the average frequency during that interval (Fig. 6.2). How long must
∆t be in order to guarantee we can distinguish frequencies differing by ∆f?
This will occur when the counts for f and f + ∆f are guaranteed to differ
by at least one (Fig. 6.3). That is,

(f + ∆f)∆t− f∆t ≥ 1,

or,
∆f∆t ≥ 1. (6.1)

This is the basic Gabor Uncertainty Principle; it means that the product of
the uncertainties in frequency and time must exceed a fixed constant, and
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Figure 6.1: Improved frequency measurement over longer time intervals. The
uncertainty in the frequency ∆f decreases as the measurement interval ∆t
increases, and vice versa.
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Figure 6.2: Measuring frequency by counting maxima in a given time interval.
The circled numbers indicate the maxima counted during the measurement
interval ∆t. Since signals of other frequencies could also have the same num-
ber of maxima in that interval, there is an uncertainty ∆f in the frequency.
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Figure 6.3: Minimum time interval ∆t to detect frequency difference ∆f .
If two signals differ in frequency by ∆f , then a measurement of duration
∆t ≥ 1 /∆f is required to guarantee a difference in counts of maxima. Italic
numbers indicate maxima of signal of frequency f ; roman numbers indicate
maxima of signal of higher frequency f + ∆f .
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so the accuracy with which one of them can be measured limits the best
possible accuracy with which the other can be measured.1

Heisenberg’s Uncertainty Principle is a simple corollary of Eq. 6.1, since
according to quantum mechanics the energy of a photon is proportional to
its frequency, E = hf . Multiplying both sides of Eq. 6.1 by h (Planck’s
constant) yields

∆E∆t ≥ h,

which is one form of Heisenberg’s principle.2 Of course, Heisenberg derived
his principle first; Gabor’s accomplishment was to show that the same math-
ematical derivation applied to communication systems.

A more formal derivation of Gabor’s Uncertainty Principle is based on
the observation that the “spread” of a signal and its Fourier transform are
inversely proportional (Fig. 6.4).3 To accomplish this we must first specify
a way of measuring the spread of functions, especially when they are not
strictly local (i.e., have noncompact support). For suppose we measure a
frequency f over an interval of time ∆t; this does not imply that the fre-
quency during that interval was always in the range f ±∆f ; it means only
that the average frequency over that interval was in f ±∆f . The instanta-
neous frequency could have varied widely, and so its spectrum might look like
that in Fig. 6.5 (assumed to be centered on f). Nevertheless, we can assign
a nominal bandwidth to the spectrum that measures its spread around the
measured frequency f . Alternately we can imagine that Fig. 6.5 represents
the transfer function of a band-pass filter; the nominal bandwidth is a mea-
sure of the width of the band compared with that of an ideal band-pass filter.

1Note that we have shown a duration ∆t ≥ 1 /∆f is necessary to discriminate frequen-
cies differing by ∆f . On the other hand, if we measure a frequency f during an interval
∆t, then the actual frequency could be as low as f − 1/∆t or as high as f + 1/∆t. There-
fore, the uncertainty around f is ∆f ≥ 2/∆t, giving the uncertainty principle ∆f∆t ≥ 2.
Furthermore, there are other methods of measuring the frequency, such as counting sign
changes (zero crossings), which would give ∆f∆t ≥ 1/2 for the discrimination case and
∆f∆t ≥ 1 for the measurement case. Thus although the exact constant depends on what
we are measuring and how we are measuring it, its value doesn’t much matter, since the
conclusion is the same: there is a lower limit on the product of the uncertainties in the
time and frequency domains. For the sake of simplicity we use the constant 1.

2Different methods of measuring ∆E and ∆t yield different constants on the right-
hand side, such as ~ = h/2π or ~/2. Again, the exact constant doesn’t matter. Also,
since E = pv/2 = px/2t, we have the other common form of the Heisenberg principle,
∆p∆x ≥ 2h.

3The derivation follows Yu (1976, pp. 44–45).
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Figure 6.4: The “spread” of a signal and its Fourier transform are inversely
proportional. (a) A constant function in the time domain corresponds to a
unit impulse (Dirac delta function) in the frequency domain. (b, c) As the
width of a pulse in the time domain decreases, its spectrum in the frequency
domain spreads (spectrum shown is schematic). (d) A unit impulse in the
time domain has a spectrum which is a constant function.
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Figure 6.5: Nominal bandwidth in frequency domain of nonnegative spec-
trum. The nominal bandwidth is the width of a rectangular pulse (shaded)
that has the same area as the continuous spectrum and has a height equal
to its amplitude at the origin.

We say that nominal bandwidth measures the spectrum’s localization in the
frequency domain. Similarly, to a signal that may not actually be localized
in a particular interval of time, we assign a nominal duration that measures
its spread in time, and thus its localization in the time domain.4

Although there are many ways to define these measures, we define the
nominal duration of a nonnegative signal φ to be the duration of a rectangular
pulse of the same area and amplitude at the origin as the signal (Fig. 6.6).5

Thus the nominal duration ∆t is defined by the equation

4We call a function local if most of its area is concentrated in a compact region; we call
it strictly local if it has compact support (roughly, it is zero outside of a compact region).
For example, the normal distribution is local, but a finite pulse is strictly local. Note
that we can have a local function that is in fact more localized than a given strictly local
function. We call a function nonlocal if its area is spread more or less uniformly over its
(noncompact) domain; sine and cosine are good examples.

5General (possibly negative) signals are considered later. Obviously there are many
ways to measure the spread of a function, for example, Gabor (1946) uses the variance,
as does Hamming (1989, pp. 181–184); in Appendix 6.12.1 we use the standard deviation.
The choice of measure affects only the constant on the right-hand side of the uncertainty
relation.



108 CHAPTER 6. GABOR REPRESENTATIONS

Figure 6.6: Nominal duration in time domain of nonnegative signal. The
nominal duration is the duration of a rectangular pulse (shaded) that has
the same area as the signal and has a height equal to its amplitude at the
origin.

∆t φ(0) =

∫ ∞
−∞

φ(t)dt (φ(t) ≥ 0). (6.2)

Similarly, the nominal bandwidth of the Fourier transform of φ, Φ = F(φ), is
defined

∆f Φ(0) =

∫ ∞
−∞

Φ(f)df (Φ(f) ≥ 0). (6.3)

Next write Φ(0) as the Fourier transform of φ evaluated at f = 0:

Φ(0) =

∫ ∞
−∞

φ(t)e2πiftdt

∣∣∣∣
f=0

=

∫ ∞
−∞

φ(t)dt = ∆t φ(0).

Therefore,

∆t =
Φ(0)

φ(0)
. (6.4)

Similarly, applying the inverse Fourier transform,

φ(0) =

∫ ∞
−∞

Φ(f)e2πiftdf

∣∣∣∣
t=0

=

∫ ∞
−∞

Φ(f)df = ∆f Φ(0).
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Figure 6.7: Nominal duration in time domain of arbitrary signal. Signal
shown as solid line, absolute value of signal shown as dashed line. The
nominal bandwidth of a spectrum is the width of a rectangular pulse (shaded)
that has a height equal to the spectrum’s amplitude at the origin, and that
has the same area as the absolute value of the spectrum.

Therefore,

∆f =
φ(0)

Φ(0)
. (6.5)

Multiplying Eq. 6.4 by Eq. 6.5 yields

∆f∆t =
φ(0)

Φ(0)

Φ(0)

φ(0)
= 1. (6.6)

Thus we see that the nominal duration and nominal bandwidth are recip-
rocals of each other, provided the signal and its Fourier transform are both
nonnegative. In other words, there is a minimum possible simultaneous lo-
calization of the signal in the time and frequency domains.

Now we consider the general case, in which the signal and its Fourier
transform may take on negative values. This is accomplished by defining the
nominal spreads in terms of the absolute values of the functions (Fig. 6.7):

∆t|φ(0)| =
∫ ∞
−∞
|φ(t)|dt, (6.7)
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∆f |Φ(0)| =
∫ ∞
−∞
|Φ(f)|df. (6.8)

The absolute value weakens our previous equality to an inequality:

∆t|φ(0)| =

∫
|φ(t)|dt ≥

∣∣∣∣∫ φ(t)dt

∣∣∣∣ = |Φ(0)|,

∆f |Φ(0)| =

∫
|Φ(f)|df ≥

∣∣∣∣∫ Φ(f)df

∣∣∣∣ = |φ(0)|.

These equations give bounds on the nominal spreads in terms of the signal
and its transform at the origin:

∆f ≥ |φ(0)|
|Φ(0)|

, ∆t ≥ |Φ(0)|
|φ(0)|

.

From these equations we get the general Gabor Uncertainty Principle:

∆f∆t ≥ 1. (6.9)

It should be noted that such an uncertainty principle applies whenever we
make simultaneous measurements of a function and its Fourier transform.6

The implications of Gabor’s principle are easier to understand by looking
at it in “Fourier space,” where the abscissa reflects the time domain and the
ordinate the frequency domain (Fig. 6.8). Then Gabor’s principle says that
the spreads or uncertainties in the time and frequency measurements must
define a rectangle in Fourier space whose area is at least 1. Thus we can
decrease ∆t, and so localize the signal better in the time domain, or decrease
∆f , and so localize it better in the frequency domain, but we cannot localize
it arbitrarily well in both domains simultaneously. The most we can localize
signals in the Fourier domain is into rectangles of size ∆f∆t = 1.

6.3 Gabor Representation of One-Dimensional

Signals

Suppose we are transmitting information by sending signals of various fre-
quencies of bandwidth F during an interval of time T .7 Suppose we sample

6In the language of quantum mechanics, f and t are conjugate variables.
7As Gabor notes, all real, physical signals have finite bandwidth and duration.
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Figure 6.8: Minimum possible localization of signal in Fourier space. The
product of the nominal duration ∆t and nominal bandwidth ∆f of a signal
must be at least 1.
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Figure 6.9: A band-limited signal is defined by a fixed number of elemen-
tary information cells. The most efficient possible (noiseless) channel divides
Fourier space into information cells of size ∆f∆t = 1. Each cell contains one
logon of information.

the signal over intervals of length ∆t to determine the signal strength at
various frequencies (say, through a bank of band-pass filters). Then the clos-
est frequencies we will be able to distinguish will be given by ∆f = 1/∆t;
that is, any frequencies differing by less than this ∆f will be operationally
indistinguishable. Thus our measuring apparatus divides Fourier space into
information cells of size ∆f∆t ≥ 1 (Fig. 6.9). Since the most efficient possi-
ble (noiseless) channel will have ∆f∆t = 1, the number of such elementary
information cells determines the maximum amount of information that can
be transmitted. No matter how we divide up Fourier space, its area gives the
number of elementary information cells, and thus the number of independent
quantities that can be transmitted. For example, in the simple case where
T = M∆t, F = N∆f and ∆f∆t = 1, we are able to transmit MN inde-
pendent quantities. For this reason Gabor defined a ∆f∆t = 1 rectangle in
Fourier space to be the basic quantum of information and called it a logon.
Thus any device (of the given bandwidth) can transmit at most MN logons
of information (in the given time interval).8

8The reader will wonder how Gabor’s measure of information relates to Shannon’s; in
fact they are orthogonal. Gabor’s measure, which may be called structural information,
quantifies the number of possible degrees of freedom. Shannon’s measure, which may
be called metrical or selective information, quantifies the decrease in a priori uncertainty
in a single one of these degrees of freedom. For example, in an optical device, the re-
solving power is equivalent to the logon content or structural information, whereas the
logarithm of the number of discriminable brightness levels is equivalent to selective or
Shannon information. Both notions of information are necessary for a complete theory
of communication (MacKay 1969, pp. 178–180, 186–189; Cherry 1978, pp. 47–49). Re-
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Figure 6.10: The Gaussian-modulated complex exponential, or Gabor ele-
mentary function φjk. The t axis goes from left to right through the center
of the spiral. The imaginary axis is vertical; the real axis is horizontal, per-
pendicular to the other two axes. In this case j = 0 (no displacement from
origin), k = 1, ∆f = 1 and α2 = 20. The function is plotted from t = −6 to
t = 6.

Gabor also showed that the minimum area in Fourier space is achieved by
Gaussian-modulated complex exponential functions of the form (Fig. 6.10):

φjk(t) = exp[−π(t− j∆t)2/α2] exp[2πik∆f (t− j∆t)], (6.10)

where ∆f∆t = 1.9 Notice that the first factor leads to a Gaussian envelope

markably, by 1928 Hartley had anticipated Gabor and Shannon by suggesting that the
information transmittable over a channel is proportional to MN logS, where S is the
number of discriminable power levels (Cherry 1978, p. 47).

9Although Gabor showed that these functions occupy minimum area in terms of his
(variance-based) definition of nominal spread, they also do so in terms of the definitions
in Eqs. 6.7 and 6.8.
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Figure 6.11: The Gaussian cosine function Cjk, or even-symmetric component
of φjk. In this case j = 0 (no displacement from origin), k = 1, ∆f = 1 and
α2 = 20.

centered on j∆t, and the second factor is the conjugate exponential form of
the trigonometric functions of frequency k∆f . The parameter α determines
the locality (spread) of the Gaussian envelope; it is proportional to its stan-
dard deviation. So we have a periodic function modulated by a Gaussian
envelope, a coherent state or wave packet in the terminology of quantum me-
chanics. This can be seen more clearly by using Euler’s formula to rewrite
Eq. 6.10 in terms of the cis (cosine + i sine) function and then in terms of
the sine and cosine functions:

φjk(t) = exp[−π(t− j∆t)2/α2]cis[2πk∆f (t− j∆t)],

= exp[−π(t− j∆t)2/α2] cos[2πk∆f (t− j∆t)] +

i exp[−π(t− j∆t)2/α2] sin[2πk∆f (t− j∆t)],

Thus the Gabor elementary function is the sum of the Gaussian cosine and
Gaussian sine functions (Figs. 6.11 and 6.12). If we let Cjk and Sjk represent
the Gaussian cosines and sines:

Cjk(t) = exp[−π(t− j∆t)2/α2] cos[2πk∆f (t− j∆t)], (6.11)

Sjk(t) = exp[−π(t− j∆t)2/α2] sin[2πk∆f (t− j∆t)], (6.12)
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Figure 6.12: The Gaussian sine function Sjk, or odd-symmetric component
of φjk. In this case j = 0 (no displacement from origin), k = 1, ∆f = 1 and
α2 = 20.

then φjk = Cjk + iSjk.
So far we have had little to say about the coefficients associated with the

elementary information cells; this is the topic we now address. Suppose a
rectangular region of Fourier space is divided into MN elementary informa-
tion cells, and that ψ is a signal whose duration and bandwidth are confined
to that region. For simplicity we assume that the cells are centered on fre-
quencies f = 0, ∆f , 2 ∆f ,. . . , (N − 1)∆f , and on times t = 0, ∆t, 2 ∆t,. . . ,
(M − 1)∆t (Fig. 6.13). Gabor showed that any such (finite energy) ψ can be
represented as a linear superposition of Gaussian sinusoids:

ψ =
M−1∑
j=0

N−1∑
k=0

ajkCjk + bjkSjk. (6.13)

Each Gaussian cosine Cjk or sine Sjk is localized in the cell centered on time
j∆t and frequency k∆f ; we call j the cell’s time-interval quantum number
and k its frequency-band quantum number. The real coefficients ajk and bjk
show the amplitudes of Gaussian cosines and sines in each cell.

It would appear that ψ is determined by 2MN real coefficients, but since
Sj0 = 0, only 2MN −M of the coefficients are independent, as we can see
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Figure 6.13: Representation of band-limited, finite-length signal by ele-
mentary information cells centered on frequencies f = 0, ∆f , 2 ∆f ,. . . ,
(N − 1)∆f , and on times t = 0, ∆t, 2 ∆t,. . . , (M − 1)∆t. Cells are indexed
by frequency-band quantum numbers k = 0, 1, . . . , N − 1 and time-interval
quantum numbers j = 0, 1, . . . ,M − 1.
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by writing Eq. 6.13 in the form:

ψ =
M−1∑
j=0

{
aj0Cj0 +

N−1∑
k=1

ajkCjk + bjkSjk

}
.

The parameters aj0 determine the DC value of ψ in each of the M time
intervals.

Just as is done in Fourier series, we can express ψ as a complex series,

ψ =
M−1∑
j=0

N−1∑
k=−N+1

cjkφjk, (6.14)

where the complex coefficients are given by:

cj0 = aj0,

cjk = (ajk − ibjk)/2, k > 0,

cjk = (ajk + ibjk)/2, k < 0.

Notice that cj,−k = c∗j,k, the complex conjugate of cj,k. We omit the derivation
of the complex series as it can be found in any standard textbook on Fourier
series.

Although there are M(2N − 1) complex coefficients cjk, we have seen
that M(N − 1) of them are complex conjugates of the others, and thus
are not independent. Out of the remaining MN complex coefficients (one
corresponding to each elementary information cell), the M coefficients cj0 are
real, so once again we find that the signal is determined by 2MN −M real
values. Thus Gabor has shown that a signal of duration T and bandwidth F
has T (2F −∆f) (real) degrees of freedom, and is thus capable of conveying
M(2N − 1) independent real values.10

Gabor’s measure of information is consistent with the number of degrees
of freedom given by the Sampling Theorem (Shannon, 1948). To see this,
observe that the highest frequency elementary information cells are centered
at frequency (N − 1)∆f ; therefore their maximum frequency (as defined by
their nominal spread) is fm = (N − 1/2)∆f . The Sampling Theorem says

10Note that FT = (M ∆f)(N ∆t) = MN(∆f ∆t) = MN . Another way to interpret
the formula M(2N −1) is that for each time interval and frequency band we have two real
parameters — an amplitude and a phase — except for the DC band, which has only an
amplitude.
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that to reconstruct ψ we must take equally spaced samples at a minimum of
the Nyquist frequency, which is twice the maximum frequency. Therefore in
time T the number of samples we must take is:

2fmT = 2(N − 1/2)∆f T = (2N − 1)∆f ∆tM = (2N − 1)M.

So Gabor’s analysis and Shannon’s Sampling Theorem both show that (2N−
1)M real parameters determine a signal of duration T and bandwidth F .

We can also compare these results with the representation of the signal
by a finite Fourier series. To do this we treat the signal ψ as periodic with
period T ; then its highest frequency relative to this period is

H = fmT = (N − 1/2)∆f(M ∆t) = (2N − 1)M/2.

The signal can be represented exactly by an H + 1 term Fourier series:

ψ(t) =
H∑
n=0

dn cos(2πnt/T ) + en sin(2πnt/T ).

There appear to be 2(H + 1) parameters dn, en, but e0 is irrelevant since the
corresponding sine term is identically zero. It also can be shown that en is
irrelevant, since (by the Sampling Theorem) the signal is determined by 2H
points, and over these points the last sine term is linearly dependent on the
other terms. Thus ψ can be represented by a Fourier series determined by
2H = (2N − 1)M real parameters:

ψ(t) = d0 +
H−1∑
n=1

{dn cos(2πnt/T ) + en sin(2πnt/T )}+ dH cos(2πHt/T ).

Again, the band-limited, finite-length signal is seen to have (2N − 1)M real
degrees of freedom.11

We have seen that any band-limited signal of finite duration can be rep-
resented by a finite superposition of Gabor elementary functions. This raises
the question of whether arbitrary functions can be represented as (possibly

11Some authors argue that the logon content is MN + 1 complex parameters or (2N −
1)M + 1 real parameters; it is also possible to argue an extra degree of freedom in the
Fourier and Sampling representations. The practical difference is slight, since typically
MN � 1, but the issue is important for information theory (MacKay 1969, pp. 185–186;
Brillouin 1956, p. 97). We leave it unresolved.
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infinite) superpositions of the Gabor functions. In fact it can be shown (Heil
& Walnut 1989, pp. 656–657) that the set of Gabor functions φjk is complete
in L2(R), the set of square-integrable functions. That is, any signal ψ of
finite energy can be written as an infinite sum

ψ =
∞∑

j=−∞

∞∑
k=−∞

cjkφjk.

Equivalently,

ψ =
∞∑

j,k=0

ajkCjk + bjkSjk.

(Note Sj0 = 0, so the bj0 are irrelevant.) On the other hand, the Gabor
elementary functions do not form a basis for the L2(R) functions, an issue
addressed later (Sections 6.6 and 6.9).

There is another way to understand the relation between representations
based on Gabor elementary functions, Fourier series, and the Sampling The-
orem (Gabor 1946, p. 435). Notice that as α → ∞ the Gabor functions
become

φjk(t) = exp[2πik∆f(t− j∆t)],

Cjk(t) = cos[2πk∆f(t− j∆t)],

Sjk(t) = sin[2πk∆f(t− j∆t)].

That is, in the α =∞ limit the wave packets have no locality, and the Gabor
representation reduces to the Fourier representation, sinusoids at a spacing
∆f . Conversely, as α→ 0 the wave packets become more and more localized,
and in the limit pass over into Dirac delta functions (impulses) at a spacing
of ∆t:

φjk(t) = δ(t− j∆t) + iδ(t− j∆t),
Cjk(t) = Sjk(t) = δ(t− j∆t).

We see that the α = 0 limit represents two samples (ajk and bjk) for each ∆t
interval, as required by the Sampling Theorem.

The value of the Gabor representation lies in the locality of the elementary
functions. That is, although they are not strictly local (of compact support),
their sensitivity is concentrated in a small interval of time (measured by the
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nominal duration). Because of the locality property, the Gabor represen-
tation is physically more realistic than the Fourier representation, since it
represents a band-limited signal of finite duration (i.e., a physically realistic
signal) by a finite superposition of temporally local elementary signals. In
contrast, the Fourier representation of such a signal requires an infinite su-
perposition of nonlocal signals, and so depends on enormous cancellation in
order to result in a local superposition (Strang 1989, p. 614). This and the
fact that the Gabor elementary functions correspond to a quantum of infor-
mation are good theoretical reasons for choosing them as representational
primitives.

6.4 Gabor Representation of Two-Dimensional

Signals

We have seen that any (finite energy) one-dimensional function ψ : R → R
can be represented as a linear superposition of Gabor elementary functions,
each of which represents one logon or quantum of information about the
function. Although we thought of these functions as time-varying signals
ψ(t), it should be clear that this is not essential to the theory. ψ(x) could
also represent a spatial pattern, in which case the Gabor elementary functions
represent information cells localized in space and spatial frequency. We must
make the change to the spatial domain when we come to problems in vision,
where it is necessary to consider two-dimensional functions ψ : R2 → R,
where ψ(x, y) represents the intensity at spatial location (x, y).

It might be expected that two-dimensional signals could be represented
in terms of two-dimensional analogues of Gabor elementary functions, and
in the early 1980s a number of researchers suggested Gaussian-modulated
sinusoids as models of the receptive fields of simple cells in visual cortex
(Marčelja 1980; Daugman 1980; Watson 1982; Pribram & Carlton 1986).
Our presentation is based on Daugman (1985a, 1993).

Daugman proved12 two-dimensional analogues of Gabor’s Uncertainty
Principle,

∆x∆u ≥ 1 / 4π, ∆y∆v ≥ 1 / 4π

(where ∆u and ∆v are the uncertainties in the x and y spatial frequencies),
and showed that the elementary information cells are occupied by Gabor

12Our own proofs can be found in the chapter appendices 6.12.1 and 6.12.2.
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elementary functions of the form:

φpquv(x, y) = exp

{
−π
[

(x− p)2

α2
+

(y − q)2

β2

]}
exp{2πi[u(x− p) + v(y− q)]}.

(6.15)
The first factor is a two-dimensional Gaussian distribution centered on the
point (p, q); the second factor is the conjugate exponential form of the trigono-
metric functions, also centered on (p, q). The parameters (u, v) determine the
wave packet’s location in the frequency domain just as (p, q) determine its lo-
cation in the spatial domain. The 2D Gabor function’s nominal x-spread and
y-spread are α and β, and so these parameters determine its two-dimensional
shape and spread.13

As we did for the Gabor representation of 1D signals, we will make use of
Gabor elementary functions located on a regular grid in the spatial and spec-
tral domains. In this case we index the functions by the quantum numbers
j, k, l,m:

φjklm(x, y) = exp

{
−π
[

(x− j∆x)2

α2
+

(y − k∆y)2

β2

]}
×

exp{2πi[l∆u(x− j∆x) +m∆v(y − k∆y)]},

where the spacing is determined by ∆x∆u = 1 and ∆y∆v = 1.
The spatial frequency of the function in Eq. 6.15 is f =

√
u2 + v2 and its

orientation is θ = arctan(v/u). Conversely, u = f cos θ and v = f sin θ. This
gives an alternate form for the elementary functions:

φpqfθ(x, y) = exp

{
−π
[

(x− p)2

α2
+

(y − q)2

β2

]}
×

exp{2πif [(x− p) cos θ + (y − q) sin θ]}. (6.16)

The structure of Eq. 6.15 may be easier to understand by writing it in
vector form; let x = (x, y) be an arbitrary point in the plane, let p = (p, q) be
the center of the function, let u = (u, v) be the wave vector (which represents
the packet’s frequency along each axis). Finally, let the diagonal matrix

S =

(
α−1 0
0 β−1

)
13The standard deviation of the Gaussian on the x-axis is proportional to α, and on the

y-axis to β; see Sec. 6.12.2.



122 CHAPTER 6. GABOR REPRESENTATIONS

represent the function’s shape. Then,

φpu(x) = exp{−π‖S(x− p)‖2} exp[2πiu · (x− p)]. (6.17)

Now it is clear that the 2D Gaussian envelope falls off with the square of the
distance from p scaled in accord with S. Similarly, the periodic part has its
origin at p. Since u · (x−p) projects x−p onto u, the phase of the periodic
function is constant in a direction perpendicular to the wave-vector u. Thus
the orientation of the periodic part is given by u and its frequency is given
by ‖u‖ = f .

The overall shape of the 2D Gabor elementary function is easiest to un-
derstand in terms of its even-symmetric (cosine) and odd-symmetric (sine)
components, so we separate the periodic part of Eq. 6.17 to get φpu(x) =
Cpu + iSpu, where

Cpu(x) = exp{−π‖S(x− p)‖2} cos[2πu · (x− p)],

Spu(x) = exp{−π‖S(x− p)‖2} sin[2πu · (x− p)].

One of these 2D Gaussian sinusoids is shown in Fig. 6.14; it can be described
as an oriented grating patch. The 2D Gabor Uncertainty Principle can be
understood by looking at Fig. 6.15. On the left we see a schematic represen-
tation of the even component of a 2D Gabor elementary function; on the right
we see a schematic representation of its Fourier transform. Now consider Fig.
6.16, which shows a Gabor function like that in Fig. 6.15, but wider in the x
direction. Looking at the figure we can see that its increased width will pro-
vide greater sensitivity to orientation, and this can be seen in the frequency
domain, where ∆θ ≈ 1/(f∆x) is smaller.14 Thus there is a tradeoff between
localization in the conjugate variables x and θ, since ∆x∆θ ≈ 1/f . Figure
6.17 shows the effect of stretching the Gabor function in the y dimension.
Just as for one-dimensional signals, the increased number of samples allows a
more accurate determination of the frequency, and so decreases ∆f = 1/∆y.
Thus there is a tradeoff between localization in the conjugate variables y and
f , since ∆y∆f = 1.

14The relationship ∆θ ≈ 1 / f∆x holds for small ∆θ.
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Figure 6.14: The even (cosine) component of a 2D Gabor elementary func-
tion. The function shown has α2 = β2 = 20, u = 1/2, v = 1, and p = q = 0.
It is plotted for all x, y ∈ [−6, 6].
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Figure 6.15: Schematic representation of even component of 2D Gabor ele-
mentary function in space and frequency domains (adapted from Daugman
(1985b)).
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Figure 6.16: Schematic representation of even component of 2D Gabor ele-
mentary function in space and frequency domains showing ∆x vs. ∆θ tradeoff
(adapted from Daugman (1985b)). Thus x and θ are conjugate variables.
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Figure 6.17: Schematic representation of even component of 2D Gabor ele-
mentary function in space and frequency domains showing ∆y vs. ∆f trade-
off (adapted from Daugman (1985b)). Thus y and f are conjugate variables.
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6.5 Evidence for 2D Gabor Representation in

Vision

Daugman (1984, 1985a, 1993) summarizes the considerable physiological evi-
dence that 2D Gabor elementary functions are fundamental to visual process-
ing in several mammalian species. Since proponents of alternate hypotheses,
such as those based on wavelets or Laplacian edge detectors, will have to
demonstrate that they can account as well for these data, we briefly review
the results.

First, measurements of the receptive fields of simple cells in cat visual
cortex have shown them to be like Gaussian-modulated sinusoids (Jones &
Palmer 1987); Daugman has shown that 97% of them are statistically indis-
tinguishable from the odd- or even-symmetric parts of a 2D Gabor elementary
function.

Pollen and Ronner (1981) found a quadrature phase relation between
pairs of simple cells in the same cortical column; that is, adjacent simple
cells have grating patches that are 90◦ out of phase, but matched in preferred
orientation and frequency. These cells could be computing the odd- and even-
symmetric parts of the complex 2D Gabor function, in accord with Euler’s
formula:

e2πifx = cos 2πfx+ i sin 2πfx.

Alternately, a simple cell could represent the sum of two Gabor elementary
functions, in accord with the formulas:

2 cos 2πfx = e−2πifx + e2πifx,

2 sin 2πfx = ie−2πifx − ie2πifx.

Daugman (1993) presents an additional argument in favor of the 2D
Gabor elementary functions, which is based on their efficiency. An opti-
mal image coding scheme is given by principal components analysis via the
Karhunen-Loève transform. However, this method is dependent on the par-
ticular image to be encoded. To get an image-independent encoding scheme,
we can make the reasonable assumption that the image statistics are locally
stationary, in which case the Karhunen-Loève transform is equivalent to a
windowed Fourier analysis in each of the local regions. The 2D Gabor rep-
resentation is a good approximation to this scheme.

Daugman (1984) also conducted a series of psychophysical experiments,
which allowed him to infer the tuning sensitivities of the entire visual chan-
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nel (in humans). These were masking experiments in which a fixed grating
was presented together with a grating that was variable in orientation and
spatial frequency. The experiments determined how much the fixed grating
interfered with the perception of the variable grating; this was determined
by measuring how much the fixed grating raised the threshold at which the
variable grating became visible. The underlying assumption is that the neu-
rons in the visual channels that are involved in perceiving the fixed grating
become fatigued or saturated, and so the variable grating is difficult to per-
ceive to the extent it shares the same neural channels. Hence the degree of
masking measures the response sensitivity of that neural channel to gratings
of other frequencies and orientations.

The results of these psychophysical experiments were consistent with the
neurophysiological data from cat visual cortex: visual channels have a fre-
quency bandwidth of 1–2 octaves and an orientation half-bandwidth ±15◦

(i.e., 30◦ total angular bandwidth). Furthermore, the regions of sensitivity
in the spectral domain were elliptical and twice as large in the orientation
dimension as in the frequency dimension (i.e., corresponding to Fig. 6.17).
Such a sensitivity profile corresponds to a width/length ratio in the spatial
domain of λ = α/β = 1/2, in good agreement with neurophysiological data
(Jones & Palmer 1987; Movshon 1979).

For optimal (minimum uncertainty) 2D Gabor filters, a relationship can
be calculated between the aspect ratio λ, the orientation half-bandwidth
∆θ1/2 and the spatial frequency bandwidth r in octaves (Daugman 1985b):15

∆θ1/2 = arcsin

(
λ

2r − 1

2r + 1

)
.

For the observed λ = 1/2 and r = 1.5 octaves, the formula gives ∆θ1/2 =
13.8◦, in good agreement with the observed 15◦, and supporting the hypothe-
sis that receptive field profiles are close to Gabor elementary functions. This
is reinforced by calculating the area in Fourier space of the inferred filters,
which is about 2.5 times the Gabor minimum, whereas other idealized 2D
filters have areas of at least 6.5 times the minimum.

15That is, 2r = f ′/f , where f and f ′ are focal frequencies of two filters; we are measuring
bandwidth by a ratio rather than a difference. In this case r = 3/2.
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6.6 Problems with the Gabor Representation

One argument against the hypothesis that the vision system uses a 2D Gabor
representation is that the Gabor elementary functions are not strictly local;
that is, along with their Gaussian envelope, they stretch out to infinity.
In mathematical terms, they have noncompact support. This is biologically
implausible, since receptive fields are at least limited to the area of the retina,
and in fact more limited than that. (Daugman notes that receptive fields die
out after five or six extrema.) One answer to this argument is that the Gabor
representation is intended as an idealized mathematical model, and that we
shouldn’t expect it to be exactly realized in the biology. In any case, the
Gaussian envelope is well localized: 99.7% of its area is within 3 standard
deviations of the mean, 99.994% within 4 (see Figs. 6.11, 6.12, 6.14). A
receptive field that is statistically indistinguishable from a Gabor function in
97% of the cases is surely a good enough approximation to the mathematical
ideal.

A second argument against the Gabor representation is that it is nonortho-
gonal.16 One result of this is that it is comparatively difficult to compute the
coefficients of a 2D Gabor representation. For orthogonal representations,
such as the Fourier representation and orthogonal wavelet representations
(see the following section), the coefficients are computed by a simple inner
product. In contrast, an algorithm for computing the coefficients of a 1D
Gabor representation was not published before 1980, and Daugman uses an
iterative relaxation algorithm to compute the coefficients for the 2D Gabor
representation (Daugman 1993).

Further, Daugman claims that simulation studies have shown that nonor-
thogonal representations can lead to various artifacts, including edge echos
and spurious zero-crossings (Daugman 1993). The paradox is that, as Daug-
man observes, nonorthogonal representations are ubiquitous in biological sen-
sory and motor systems. Thus, whatever the disadvantages of nonorthogo-
nality, nature seems to have found ways around them; we consider some of
the possibilities in Section 6.9.

16 Indeed, the 2D Gabor elementary functions (Eq. 6.15) do not even generate a frame,
when ∆x∆u = 1 or ∆y∆v = 1 (Heil & Walnut 1989, pp. 656–657; Daubechies et al. 1986,
p. 1274). They do generate a frame for certain values of ∆u < 1/∆x and ∆v < 1/∆y, in
particular, for ∆u = 1 /m∆x, ∆v = 1 / n∆y where m,n = 2, 3, 4, . . . (Daubechies et al.
1986, p. 1275). See also Section 6.9.
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wavelet

mother

cba

Figure 6.18: Examples of dyadic dilates of a mother wavelet. The dyadic di-
lates of a mother wavelet φ(x) have the form φ(2kx) for positive and negative
integers k. This figure shows the k = −1, 0, 1 dilates (a, b, c, respectively).

6.7 Gabor versus Wavelet Representations

Wavelets have been proposed as an alternative to Gabor elementary functions
as a basis for representation in the visual system. We limit ourselves to a
brief introduction.17

A family of wavelets is a complete set of functions, all generated from a
mother wavelet by the operations of dilation and translation. Most commonly
we are concerned with dyadic dilations and translations: A dyadic dilate of
a function φ : R → R is a function of the form φ(2kx), for some integer k.
Thus φ(2−1x) is φ dilated (stretched) by a factor of two (around the origin),
and φ(2x) is φ contracted (shrunk) by a factor of two (around the origin);
see Fig. 6.18.18

A dyadic translate of a dilated function has the form φ(2kx− j) for some
integer j. The effect of the translation is clearer if we write the function in
the equivalent form φ[2k(x− j/2k)], since then we see that the dilate φ(2kx)
has been translated to all the dyadic points j/2k (Fig. 6.19). Thus the general
form of the wavelets generated from mother wavelet φ by dyadic dilation and
translation is:

φjk(x) = φ(2kx− j), j, k ∈ Z. (6.18)

Figure 6.20 shows a well-known mother wavelet, the Haar wavelet.

17Several good overviews of wavelets have been published, including Daubechies (1988),
Strang (1989) and Heil & Walnut (1989). Our exposition is based mostly on Strang (1989).

18Some authors define the dilation by 2k/2φ(2kx) so that its L2 norm is the same as
that of the mother wavelet. This is convenient if one is trying to construct an orthonormal
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Figure 6.19: Examples of dyadic translates of a dyadic dilate of a mother
wavelet. The mother wavelet φ(x) generates the family of wavelets φ(2k− j)
for all integers j and k. The first row of the figure depicts the k = 0 wavelets;
they are centered on the integers j = 0,±1,±2, . . . The second row shows the
k = 1 wavelets, centered on the half-integers j = 0,±1/2,±2/2,±3/2, . . . The
third row shows the k = 2 wavelets, centered on j = 0,±1/4,±2/4,±3/4, . . .
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11/20

Figure 6.20: The Haar mother wavelet, which generates an orthogonal family
of wavelets. A principal disadvantage of this wavelet is its discontinuity.
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Next we make some observations about wavelets:

1. Although we have discussed wavelets in terms of a one-dimensional
mother wavelet, it should be clear that wavelets of higher dimension
can be defined in the same way:

φpk(x) = φ(2kx− p), (6.19)

for φ : Rn → R, p ∈ Zn and k ∈ Z. Higher-dimensional wavelets are
necessary to model vision.

2. Since a wavelet family is by definition complete, any (finite energy)
function can be represented by a (possibly infinite) linear superposition
of wavelets:

ψ =
∑
j,k

cjkφjk.

This immediately raises the question of how the wavelet coefficients cjk
can be computed; we take it up later.

3. Families of wavelets need not be orthogonal. Although the original
definition of ‘wavelet’ implied orthogonality, the term is now generally
used for any complete family generated by dilation and translation. We
use the term orthogonal wavelet for the mother wavelet of an orthogonal
family. (The Haar wavelets, which are based on the mother wavelet in
Fig. 6.20, are orthogonal.)

4. Although our pictures have suggested that wavelets are strictly local
(i.e., of compact support), this is not necessarily the case. In fact, it
is generally difficult to construct families of strictly local wavelets that
are orthogonal, and the resulting basis functions tend to be irregular
(Strang 1989, p. 615).

Why use wavelets instead of other representations, such as the Fourier or
Gabor transforms? One reason is that wavelets permit functions to be rep-
resented as linear superpositions of strictly local elementary functions. This
is especially important when the function to be represented is itself strictly
local, since in this case a representation in terms of nonlocal elementary func-
tions depends on enormous cancellation; think of the Fourier representation
of a pulse.

wavelet basis, but is unnecessary for our purposes here.
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Figure 6.21: Mallat’s Tree Algorithm for wavelet expansion implemented as
multilayer linear neural net. Matrix H represents a linear neural network
implementing a high-pass filter to extract the wavelet coefficients bj at each
level of resolution. Matrix L represents a linear neural network implementing
a low-pass filter that passes a “blurred” image aj on to the next stage for
processing.

Representing strictly local functions in terms of strictly local functions
makes sense, and wavelets are well suited to a strictly local representation.
If a mother wavelet φ is strictly local to an interval [−L/2, L/2] around the
origin (i.e., its support is in this interval), then we can see that a wavelet
representation of ψ is a multiresolution19 decomposition of the function: the
wavelet coefficient cjk gives information about ψ at a scale of L/2k and in
the region j/2k.

Coefficients are easy to compute if the wavelets are orthogonal. The
simplest and most familiar way is via the inner product:

cjk = 〈ψ, φjk〉/‖φjk‖.

There are also more efficient methods, such as Mallat’s Tree Algorithm (Mal-
lat 1989b, 1989a). Here we note only that the wavelet coefficients can be
computed by a simple multilayer linear neural network (Fig. 6.21). In this
algorithm, matrix H is a high-pass filter that computes the wavelet coeffi-
cients bj at resolution level 2−j, and matrix L is a low-pass filter that passes

19For a review, see Daubechies (1988).
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the “blurred” image on to the next stage.

6.8 Gabor Wavelets

There are some obvious similarities between wavelets and Gabor elementary
functions: they are both complete families of functions, the members of
which are predominantly sensitive to variations at a particular scale and at
a particular location (in space or time).20 Indeed, the Gabor functions can
be generated from a Gaussian mother function by translation and periodic
modulation, in the same way that wavelets are generated from a mother
wavelet by translation and dilation (Heil & Walnut 1989).

Daugman unifies Gabor elementary functions and wavelets by defining
Gabor wavelets (Daugman 1993). These anisotropic (oriented) wavelets are
generated from a fixed Gabor elementary function (Eq. 6.17) by dilation,
translation and rotation.21 Dilation, of course, also has the ancillary effect
of changing the frequency of the Gabor function. This fits well with neuro-
physiological and psychophysical data indicating a log-polar distribution of
response selectivity in cells in the visual cortex, which show an orientation
half-bandwidth of ±15◦ and a frequency bandwidth of 1.5 octaves (Daug-
man 1993). That is, a space in which polar angle represents orientation and
radial distance represents spatial frequency is efficiently covered by Gabor
filters with aspect ratio λ = 1/2, orientation a multiple of 30◦, and central
frequency at radii in the ratio 23/2 (Fig. 6.22).

6.9 The Orthogonality Issue

Of course, Gabor wavelets are not orthogonal, so their attractive match to
the data is coupled with mathematical difficulties. But, orthogonality is a
rather delicate property — functions either are or aren’t orthogonal; there
are no degrees of orthogonality — and so it is probably too fragile for bi-
ology to be able to depend on it. Perhaps we should not be surprised that

20Although the Gabor functions are not strictly local, their Gaussian envelope causes
their greatest sensitivity to be concentrated near the center of that envelope.

21These are not true 2D wavelets, in the usual sense, which are generated from a mother
wavelet by dilation and translation (Eq. 6.19). Thus true 2D Gabor wavelets would have
the same orientation as the mother wavelet.
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Figure 6.22: Log-polar distribution of 2D Gabor filters. Shaded ellipses rep-
resent envelopes of 2D Gabor filters with aspect ratio λ = 1/2. The filters
are oriented in multiples of ∆θ = 30◦ and have focal frequencies f0, f1, f2, . . .,
where fk = dkf0 and d = 23/2. Notice how effectively ellipses of these orien-
tations, sizes and aspect ratios cover the space.
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nonorthogonality is ubiquitous in biological systems; rather we should learn
how nature lives with it and even exploits it.

The principal difficulty with a nonorthogonal set of elementary functions
is in computing the wavelet coefficients. In other words, although we know
that any finite-energy ψ can be represented by a linear superposition of
the Gabor elementary functions, ψ =

∑
jklm cjklmφjklm, their nonorthogo-

nality means that the coefficients are not defined by a simple inner product,
cjklm = 〈ψ, φjklm〉/‖φjklm‖. Daugman (1993) has described an iterative re-
laxation algorithm for expanding an image in terms of Gabor wavelets or
other nonorthogonal codes; it operates by gradient descent in the squared L2

error of representation: ∥∥∥∥∥ψ −∑
jklm

cjklmφjklm

∥∥∥∥∥
2

.

It is unlikely that such iterative algorithms are implemented in biological
neural networks, since their speed is limited by the neuron impulse rate (say
1 msec. per impulse, with many impulses required to represent an analog
quantity).22 On the other hand, iteration in local circuits in the dendritic net
does not depend on impulse generation, and so could proceed much faster.

Although the Gabor coefficients cannot be computed by inner products,
the evidence from receptive field studies is that the primary visual system
does compute inner products, so we must question their functional role.23

One possibility is that the inner products may be good estimates of the Gabor
coefficients, and so a good place to start the relaxation process. (Daugman’s
algorithm does this.)

A second possibility we consider is that although the Gabor wavelets are
not orthogonal, they may nevertheless be a frame (Heil & Walnut 1989),

22There is at most 1 KHz. of available bandwidth since that is the maximum spike rate.
Therefore, to distinguish N discrete values, we need frequencies separated by at least
∆f = 1000/N . Applying the Gabor Uncertainty Principle gives ∆t = N/1000 seconds, or
N milliseconds to reliably transmit the value. Thus it takes at least 10 msec. to transmit
an analog value with one digit of precision and at least 100 msec. to transmit it with two
digits of precision.

23Here, “primary visual system” refers to the retina, lateral geniculate nucleus and
primary visual cortex (VI). Since the representational primitives of the retina + LGN
system seem to be either radially symmetric differences of Gaussians or radially-symmetric
Gaussian sinusoids (Pribram 1991, p. 74), the Gabor coefficients must be computed from
the coefficients of these radial basis functions.
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which is a generalization of a basis. If the functions φjklm are a frame, then
there is a bounded linear operator S such that

ψ =
∑
jklm

〈ψ, S−1φjklm〉φjklm =
∑
jklm

〈ψ, φjklm〉S−1φjklm.

In other words, the inner products 〈ψ, φjklm〉, which are apparantly computed
by the primary visual system, give the representation of ψ in terms of the
dual frame {S−1φjklm}.

Now we must address the question of whether the Gabor wavelets are a
frame. It has been known for some time that the 1D Gabor wavelets are not
a frame for ∆f ∆t = 1, but Daubechies et al. (1986, p. 1275) show that they
are a frame for ∆t = 1 /m∆f where m = 2, 3, 4, . . .24

Since a 2D Gabor wavelet is the outer product of two 1D Gabor wavelets,
φjklm(x, y) = φjl(x)φkm(y), it is straight-forward to show that the 2D wavelets
are a frame when ∆x∆u = 1/m and ∆y∆v = 1/n, where m,n = 2, 3, 4, . . .
These conditions are compatible with the constraints imposed by the Gabor
Uncertainty Principle. For example, m = n = 13 gives ∆x∆u = ∆y∆v =
1/13, which is slightly larger than the minimum 1 / 4π ≈ 1/12.6. Further,
they are consistent with Daugman’s (1984) observation that receptive fields
occupy about 2.5 times the theoretical minimum area, since in the case
m = n = 8 the functions occupy 16π2/64 ≈ 2.47 times the minimum area.

Finally, we observe that there is really no a priori reason for the visual
cortex to compute the Gabor coefficients, because there is no need for it to
reconstitute the input image ψ from the coefficients:

ψ =
∑
jklm

cjklmφjklm.

It must be remembered that this equation is only a mathematically con-
venient way of guaranteeing that no information is lost in computing the
coefficients. Since the visual cortex harbors no homunculus, it does not need
to reconstruct the image, and it may work directly in terms of the inner
products.

24These conditions are sufficient, but perhaps not necessary. Also note that for larger
m the frame is tighter, which means S−1 is more nearly a scalar.
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6.10 3D Gabor Representation of Spatiotem-

poral Signals

Gabor’s research was motivated in part by the observation that our percep-
tion of sound is simultaneously of duration and pitch, and therefore that an
analysis of sound should be in terms of elements localized in both duration
and frequency (Gabor 1946, pp. 431–432). Exactly the same argument may
be made for vision. In the spatial domain we see simultaneously both ex-
tent and texture (spatial frequency). Likewise, in the temporal domain we
perceive simultaneously duration and motion (temporal frequency).

Thus we see that the use of 2D Gabor elementary functions to model
visual image representation is unrealistic in a significant way: it ignores the
temporal structure of images. It is as though vision were merely a succession
of separate images, each independent of the next. On the other hand, if we
applied to visual images the 1D Gabor functions (Section 6.3), we would cap-
ture their temporal structure, but not their spatial structure, which Daugman
and others have shown to be central to understanding vision.

An obvious solution to this problem is to combine the two analyses and
consider the evolution in time of two-dimensional spatial signals. Thus we
will take the input to the visual cortex to be a three-dimensional signal
ψ(x, y, t), ψ : R3 → R. Sometimes it will be more convenient to write ψ(x, t)
where the vector x = (x, y) represents spatial position. Such a signal has a
Fourier transform Ψ(ζ, η, ν), where ζ and η are spatial frequencies and ν is
a temporal frequency.

Having seen the 1D and 2D Gabor Uncertainty Principles, it is perhaps
hardly surprising that there is a 3D Uncertainty Principle holding between
pairs of conjugate variables:

∆x∆ζ ≥ 1 / 4π,

∆y∆η ≥ 1 / 4π,

∆t∆ν ≥ 1 / 4π,

where we have defined the nominal spreads in terms of the standard devi-
ations of the functions. For a proof of this uncertainty principle, see Sec.
6.12.1.

It is also straight-forward to show (Sec. 6.12.2) that the Gabor inequalities
become equalities for the 3D Gabor elementary functions, which have the
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form:

φpqruvw(x, y, t) = exp

{
−π
[

(x− p)2

α2
+

(y − q)2

β2
+

(t− r)2

γ2

]}
×

exp {2πi[u(x− p) + v(y − q) + w(t− r)]} . (6.20)

The wave packet is localized around space-time coordinates (p, q, r); that is,
it is centered at x = p, y = q in space and t = r in time. Its location
in the corresponding frequency domain is given by (u, v, w), its two spatial
frequencies and one temporal frequency. This is apparent from the Fourier
transform of φ:

Φpqruvw(ζ, η, ν) = exp
{
−π
[
(ζ − u)2α2 + (η − v)2β2 + (ν − w)2γ2

]}
×

exp {2πi[x(ζ − u) + y(η − v) + t(ν − w)]} . (6.21)

It can be shown (Sec. 6.12.2) that the standard deviations of φ around the
x, y and t axes are proportional to α, β and γ, respectively; thus α, β and
γ determine the wave packet’s shape. Conversely, the standard deviations of
Φ are proportional to α−1, β−1 and γ−1.

As before, the Gabor uncertainty relations permit signals to be localized
in Fourier space no more accurately than a cell of size

∆x∆y∆t∆ζ ∆η∆ν ≥ 1 / 64π3.

Indeed, the information cells can be no smaller than 1 / 4π in each pair of con-
jugate variables. Such cells are the information quanta for 3D signals (Fig.
6.23). The elementary information cells can be indexed by sextuples of quan-
tum numbers, three spatiotemporal and three spectral, m = (m1,m2,m3),
n = (n1, n2, n3), so that

p = m1∆x, u = n1∆ζ,
q = m2∆y, v = n2∆η,
r = m3∆t, w = n3∆ν.

Then the complex numbers cmn are the Gabor coefficients of ψ if and only if

ψ =
∑
m

∑
n

cmnφpqruvw,

where the indices m and n have ranges appropriate to the spatiotemporal
extent and bandwidth of ψ. Of course, ψ could be equally well represented
by real coefficients and Gaussian sinusoids in quadrature phase.
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Figure 6.23: Information cells defining a 3D signal. For clarity the three
spatiotemporal dimensions are shown separate from the three spectral di-
mensions, but it must be born in mind that each information cell is a six-
dimensional rectangular space. Each such cell represents a quantum of in-
formation in Fourier space.
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Next we consider the significance to vision of this quantization of Fourier
space. Although it might seem natural to interpret it as a mathematical
fiction, Daugman’s research has already given us good reason to believe that
the visual cortex is organized around a spatial Gabor representation. This
suggests that we take the spatiotemporal Gabor representation quite literally
and interpret the visual cortex as a bank of filters tuned to spatial frequency
bands of width ∆ζ and ∆η, a temporal frequency band of width ∆ν, and
localized to a spatial region of size ∆x∆y. We further hypothesize that these
filters accumulate information over an interval of time that is a small multiple
of ∆t, and produce the Gabor coefficients at the end of this interval (perhaps
by relaxation during the next interval).25

It is natural to identify this interval with the principal rhythm of the
occipital (visual) cortex, the alpha rhythm. Slow rhythms, such as the alpha,
seem to clock the generation of spike trains, just as we would expect if a
set of rate-encoded Gabor coefficients were computed during each interval.26

During periods of greater activity the alpha rhythm “desynchronizes” and
is replaced by a higher frequency oscillation (40–60 Hz.). The results of
such a decrease in ∆t include greater temporal resolution, poorer temporal-
frequency resolution, and less accurate computation of the Gabor coefficients
— all reasonable tradeoffs in situations demanding action.

If the hypothesized correlation of ∆t with the alpha rhythm is correct,
then from the resting alpha frequency, 8 to 12 Hz., we can estimate the
resting interval Tα ≈ 100 msec., with a range of perhaps 80 to 125 msec.
Since ∆t is the standard deviation of the Gabor elementary function, we can
expect that Tα must be 3 or 4 times ∆t (so that Tα contains 90–95% of the
wave-packet). Since in Sec. 6.12.2 we show ∆t = γ / 2

√
π (Eq. 6.30), for

mathematical convenience we estimate

Tα ≈ 2
√
π∆t = γ.

This implies a resting temporal frequency resolution of

∆wα =
1

4π∆t
≈ 1

4π(Tα / 2
√
π)

=
1

2
√
πTα

≈ 2.8 Hz.

25We may compare the inhibitory wave that seems to reset cerebellar computation every
500 msec. (Pribram 1991, p. 127).

26We refer here to Bland’s studies of the theta rhythm in the dentate gyrus of the rabbit
(Bland et al. 1978), but the same principle applies to the alpha rhythm.
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The Gabor representation also sheds light on the perception of form and
motion.27 The parameters u, v and w determine the orientation of the ele-
mentary signal in space-time. For example, if w = 0 then the wave packet
is perpendicular to the t-axis (Fig. 6.24) and we have the effect of a 2D
(spatial) Gabor function, but localized in time. Conversely, if w 6= 0 then
the elementary function is inclined to the time and space axes (Fig. 6.25).
We can see that such a filter would respond to a grating patch moving at
a fixed velocity perpendicular to the fringes. We hypothesize that 3D Ga-
bor elementary functions of this kind explain the response characteristics of
complex and hypercomplex cells in the visual cortex, which have been shown
to respond to moving bars and gratings.

We can easily calculate the phase velocity at which the fringes move:

vp = w/f,

where f = ‖u‖ is the spatial frequency of the grating patch. The fringes
move in a direction opposite to the (spatial) wave vector u (Fig. 6.25), so
the velocity vector v of the fringes is −vp times the wave normal u/‖u‖:

v = −vpu/‖u‖ = −wu/f 2.

We consider briefly the case in which the Gabor function is parallel to
the time axis (Fig. 6.26), that is, u = 0. Such a filter would respond to a
uniform intensity (within its spatial receptive field) oscillating at a frequency
w. We are unaware of research looking for cells with this kind of response,
but it is interesting that much of the work on receptive fields has made use
of flashing spots, and so might be consistent with the existence of such cells.

6.11 Conclusions

We have reviewed Gabor’s Uncertainty Principle and Daugman’s evidence
for 2D Gabor filters in the visual cortex. We compared the Gabor repre-
sentation with wavelet-based representations, and concluded that the Gabor
representation is preferable. This is in spite of the Gabor functions not being

27Of course, so would other representations in terms of signals localized in both the
space-time and spectral domains, such as other 3D Fourier transforms windowed in space-
time, or 3D wavelets.
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Figure 6.24: Slice through even (cosine) component of 3D Gabor elementary
function oriented perpendicular (w = 0) to the time axis (ordinate). The
abscissa is taken to be along the wave-vector u, and so perpendicular to the
spatial wavefronts. Such a filter is selective for stationary spatial frequency
f , localized in both space and time. This function has f = 1/2, α2 + β2 =
γ2 = 20, u = v = 1/

√
8, w = 0, p = 0 and r = 0. Lighter regions are more

positive, darker more negative.
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Figure 6.25: Slice through even (cosine) component of 3D Gabor elementary
function inclined to the time axis (w 6= 0). Such a filter is selective for a
spatial grating of frequency f , moving at velocity vp, and localized in both
space and time. This function has α2 + β2 = γ2 = 20, u = v = 1/4,
w = 1/

√
8, p = 0 and r = 0. It is selective for fringes of frequency f = 1/

√
8

moving at a phase velocity vp = w/f = 1 to the left.
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Figure 6.26: Slice through even (cosine) component of 3D Gabor elementary
function oriented parallel to the time axis (u = 0). Such a filter is selective
for a spatially uniform intensity oscillating at frequency w, localized in both
space and time. This function has α2 + β2 = γ2 = 20, u = v = 0, w = 1/2,
p = 0 and r = 0.
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orthogonal. Indeed we argued that a nonorthogonal set of elementary func-
tions might be preferable in a biological context. Finally we argued that since
vision must be understood in terms of images evolving in time, the appropri-
ate representational primitives are 3D Gabor functions. We suggested that
these functions could explain the selectivity for moving edges exhibited by
complex and hypercomplex cells in visual cortex, and we suggested that the
alpha rhythm may correspond to the interval at which the Gabor coefficients
are computed. More concrete predictions will depend on finding empirical
data to constrain the parameters of the Gabor elementary functions.

6.12 Appendix: Proofs

6.12.1 Proof of General Gabor Uncertainty Principle

We prove a general Gabor Uncertainty Principle for n-dimensional func-
tions.28 Let φ be a function and Φ its Fourier transform; for convenience we
assume ‖φ‖ = ‖Φ‖ = 1 (this is just a matter of units). We will also assume
that φ decays to 0 at infinity; specifically we assume skφ

2(s1, . . . , sn) → 0
for all k. For this proof we will not be able to use the simple definition of
nominal spread that we used for 1D signals; instead we define the nominal
spread of a signal along the kth axis to be its standard deviation along that
axis. Thus the spread along the kth axis is given by

∆sk =
√

Vark{φ},

where Vark is the variance along the kth axis. Similarly, in the spectral
domain we define,

∆σk =
√

Vark{Φ}.

The variances are given by:

Vark{φ} = ‖skφ‖2 =
∫
S |skφ|

2ds =
∫
S φs

2
kφ
∗ds,

Vark{Φ} = ‖σkΦ‖2 =
∫

Σ
|σkΦ|2dσ =

∫
Σ

Φσ2
kΦ
∗dσ,

28The proof is a generalization of that in Hamming (1989, pp. 181–184), which is based
on Gabor (1946), which is in turn based on the Heisenberg-Weyl derivation of the uncer-
tainty principle in physics. We have already proved a more general uncertainty principle
(Prop. 5.2.22, p. 93), but the following proof is more informative in the specific application
of Gabor functions.
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where S = Σ = Rn, s = (s1, . . . , sn) ∈ S and σ = (σ1, . . . , σn) ∈ Σ. Our goal
will be to show

Vark{φ}Vark{Φ} ≥
1

16π2
.

By the Schwartz inequality we know

‖skφ‖2

∥∥∥∥ ∂φ∂sk
∥∥∥∥2

≥
〈
skφ,

∂φ

∂sk

〉2

, (6.22)

where the bracketed expression on the right is an inner product. Since
the Fourier transform is an isometry, it preserves the norm, so the norm
of ∂φ / ∂sk is the same as the norm of its Fourier transform, which is 2πiσkΦ.
Therefore we can rewrite the left-hand side of Eq. 6.22 as follows:

‖skφ‖2‖∂φ / ∂sk‖2 = ‖skφ‖2‖2πiσkΦ‖2

= 4π2‖skφ‖2‖σkΦ‖2

= 4π2Vark{φ}Vark{Φ}. (6.23)

Now we work on the right-hand side of Eq. 6.22:〈
skφ,

∂φ

∂sk

〉
=

∫
S
skφ

∂φ∗

∂sk
ds

=

∫
S−R

∫
R
skφ

∂φ∗

∂sk
dskds′ (6.24)

where s′ = (s1, . . . , sk−1, sk+1, . . . , sn) ∈ S − R. We apply integration by
parts to the innermost integral (U = skφ, V = φ∗):∫

skφ
∂φ∗

∂sk
dsk =

∫
skφdφ∗

= skφφ
∗|∞−∞ −

∫
φ∗d(skφ)

= sk|φ|2
∣∣∞
−∞ −

∫
φ∗skdφ−

∫
φ∗φdsk.

By our assumption that skφ
2 → 0 we know sk|φ|2 |∞−∞ = 0, so∫

skφdφ∗ = −
∫
skφ

∗dφ−
∫
φ∗φdsk
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and so ∫
skφ

∂φ∗

∂sk
dsk = −1

2

∫
φ∗φdsk.

Substituting this into Eq. 6.24 yields〈
skφ,

∂φ

∂sk

〉
=

∫
S−R

(
−1

2

∫
φ∗φdsk

)
ds′

= −1

2

∫
S
φ∗φ ds

= −1/2, (6.25)

since φ is normalized (by assumption). Therefore, combining Eqs. 6.22, 6.23
and 6.25,

4π2Vark{φ}Vark{Φ} ≥ 1/4,

and so,
Vark{φ}Vark{Φ} ≥ 1 / 16π2.

We have proved the general Uncertainty Principle,

∆sk ∆σk ≥ 1 / 4π.

6.12.2 Proof of Optimality of General Gabor Elemen-
tary Functions

Our task is to show that the n-dimensional Gabor elementary functions
achieve the minimum area in 2n-dimensional Fourier space. Thus we must
show

‖skφ‖2

‖φ‖2

‖σkΦ‖2

‖Φ‖2
=

1

16π2
. (6.26)

Without loss of generality we assume that φ and Φ are centered at the origin
(since this won’t alter their variance). Notice that both functions can be
written as a cisoid (complex sinusoid) times a product of Gaussians:

φ(s) = exp(2πis · u)
n∏
j=1

exp(−πs2
j/α

2
j ), (6.27)

Φ(σ) = exp(2πip · σ)
n∏
j=1

exp(−πσ2
jα

2
j ) (6.28)
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When we compute the norms and variances of these functions the periodic
parts can be ignored, since they have a constant modulus 1. Therefore,

‖φ‖2 =

∫
· · ·
∫ { n∏

j=1

exp(−2πs2
j/α

2
j )

}
ds1 · · · dsn

=
n∏
j=1

∫
exp(−2πs2

j/α
2
j )dsj. (6.29)

The integrands are Gaussians, so to understand their structure better, rewrite
them as normal distributions:

exp(−2πs2
j/α

2
j ) =

αj√
2

{
1√

2π(αj / 2
√
π)

exp

[
−

s2
j

2(α2
j / 4π)

]}
.

The expression in curly braces is a normal distribution with mean = 0 and
variance σ2 = α2

j / 4π. Therefore rewrite it Nσ(sj):

exp(−2πs2
j/α

2
j ) =

αj√
2
Nσ(sk).

Since Nσ is a probability distribution,
∫
Nσ(sj)dsj = 1, so from Eq. 6.29,

‖φ‖2 is the product of the normalization factors αj/
√

2:

‖φ‖2 =

∏
j αj

2n/2
,

which is the first formula we need.
Next consider the variance of φ. It too can be rewritten, as a product of

Gaussians and a quadratic factor:

‖skφ‖2 =

∫
· · ·
∫
s2
k exp[−2π(s2

1/α
2
1 + · · ·+ s2

n/α
2
n)]ds1 · · · dsn

=

∫
s2
k exp(−2πs2

k/α
2
k)dsk ×

∏
j 6=k

∫
exp(−2πs2

j/α
2
j )dsj.

These can be rewritten in terms of normal distributions:

‖skφ‖2 =
αk√

2

∫
s2
kNσ(sk)dsk ×

∏
j 6=k

αj√
2

∫
Nσ(sj)dsj.
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The first integral is the variance of the normal distribution, which we saw to
be σ2 = α2

k / 4π; the remaining integrals are again 1, so

‖skφ‖2 =
αk√

2

α2
k

4π

∏
j 6=k

αj√
2

=
α2
k

4π

∏
αj

2n/2
.

Hence we see that the normalized variance of φ around the kth axis is

‖skφ‖2

‖φ‖2
=
α2
k

4π

2−n/2
∏
αj

2−n/2
∏
αj

=
α2
k

4π
.

Thus αk is the standard deviation along the kth axis, scaled by 2
√
π:

∆sk =
αk

2
√
π
. (6.30)

Exactly the same analysis can be applied to the Fourier transform Φ,
except that the variance of the normal distribution Nσ is σ2 = 1 / 4πα2

j and

the normalization factor is 1 /
√

2αj. Hence,

‖Φ‖2 =
1

2n/2
∏

j αj
,

‖σkΦ‖2 =
1

4πα2
k

1

2n/2
∏

j αj
.

Hence,
‖σkΦ‖2

‖Φ‖2
=

1

4πα2
k

,

and we see that the standard deviation along the kth spectral axis is α−1
k ,

scaled by 2
√
π.

Now the product of the variances in the space-time and spectral domains
is easy to compute:

‖skφ‖2

‖φ‖2

‖σkΦ‖2

‖Φ‖2
=
α2
k

4π

1

4πα2
k

=
1

16π2

and we see that the n-dimensional Gabor elementary functions achieve the
minimum area given by the uncertainty principle.
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Basic Concepts of Field
Computation

7.1 Assumptions

7.1.1 Notational conventions

To improve readability, field computation employs a number of notational
conventions. They cannot be followed with absolute consistency, in part be-
cause we try to maintain consistency with established mathematical notation.
Fields themselves are usually represented by Greek letters, both uppercase
and lowercase. In general we use lowercase letters (φ, χ, ψ, etc.), but when
we are dealing with fields of different dimension, we usually use uppercase
letters (K,Φ,X,Ψ, etc.) for the higher dimensional fields. On the other
hand Ω (possibly with subscripts) is used for the domains of sets of fields,
and Φ(Ω) is reserved for the set of fields over that domain. Lowercase italic
letters (a, b, u, v, w, x, y, z, etc.) are used for scalars and the elements of field
domains; we especially use r, s, t for the latter purpose. We use j, k, l,m, n for
integers, but reserve i for

√
−1. Uppercase italic letters (F,G, T, U , etc.) are

used for arbitrary field transformations, with L,M , and N generally used
for linear operators. Application of a linear operator L to a field may be
written Lφ or L(φ). Calligraphic letters (C,H,K,L, etc.) are usually used
for spaces. (For other notation, see Appendix A, p. 219.)

149
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7.1.2 Fields

7.1.2.1 Assumed Properties of Fields

Physical Realizability By physical realizability we mean that all fields
must ultimately be represented in some physical medium (e.g., electrical
potential, light intensity, chemical concentration). This places certain con-
straints on the fields with which we must deal. For example, fields must
occupy a finite amount of space, otherwise they will not fit in our field com-
puters. Second, the dynamic range of the fields’ values are limited; concen-
trations, intensities, and so forth cannot be arbitrarily large. Third, a field’s
values vary continuously with their location in the field. Physical media will
not support an infinite gradient, that is, a discontinuous change in value.

As we will see, these physical constraints translate into mathematical
properties that helpfully limit the class of fields with with we must deal.
On the other hand, the analysis is sometimes simplified by assuming the
existence of unrealizable fields (e.g., Dirac deltas). In these cases we must be
careful that the results of such analysis apply to realizable fields (see Sections
8.1.2.5 and 8.1.2.7 for examples).

Fields are Functions We treat fields as functions φ from a domain Ω to
a codomain K, that is, φ : Ω→ K. Thus, at each point t ∈ Ω the field φ has
a value φ(t) ∈ K, which we will often write φt. The domain Ω is a metric
space (Sec. 2.1). The codomain K is a subset of an algebraic field. Usually it
will be some closed interval of the real numbers, but fields whose values are
bounded subsets of the complex numbers are useful in some applications. In
the remainder of this section we discuss constraints on the allowable domains
Ω, on the codomains K, and on the functions φ : Ω → K. Our goal will be
to define ΦK(Ω), the space of all K-valued fields over a domain Ω.1

Fields Belong to Linear Spaces Fields belong to linear spaces, which
means that we can define an addition φ + ψ and scalar multiplication aφ
on them that satisfy the usual properties (Sec. 3.1), which are satisfied by
obvious definition of the operations:

(φ+ ψ)t = φt + ψt,

(aφ)t = a(φt).

1We suppress K when it is clear from context, and write Φ(Ω).
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Notice, however, that a space of fields Φ(Ω) cannot be closed under these
operations, since that would violate our physical realizability constraints
(specifically, that the dynamic range be bounded).

7.1.2.2 Domains and Ranges

Field Domains are Measure Spaces The domain Ω over which a field
is defined is assumed to be a measure space. In most cases the domain will
in fact be some closed and bounded subset of a Euclidean space En. For
example, it might be a finite line segment to represent the frequency of a
sound, or a closed disk to represent the light intensity over a retina. Why
then have we gone to the extra generality of measure spaces?

There are two reasons. The first is that by keeping the theory general, we
ensure that it applies to a wide variety of fields. At this stage it is difficult
to anticipate the “shapes” we may need for our fields.

The second reason is that a finite set (when provided with a “weight”
function) is a measure space. Thus, although it is our goal to encourage
thinking of fields as continuously varying structures, most of the theory in
fact applies to fields composed of discrete elements (such as pixel arrays and
neural networks).

For our purposes, one of the most important properties of measure spaces
is that we can define integration operations over them. For example, if φ :
Ω→ K, then we can define the (Lebesgue) integral

∫
Ω
φtdµ(t). Here µ is the

measure of the measure space. Since it is usually clear from context, we will
write integrals more simply:

∫
Ω
φtdt. Also, note that for finite Ω and equal

weighting, integration reduces to summation:∫
Ω

φtdt =
∑
t∈Ω

φt. (7.1)

The Domain of a Measure Space is Bounded As discussed in Section
7.1.2.1 we require that fields occupy a finite amount of space. How can this
be expressed mathematically? We simply require that the “area” (volume,
length) of the space be bounded, by stating:∫

Ω

1dt <∞. (7.2)

Later (Section 7.3.1) we will see that this can be expressed in the more
compact form ‖1‖ <∞. For convenience we define the “size” of the space Ω
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by:

‖Ω‖ =

∫
Ω

1dt. (7.3)

Hence we require that ‖Ω‖ <∞.

The Range of a Field is Bounded We assume that every field φ : Ω→ K
has a bound βφ such that |φt| ≤ βφ for all t ∈ Ω. Furthermore, as mentioned
above (Section 7.1.2.1), we require that a space of fields have limited dynamic
range. Thus, for each space ΦK(Ω) there is a β such that βφ ≤ β for all
φ ∈ Φ(Ω). Such a β is given by β = supx∈K |x| <∞.

7.1.2.3 Bounded Gradient

Fields are Continuous As discussed under Physical Realizability (Section
7.1.2.1) we assume that all fields are continuous (Sec. 2.4). That is, for all
t, t′ ∈ Ω and every ε > 0 there is a δ > 0 such that |φt − φt′| < ε whenever
d(t, t′) < δ. Here d(t, t′) is the distance between the points t and t′ (recall,
Section 7.1.2.1, that Ω is a metric space).

Uniform Continuity As discussed in Section 7.1.2.1 we assume that there
is a maximum gradient that physical fields can sustain. This implies, first of
all, that fields are uniformly continuous, which means that for all ε > 0 there
is a δ such that |φt − φt′ | < ε whenever d(t, t′) < δ. That is, for any change
δ in the field’s domain, there is a maximum amount ε that the field’s value
can change.

Lipschitz Condition In fact, most fields satisfy a stronger condition than
uniform continuity. Specifically, there is a bounded ratio of the change of the
field’s value to a change in position in the field:

|φt − φ′t|
d(t, t′)

≤ γ. (7.4)

This means that such fields satisfy a Lipschitz condition (of order 1).

Fields are Band Limited It is generally reasonable to assume that fields
are band limited, that is that they have a frequency limit beyond which there
is no information. Higher frequency variation is either physically impossible,
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or represents noise that should be ignored. This means that field transforma-
tions may be assumed to have a low-pass filter on their inputs that does not
affect their operation. This has important consequences for the theoretical
development (Section 9.2.2.2).

7.1.3 Field Transformations

Continuity The noise that accompanies physical processes will cause slight
variations in the inputs to field transformations. It is undesirable if this noise
has a major effect on the output of the transformation. Therefore, we require
that field transformations be continuous; this will ensure that small changes
in the input will cause at most small changes in the output.

Using the norm that will be defined in Section 7.3.1, the continuity of
field transformations can be expressed:

lim
n→0
‖φn − φ‖ = 0 implies lim

n→0
‖T (φn)− T (φ)‖ = 0. (7.5)

We can generally make the stronger assumption of uniform continuity: for
every ε > 0 there is a δ > 0 such that ‖T (φ) − T (ψ)‖ < ε whenever ‖φ −
ψ‖ < δ. In effect, we are assuming that a field transformation is “uniformly
insensitive” to a given quantity of noise, no matter what the input field.

Input Filters As noted above (Section 7.1.2.3), noise often manifests itself
as high frequency variation in the field. Therefore, to decrease the effects
of noise, field transformation units will often be constructed with a low-
pass filter on their input. In other cases, the implementation will naturally
suppress high frequencies, and thus behave as though the input is filtered.
The foregoing permits us to assume the presence of low pass input filters on
field transformations when this simplifies the mathematical analysis (see for
example Sections 7.4.3.2 and 7.4.3.3).

7.2 Summary

Since fields have bounded domain (Section 7.1.2.2) and range (Section 7.1.2.2),
the integral

∫
Ω
|φt|2dt exists:∫

Ω

|φt|2dt ≤ β2
φ

∫
Ω

1dt ≤ β2
φ‖Ω‖. (7.6)
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We will see below (Section 7.3.1) that this is equivalent to saying that all
fields have finite norms.

Since fields are also continuous (Section 7.1.2.3), we know that fields over
Ω belong to the function space L2(Ω). This is very important, because L2

function spaces are Hilbert spaces (Sec. 5.2), which means that a large body
of powerful mathematics can be brought to bear on the problems of field
computation.

We cannot conclude, however, that Φ(Ω) = L2(Ω), since L2(Ω) contains
many functions that do not satisfy our other constraints (e.g., Sections 7.1.2.2
and 7.1.2.3). In most cases these additional constraints will help us. Nev-
ertheless, we must be careful that in applying properties of L2 spaces we do
not violate these other constraints.

7.3 Functional analysis preliminaries

7.3.1 Definitions

Norm of Field The norm of a field is a measure of its size. As usual, we
use the inner product norm (Sec. 5.1.2):

‖φ‖ =
√
φ · φ. (7.7)

This is the usual norm for L2 function spaces (Section 7.2).2 Note that
since fields have bounded domain and range (Section 7.1.2.2), we know that
‖φ‖ ≤ βφ‖Ω‖1/2 (see Section 7.2). That is, all fields are finite in size. As
noted before (Section 7.2), this means that fields belong to Hilbert spaces.

7.3.2 Orthonormal bases

A unit field ξ ∈ Φ(Ω) is a field whose norm is 1, ‖ξ‖ = 1. Since Φ(Ω) ⊂ H(Ω),
we know it has an orthonormal (ON) basis, ξ0, ξ1, . . .. We will sometimes
refer to basis elements as being higher order or lower order. This refers to
their location in the sequence ξ0, ξ1, . . .. Of course this ordering is somewhat
arbitrary, and may be changed without affecting the sequence’s status as an
ON basis. Nevertheless, there is usually a natural order, such as increasing

2Although it is not the only norm upon which a theory of field computation can be
based. In MacLennan (1987a,b) we used the L1 norm. There seems to be little practical
difference, but the L2 is mathematically more convenient.
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frequency for the trigonometric basis, and increasing degree for polynomial
bases.

7.4 Basic field transformations

7.4.1 Definition of general field product

It is useful to define a generalization of the inner product that is continuous-
dimensional analogue of products between vectors and matrices. The reason
is that these products seem to be the kind of operations that we can ex-
pect general purpose field computers to compute. For example, it is well
known that linear neural networks compute vector-matrix products (Rumel-
hart et al. 1986, Chapter 9; see also Ch. 12 below); similarly, these operations
correspond to some optical phenomena (see for example Farhat et al. 1985).
These considerations, together with the theoretical developments described
later, lead us to base general purpose field computation on these general field
products.3

Definition 7.4.1 (general field product 1) If φ ∈ Φ(Ω2) and Ψ ∈ Φ(Ω1×
Ω2), then the product Ψφ ∈ Φ(Ω1) is defined:

(Ψφ)s =

∫
Ω2

Ψstφtdt. (7.8)

Remark 7.4.1 If we let Ψs be the field (Ψs)t = Ψst, and φ∗ be the conjugate
field (φ∗)t = φt then the product can be defined:

(Ψφ)s = Ψs · φ∗ = φ ·Ψ∗s. (7.9)

(This is because is inner product must conjugate one of the fields, but the
field product does not.)

Remark 7.4.2 If the fields are complex-valued, then it is often convenient
to write the product Ψφ with Dirac’s bra-ket notation (Not. 5.1.2, p. 72) as
the ket Ψ|φ〉. If we let |Ψs〉 be the field |Ψs〉t = Ψst, then the product can be
defined:

(Ψ|φ〉)s = 〈φ∗ | Ψs〉 = 〈Ψ∗s | φ〉. (7.10)

3Note that the scalar, inner and outer products (see Sect. 7.4.1) can all be considered
degenerate general products.
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(Note that Ψ|φ〉 represents a field product, not the application of a linear
operator Ψ to |φ〉.)

Definition 7.4.2 (general field product 2) If φ ∈ Φ(Ω1) and Ψ ∈ Φ(Ω1×
Ω2), then the product φΨ ∈ Φ(Ω2) is defined:

(φΨ)t =

∫
Ω1

φsΨstds. (7.11)

Remark 7.4.3 For complex fields we may use Dirac’s notation, 〈φ∗|Ψ. If
we define the transpose |ΨT

t 〉 so that |ΨT
t 〉s = Ψst, then then we can write

(〈φ∗|Ψ)t = 〈φ∗ | ΨT
t 〉. (7.12)

Definition 7.4.3 (general field product 3: quadratic form) If φ ∈ Φ(Ω1),
X ∈ Φ(Ω1×Ω2), and ψ ∈ Φ(Ω2), then

φXψ =

∫
Ω1

∫
Ω2

φsXstψtdtds. (7.13)

In Dirac’s notation,
φXψ = 〈φ∗ | X | ψ〉. (7.14)

Definition 7.4.4 (general field product 4) Finally, if Ψ ∈ Φ(Ω1 × Ω2)
and X ∈ Φ(Ω2×Ω3), then we define the product ΨX ∈ Φ(Ω1×Ω3) as follows:

(ΨX)su =

∫
Ω2

ΨstXtudt. (7.15)

Any linear operator L that can be expressed in the form Lφ = Ψφ,
for some field Ψ, is called an integral operator. Indeed, since we require
‖Ψ‖ <∞, it is an integral operator of Hilbert-Schmidt type (Sec. 5.2.9). We
will be interested in expressing derivatives and other linear transformations
as integral operators (see Sections 7.4.3 and 9.2.2).

7.4.2 Outer product

7.4.2.1 Definition

Definition 7.4.5 (field outer product) For two fields φ ∈ Φ(Ω1), ψ ∈
Φ(Ω2) the field outer product φ ∧ ψ ∈ Φ(Ω1 × Ω2) is defined:

(φ ∧ ψ)st = φsψt. (7.16)
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Remark 7.4.4 Since physically realizable fields are bounded (Section 7.1.2.2),
their outer product always exists.

Proposition 7.4.1 If the fields ζj are a basis for Φ(Ω1) and the ηk are a
basis for Φ(Ω2), then the fields ζj ∧ ηk are a basis for Φ(Ω1×Ω2).

There is obviously a close connection between field outer products and tensor
products (Sec. 5.2.10).

Proposition 7.4.2 The spaces Φ(Ω1×Ω2) and Φ(Ω1) ⊗ Φ(Ω2) are isomor-
phic.

Remark 7.4.5 The tensor product φ ⊗ ψ and the outer product φ ∧ ψ are
effectively interchageable. They satisfy

〈φ⊗ ψ | φ′ ⊗ ψ′〉 = 〈φ ∧ ψ | φ′ ∧ ψ′〉 (7.17)

Remark 7.4.6 The Dirac outer product or dyad (Def. 5.2.16, p. 89) com-
bines fields |φ〉 and |ψ〉 to yield a linear operator |φ〉〈ψ| : Φ(Ω2)→ Φ(Ω1) for
which

|φ〉〈ψ| |ζ〉 = |φ〉 〈ψ | ζ〉 (7.18)

for all |ζ〉 ∈ Φ(Ω2). That is, |φ〉 is scaled by 〈ψ | ζ〉. Likewise, 〈ψ| : Φ(Ω)→
C is the co-field of |ψ〉 ∈ Φ(Ω) in the continuous dual space of Φ(Ω). Since
|φ〉〈ψ| is not associative, we have found it less useful in field computation than
the field outer product, but the two are closely related.

Proposition 7.4.3 The kernel of |φ〉〈ψ| is φ ∧ ψ†. Therefore we have the
isomorphisms

φ ∧ ψ ∼= |φ〉〈ψ†| ∼= |φ〉|ψ〉, (7.19)

where the rightmost product is the tensor product |φ〉 ⊗ |ψ〉.

7.4.2.2 Useful properties

We present a few simple properties of the outer products.

Theorem 7.4.1 If φ ∈ Φ(Ω1) and ψ, ζ ∈ Φ(Ω2), then

(φ ∧ ψ)ζ = φ(ψ · ζ∗) = φ(ζ · ψ∗). (7.20)

In other words, φ is scaled by ψ · ζ∗ = ζ · ψ∗.
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Proof: Simply expand the product.

�

Corollary 7.4.1 If φ, ζ ∈ Φ(Ω1) and η ∈ Φ(Ω2), then

φ(ζ ∧ η) = (φ · ζ∗)η = (ζ · φ∗)η. (7.21)

In other words, η is scaled by φ · ζ∗ = ζ · φ∗. The analogous result for the
dyad or Dirac outer product is:

〈φ| |ζ〉〈η| = 〈φ | ζ〉 〈η|. (7.22)

That is, 〈η| is scaled by 〈φ | ζ〉.

Theorem 7.4.2 If X ∈ Φ(Ω0×Ω1) and φ, ψ ∈ Φ(Ω2), then

(X ∧ φ)ψ = X(φ · ψ∗) = X(ψ · φ∗) = X〈φ∗ | ψ〉 = X〈ψ∗ | φ〉. (7.23)

Exercise 7.4.1 Prove this theorem by expanding products into integrals.

Theorem 7.4.3 If X ∈ Φ(Ω0 × Ω1), ζ ∈ Φ(Ω1) and ψ, η ∈ Φ(Ω2), then

(X∧ ψ)(ζ ∧ η) = Xζ(ψ · η∗) = Xζ(η · ψ∗) = Xζ〈ψ∗ | η〉 = Xζ〈η∗ | ψ〉. (7.24)

Proof: First expand the product as an integral over the direct product mea-
sure space:

[(X ∧ ψ)(ζ ∧ η)]r =

∫
Ω1×Ω2

(X ∧ ψ)rst(ζ ∧ η)stdµ(s, t)

=

∫
Ω1×Ω2

Xrsψtζsηtdµ(s, t).

Next apply Fubini’s theorem, which says that the multiple integral equals
the iterated integral:∫

Ω1×Ω2

Xrsψtζsηtdµ(s, t) =

∫
Ω2

[∫
Ω1

Xrsψtζsηtdµ(s)

]
dµ(t). (7.25)

Finally, regroup and remove from under the integral sign factors not depen-
dent on the variable of integration:

=

∫
Ω1

Xrsζsdµ(s)

∫
Ω2

ψtηtdµ(t)

= (Xζ)r(ψ · η∗)
= [Xζ(ψ · η∗)]r.
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�

Theorem 7.4.4 If φ, ζ ∈ Φ(Ω1) and ψ, η ∈ Φ(Ω2), then

(φ ∧ ψ) · (ζ ∧ η) = (φ · ζ)(η · ψ). (7.26)

In Dirac’s notation:

〈φ ∧ ψ | ζ ∧ η〉 = 〈φ | ζ〉〈ψ | η〉. (7.27)

In both cases, note the order of the inner products, which is significant if the
fields are complex-valued. Also, Dirac’s notation shows that we can simply
multiply 〈φ|, the dyad |ζ〉〈ψ|, and |η〉.

Exercise 7.4.2 Prove this theorem by expanding the inner and outer prod-
ucts.

Corollary 7.4.2 ‖φ ∧ ψ‖ = ‖φ‖‖ψ‖.

Proof:

‖φ ∧ ψ‖2 = (φ ∧ ψ) · (φ ∧ ψ)

= (φ · φ)(ψ · ψ)

= ‖φ‖2‖ψ‖2.

�

Corollary 7.4.3 If X ∈ Φ(Ω) and φk, ψk ∈ Φ(Ωk), k = 1, . . . , n, then

(X ∧ φ1 ∧ · · · ∧ φn)(ψ1 ∧ · · · ∧ ψn) = X(φ1 · ψ∗1) · · · (φn · ψ∗n) (7.28)

= X〈φ∗1 | ψ1〉 · · · 〈φ∗n | ψn〉. (7.29)

Proof: Apply Thm. 7.4.1 inductively:

(X ∧ φ1 ∧ · · · ∧ φn)(ψ1 ∧ · · · ∧ ψn)

= (X ∧ φ1 ∧ · · · ∧ φn−1)(ψ1 ∧ · · · ∧ ψn−1)(φn · ψ∗n)
...

= (X ∧ φ1)ψ1(φ2 · ψ∗2) · · · (φn · ψ∗n)

= X(φ1 · ψ∗1)(φ2 · ψ∗2) · · · (φn · ψ∗n).
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�

The following theorem and its corollary show the relation between outer prod-
ucts and iterated general products. Note that we take the general product
to be left associative: Kφψ = (Kφ)ψ.

Theorem 7.4.5 Suppose K ∈ Φ(Ω× Ω2 × Ω1), φ ∈ Ω1 and ψ ∈ Ω2. Then:

Kφψ = K(ψ ∧ φ). (7.30)

Proof: Simply expand the general products as integrals:

(Kφψ)r =

∫
Ω2

(Kφ)rsψsds

=

∫
Ω2

∫
Ω1

Krstφtdt ψsds

=

∫
Ω2

∫
Ω1

Krstψsφtdsdt

=

∫
Ω2

∫
Ω1

Krst(ψ ∧ φ)stdsdt.

By Fubini’s theorem (see proof of Theorem 7.4.2.2) the iterated integral may
be replaced by the multiple integral over the direct product space:

=

∫
Ω2×Ω1

Krst(ψ ∧ φ)std(s, t)

= [K(ψ ∧ φ)]r.

�

Corollary 7.4.4 Suppose K ∈ Φ(Ω × Ωn × · · · × Ω1) and φk ∈ Φ(Ωk), for
1 ≤ k ≤ n. Then:

Kφ1φ2 · · ·φn = K(φn ∧ · · · ∧ φ2 ∧ φ1). (7.31)

Proof: An inductive application of the theorem.

�
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7.4.3 Kernels of linear and multilinear operators

7.4.3.1 Need for kernels

We explore the conditions under which a linear field transformation L :
Φ(Ω1) → Φ(Ω2) can be expressed as a general field product, L(φ) = Kφ,
for some K ∈ Φ(Ω2×Ω1). This condition is equivalent to saying that L is an
integral operator (of Hilbert-Schmidt type) with kernel K (recall Sec. 5.2.9).
It is an important condition, because field products can be computed by neu-
ral networks and other massively parallel devices. The kernel is the analog
of the matrix representing a linear transformation in the finite-dimensional
case.

After the linear case (Section 7.4.3.2), we explore the multilinear case
(i.e., the case for multi-argument operators that are linear in each of their
arguments; see Section 7.4.3.3).

7.4.3.2 Kernels of linear operators

Theorem 7.4.6 Suppose ξ0, ξ1, . . . is a basis for the Hilbert space. Let

K =
∞∑
k=0

L(ξk) ∧ ξ∗k. (7.32)

If this field exists, then it is the kernel of L, L(φ) = Kφ. In Dirac’s notation:

K =
∞∑
k=0

L(|ξk〉)〈ξk|. (7.33)

Proof: To see this, expand the Fourier series for φ and make use of linearity
of L:

L(φ) = L

[
∞∑
k=0

|ξk〉〈ξk | φ〉

]
=

∑
k

L (|ξk〉〈ξk | φ〉)

=
∑
k

L(|ξk〉)〈ξk | φ〉

=
∑
k

[L(|ξk〉)〈ξk|] |φ〉
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=

[∑
k

L(|ξk〉)〈ξk|

]
|φ〉

= Kφ.

This completes the proof.

�

The preceding result assumes that the kernel exists. Sufficient conditions are
established next. It will be useful to have the following definitions:

Definition 7.4.6 A linear transformation F : Φ(Ω)→ Φ(Ω) is called a filter
if the basis elements ek are eigenvectors of the transformation. That is, there
are λk such that F (ek) = λkek. The sequence λ0, λ1, . . . is called the transfer
function of the filter.

Definition 7.4.7 A sequence λk is called absolutely summable if

∞∑
k=0

|λk| <∞. (7.34)

Another way of saying this is that the sequence belongs to the space l1.

Theorem 7.4.7 Suppose L can be written in the form L = G◦F , where F is
a filter whose transfer function is absolutely summable, and G is a continuous
linear transformation. Then the kernel of L exists and is

K =
∞∑
k=0

L(ξk) ∧ ξ∗k. (7.35)

Proof: We show that the norm of the kernel is finite.∥∥∥∑L(ξk) ∧ ξ∗k
∥∥∥ ≤ ∑

‖L(ξk) ∧ ξ∗k‖

=
∑
‖L(ξk)‖‖ξ∗k‖, by Cor. 7.4.2

=
∑
‖L(ξk)‖, since the ξk are normalized

=
∑
‖G[F (ξk)]‖.
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Since F is a filter we know F (ξk) = λkξk. Hence,

=
∑
‖G(λkξk)‖

=
∑
|λk|‖G(ξk)‖, since G is linear

=
∑
|λk|β‖ξk‖, since G is continuous and hence bounded

= β
∑
|λk|

< ∞, since the λk are absolutely summable.

�

Hence, if the filter sufficiently suppresses the higher-order components of its
argument, the kernel will exist. This is certainly the case when F has a sharp
cutoff: λk = 0 for all k greater than some N .

In practice the conditions on the preceding theorem are not a problem.
Since most fields are band-limited (Section 7.1.2.3) they can be written φ =
F (φ) for a filter F with a sharp cutoff. Also, since we generally want our field
transformations to be insensitive to higher-order noise, it is useful to express
them in the form G◦F , where G is the “ideal” or “goal” transformation and
F is an appropriate filter.

Finally, we show that if L can be written as a field product, then the
sum-of-outer-products series converges.

Theorem 7.4.8 Suppose that L : Φ(Ω1) → Φ(Ω2) satisfies L(φ) = Kφ and
‖K‖ <∞. Then ‖

∑
k L(ξk) ∧ ξ∗k‖ <∞.

Proof: The hypothesis amounts to supposing that L is an integral operator
with Hilbert-Schmidt kernel K. From Prop. 5.2.23 (p. 93) we know that any
such operator on a separable Hilbert space (such as a space of fields) can be
represented by an infinite matrix

Mmn = 〈βm | Lξn〉, (7.36)

where the βm are an ON basis for Φ(Ω2). In addition, this matrix satisfies∑
m

∑
n

M2
mn <∞. (7.37)
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Now compute a bound on the sum-of-outer-products field:∥∥∥∥∥∑
m

L(ξm) ∧ ξ∗m

∥∥∥∥∥
2

=
∑
m

∑
n

〈L(ξm) ∧ ξ∗m | L(ξn) ∧ ξ∗n〉

=
∑
m

∑
n

〈Lξm | Lξn〉 〈ξ∗m | ξ∗n〉

=
∑
n

‖Lξn‖2, since the ξk are ON.

Next expand Lξn in a Fourier series and apply Parseval’s equality (Prop.
5.2.7, p. 83):

=
∑
n

∥∥∥∥∥∑
m

〈βm | Lξn〉 |βm〉

∥∥∥∥∥
2

=
∑
n

∑
m

|〈βm | Lξn〉|2

=
∑
m

∑
n

M2
mn

< ∞.
�

7.4.3.3 Kernels of multilinear operators

The results in Section 7.4.3.2 are easily extended to multilinear operators.
An operator

M : Φ(Ω1)× · · · × Φ(Ωn)→ Φ(Ω) (7.38)

is multilinear if it is linear in each of its arguments. Our goal is to find a field

K ∈ Φ(Ω× Ωn × · · · × Ω1). (7.39)

such that
M(φ1, . . . , φn) = Kφ1 · · ·φn = K(φn ∧ · · · ∧ φ1). (7.40)

That the two products above are equivalent is established in Section 7.4.2.1.

Theorem 7.4.9 If M is a multilinear operator, then its kernel is

K =
∞∑
k1=0

· · ·
∞∑

kn=0

M(ξk1 , . . . , ξkn) ∧ ξ∗kn ∧ · · · ∧ ξ
∗
k1
. (7.41)

if the sum exists.



7.4. BASIC FIELD TRANSFORMATIONS 165

Proof: Suppose φj ∈ Φ(Ωj), j = 1, . . . , n, and cjk = 〈ξk | φj〉, k = 0, . . .
That is, cjk is the k-th generalized Fourier coefficient of φj. Then, since M
is multilinear we can expand:

M (φ1, . . . , φn) = M
(∑

c1kξk, . . . ,
∑

cnkξk

)
=

∑
k1

c1k1M
(
ξk1 , . . . ,

∑
cnkξk

)
=

∑
k1

· · ·
∑
kn

c1k1 · · · cnknM(ξk1 , . . . , ξkn).

At this point it will be convenient to work from the other side:

K(φn ∧ · · · ∧ φ1)

=

[∑
k1

· · ·
∑
kn

M(ξk1 , . . . , ξkn) ∧ ξ∗kn ∧ · · · ∧ ξ
∗
k1

]
(φn ∧ · · · ∧ φ1)

=
∑
k1

· · ·
∑
kn

[M(ξk1 , . . . , ξkn) ∧ (ξ∗kn ∧ · · · ∧ ξ
∗
k1

)](φn ∧ · · · ∧ φ1)

=
∑
k1

· · ·
∑
kn

[M(ξk1 , . . . , ξkn)〈ξkn | φn〉 · · · 〈ξk1 | φ1〉], by Cor. 7.4.3

=
∑
k1

· · ·
∑
kn

M(ξk1 , . . . , ξkn)cnkn · · · c1k1 .

The two expansions can be seen to be equal.

�

Theorem 7.4.10 If M is a continuous multilinear operator whose inputs
are filtered:

M(φ1, . . . , φn) = G(F1φ1, . . . , Fnφn) (7.42)

then

K =
∞∑
k1=0

· · ·
∞∑

kn=0

M(ξk1 , . . . , ξkn) ∧ ξ∗kn ∧ · · · ∧ ξ
∗
k1
. (7.43)

exists and is the kernel of M , provided the transfer functions of the filters Fk
are absolutely summable.
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Proof: Let λ(i) be the transfer function of the i-th filter Fi; hence λ(i)
1,

λ(i)
2, . . . are its eigenvalues. As in Theorem 7.4.7 we compute a bound on

‖K‖.

‖K‖ =

∥∥∥∥∥∑
k1

· · ·
∑
kn

M(ξk1 , . . . , ξkn) ∧ ξ∗kn ∧ · · · ∧ ξ
∗
k1

∥∥∥∥∥
≤

∑
k1

· · ·
∑
kn

‖M(ξk1 , . . . , ξkn) ∧ ξ∗kn ∧ · · · ∧ ξ
∗
k1
‖

=
∑
k1

· · ·
∑
kn

‖M(ξk1 , . . . , ξkn)‖.

Now note that

M(ξk1 , . . . , ξkn) = G(F1ξk1 , . . . , Fnξkn)

= G(λ(1)
k1ξk1 , . . . , λ

(n)
knξkn)

= λ(1)
k1 · · ·λ(n)

knG(ξk1 , . . . , ξkn).

Continuing the derivation of the bound:

‖K‖ ≤
∑
k1

· · ·
∑
kn

|λ(1)
k1 · · ·λ(n)

kn| ‖G(ξk1 , . . . , ξkn)‖

≤ β
∑
k1

· · ·
∑
kn

|λ(1)
k1 · · ·λ(n)

kn|.

The last step follows from the assumption that G is bounded (continuous)
with bound β. Continuing:

= β
∑
k1

· · ·
∑
kn

|λ(1)
k1| · · · |λ(n)

kn|

= β

n∏
i=1

∑
k

|λ(i)
k|.

This will be finite if each of the
∑

k |λ(i)
k| are finite.

�
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7.4.3.4 Kernels in terms of generalized functions

In this section we derive an alternative formula for the kernel that is often
easier to use than those given in Sections 7.4.3.2 and 7.4.3.3. The new for-
mula is easily understood through the analogy with finite-dimensional spaces.
Recall that a linear transformation L : Rm → Rn can be represented by a
matrix-vector product L(x) = Mx in which the kth column of M is L(δk).
That is, (MT)k = L(δk). Here the δk represent the basis vectors defined by
the Kronecker delta functions:

(δk)j =

{
1, if k = j
0, if k 6= j

. (7.44)

Now consider the infinite dimensional case and suppose L is a Hilbert-
Schmidt operator, L(φ) = Kφ, where K is given in Section 7.4.3.2. We
claim that the tth “column” of K is L(δt), that is, (KT)t = L(δt). Here the
δt are the Dirac delta functions:

δt(s) =

{
∞, if s = t
0, if s 6= t

. (7.45)

Although “generalized functions” such as the Dirac delta are not physically
realizable, their use often simplifies the derivation of physically realizable
fields. See Section 8.1.2.5 for a further discussion.

To establish our claim we need to make use of the well-known “sifting
property” of the Dirac delta:

δt · φ =

∫
Ω

δt(s)φ
∗
sds = φ∗t . (7.46)

With this in hand it is easy to show that (KT)t = L(δt):

(KT)t =

[∑
k

L(ξk) ∧ ξ∗k

]T

t

=

[∑
k

ξ∗k ∧ L(ξk)

]
t

=
∑
k

ξ∗k(t)L(ξk)
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= L

[∑
k

ξ∗k(t)ξk

]

= L

[∑
k

(δt · ξk)ξk

]
.

The expression in brackets is the generalized Fourier series for δt, so we
conclude (KT)t = L(δt). We state the formula for K in two ways, also using
an alternate notation for δt (explained in Section 8.1.4).

(KT)t = L(δt) = L(∆1
t ), (7.47)

Kst = [L(δt)]s = [L(∆1
t )]s. (7.48)

We state without proof the analogous formulas for the kernel of a multi-
linear operator:

Kstn···t1 = [M(δt1 , . . . , δtn)]s, (7.49)

(KT)tn···t1 = M(δt1 , . . . , δtn). (7.50)

In the second equation the transpose must be interpreted as being around
the first dimension.



Chapter 8

Linear and Multilinear
Operators

8.1 Linear Operators

8.1.1 Introduction

Many of the most important field transformations are linear and multilinear
operators. However, in their ideal forms they often do not satisfy the condi-
tions in Theorems 7.4.7 and 7.4.10 for the existence of their kernels. In these
cases we have to consider the approximation of the ideal operation by a field
product.

8.1.2 Examples

8.1.2.1 Complex Conjugate

Definition 8.1.1 (complex conjugate) The complex conjugate operation
φ∗ computes the element-wise complex conjugate of a field:

(φ∗)t = φt. (8.1)

Formula 8.1.1 (complex conjugate)

φ∗ = Kφ, where K =
∑
k

ξ∗k ∧ ξ∗k. (8.2)

169
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Proof: Simply expand the product:

(Kφ)s =

∫
Ω

Kstφtdt

=

∫
Ω

[∑
k

ξ∗k ∧ ξ∗k

]
st

φtdt

=

∫
Ω

∑
k

ξ∗k(s)ξ
∗
k(t)φtdt

=
∑
k

ξ∗k(s)

∫
Ω

ξ∗k(t)φtdt

=
∑
k

ξ∗k(s)(φ · ξk)

=

[∑
k

ξk(s)(φ · ξk)

]∗
= (φs)

∗,

since the bracketed expression in the second-to-last line is the Fourier series
for φ evaluated at s.

�

8.1.2.2 Definite Integral

Definition 8.1.2 (defint) The definite integral operator defint : Φ(Ω) → R
simply computes the total value of the field:

defintφ =

∫
Ω

φtdt. (8.3)

If we let 1t = 1 be the constant 1 field, then we can define the definite integral:

defintφ = φ · 1. (8.4)

The definite integral is often useful, especially for computing the mean of
a field. For example, by subtracting from a field its mean, we may get
maximum use of the dynamic range of a field storage unit. The definite
integral is also useful for automatic gain control.
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Formula 8.1.2 (defint)

defintφ = 〈1 | φ〉. (8.5)

Since 1 is a physically realizable field, no approximation is involved in this
field computation of the definite integral.

Proof: Simply observe:

〈1 | φ〉 =

∫
Ω

1tφtdt

=

∫
Ω

φtdt

= defintφ.

Alternately, we compute the kernel according to Equation 7.32:

K =
∞∑
k=0

(defint ξk) ∧ ξ∗k

=
∞∑
k=0

〈1 | ξk〉 ∧ ξ∗k.

Now note that 〈1 | ξk〉 is a scalar, and that an outer product with a scalar is
the same as a scalar product. That is, if a is a scalar, then:

a ∧ φ = φ ∧ a = aφ. (8.6)

Therefore, the formula for the kernel is:

K =
∞∑
k=0

〈1 | ξk〉ξ∗k =

(
∞∑
k=0

〈ξk | 1〉ξk

)∗
. (8.7)

But this is just the Fourier expansion (Sec. 5.2.3) of 1∗ = 1, so K = 1.

�
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8.1.2.3 Indefinite Integral

Definition 8.1.3 (
∫

) For illustrative purposes we take Ω = [0, 1]. The in-
definite integral

∫
φ of a field φ is then defined:(∫

φ

)
s

=

∫ s

0

φtdt. (8.8)

Formula 8.1.3 (
∫

) ∫
φ = ∆0φ. (8.9)

where

∆0
st =

{
1, if s ≥ t
0, if s < t

. (8.10)

The unit step field (or Heaviside field) ∆0 can be visualized as follows: it is
1 above the s = t diagonal and zero below it. Although ∆0 is discontinuous
(and thus violates our physical realizability constraints, Section 7.1.2.1), it
can be approximated arbitrarily closely by continuous functions.

The point of the ∆0 notation will become apparent later (Formulas 8.1.4
and 8.1.5). An alternative formula for the indefinite integral will be derived
in Section 8.2.2.4.

Proof: To see that ∆0 is the kernel, observe:(∫
φ

)
s

=

∫ s

0

φtdt

=

∫ 1

0

∆0
stφtdt

= (∆0φ)s.

To see that ∆0 exists, observe:

‖∆0‖2 =

∫ 1

0

∫ 1

0

(∆0
st)

2dtds

=

∫ 1

0

∫ s

0

1 dtds

=

∫ 1

0

s ds

= 1/2

< ∞.
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�

8.1.2.4 Product Mask

Definition 8.1.4 (×) The product mask µ×φ computes a point-wise product
between the given field φ and a fixed field µ:

(µ× φ)t = µtφt. (8.11)

This is obviously a linear operator. In addition to its obvious use for mask-
ing out part of a field, it may also be used with defint to compute weighted
averages of fields.

Formula 8.1.4 (×)
µ× φ = Kφ, (8.12)

where
Kst = µsδ(s− t). (8.13)

Here we have made use of the Dirac delta function (or unit impulse func-
tion). This “generalized function” has the value +∞ at the origin, and the
value 0 everywhere else. An alternative notation for K is:

Kst = µs∆
1
st, (8.14)

where:

Definition 8.1.5 (∆1)
∆1

st = δ(s− t). (8.15)

We prefer this notation because ∆1 is the derivative along the second
coordinate of ∆0, which was defined in Formula 8.1.3.

∆1
st = d∆0

st/dt. (8.16)

Since the kernel K is defined in terms of the unit impulse field ∆1, it is not
physically realizable, and we must use an approximation; see p. 174.

Proof: This formula for the kernel can be established by Equation 7.48:

Kst = (µ×∆1
t )s = µs∆

1
ts = µs∆

1
st (8.17)

(since ∆1 is symmetric).

�

Notice that K is not physically realizable; indeed, it is not even a Hilbert-
Schmidt kernel (since ‖K‖ =∞). We turn to this problem next.
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8.1.2.5 Delta Functions and Physical Realizability

The field K, defined as it is in terms of the Dirac delta function, violates
several of our physical realizability conditions (Section 7.1.2.1), since it is
infinite valued at the origin and discontinuous. However, we can approximate
it by various realizable functions. For example, we can approximate it by a
square wave, δ(x) ≈ Sε(x), where:

Sε(x) = 1/ε, if − ε/2 < x < +ε/2,

Sε(x) = 0, otherwise.

Clearly, δ = limε→0 Sε. Similarly, we could approximate δ by a triangular
wave, or a Gaussian distribution, or any number of other standard functions.

All of these approximations have the effect of “smearing out” the product
µ× φ. For example, with Sε:

(Kφ)s =

∫
Ω

µsSε(t− s)φtdt

= µs

∫ s+ε/2

s−ε/2
φtdt.

Notice that µs is multiplied by the average of the values of φ in an interval
of width ε centered on s.

From time to time we will make use of singularity functions such as the
Dirac delta function. Although they are convenient for the theoretical devel-
opment, keep in mind that physical realizability requires them to be approx-
imated. This is not very different from the familiar situation of numerical
approximation on digital computers. On the other hand, delta functions are
significant in the theoretical development, since they show us when an oper-
ator is local, that is, the value of the output field at a point depends on the
value of the input field at only one or a few points. This is important, be-
cause local operators can be implemented with very sparse interconnections
between layers in a neural network (see ? for more information).

8.1.2.6 Derivative

Definition 8.1.6 (D) There are of course many derivative and derivative-
like operators that can be defined on spaces of fields. In this case we take Ω =
[a, b] and consider the derivative operator on this closed interval: Dφ = φ′;
that is, (Dφ)t = dφt/dt.
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Formula 8.1.5 (D)
Dφ = ∆2φ, (8.18)

where
∆2

st = −δ′(s− t). (8.19)

Here we make use of the doublet δ′, which is the derivative of the Dirac
delta function or unit impulse function δ (see Frm. 8.1.4). The doublet is a
very unusual function. Its value is zero everywhere, except “just to the left”
of 0, where its value is +∞, and “just to the right” of 0, where its value
is −∞. Therefore the doublet field ∆2 has the value −∞ “just below” the
s = t line, and the value +∞ “just above” it. Since the field ∆2 is defined in
terms of this “generalized function,” it is not physically realizable; this issue
is discussed later (Section 8.1.2.7).

Note that ∆2 is the derivative of ∆1 along its second coordinate:

∆2
s = D∆1

s. (8.20)

See Section 8.2.2.4 for an alternative approach to the field computation of
the derivative.

Proof: The simplest proof of this result uses the following “sifting” property
of the doublet:

−φ′s =

∫
Ω

δ′(s− t)φtdt. (8.21)

Hence, letting ∆2
st = −δ′(s− t), it is immediate that

φ′s = 〈∆2
s | φ〉. (8.22)

Alternately, use the formula for the kernel given in Section 7.4.3.4:

Kts = (D∆1
s)t = ∆2

st. (8.23)

Note however that ∆2 is not a Hilbert-Schmidt kernel, since ‖K‖ =∞.

�

It may be instructive to consider the special case of the trigonometric basis.
Suppose a = −π, b = π and:

ξ0(t) = 1/
√

2π

ξ2n−1(t) = cosnt/
√

2π, n = 1, 2, · · ·
ξ2n(t) = sinnt/

√
2π, n = 1, 2, · · ·
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First apply the formula for the kernel (Eq. 7.32):

K =
∑
k

Dξk ∧ ξ∗k

=
∑
k

ξ′k ∧ ξ∗k.

For the trigonometric basis, observe that:

ξ′0(t) = 0

ξ′2n−1(t) = −n sinnt/
√

2π = −nξ2n(t)

ξ′2n(t) = n cosnt/
√

2π = nξ2n−1(t).

Hence,

ξ′0 = 0

ξ′2n−1 = −nξ2n

ξ′2n = nξ2n−1.

Hence, the kernel is

K =
∞∑
n=1

(ξ′2n−1 ∧ ξ∗2n−1 + ξ′2n ∧ ξ∗2n)

=
∞∑
n=1

n(ξ2n−1 ∧ ξ∗2n − ξ2n ∧ ξ∗2n−1).

Now note that

(ξ2n−1 ∧ ξ∗2n)st = ξ2n−1(s)ξ∗2n(t)

= (cosns/
√

2π)(sinnt/
√

2π)∗

= sinnt cosns/2π, since the sin and cos are real.

Similarly,
(ξ2n ∧ ξ∗2n−1)st = cosnt sinns/2π. (8.24)

Therefore,

(ξ2n−1 ∧ ξ∗2n − ξ2n ∧ ξ∗2n−1)st = (sinnt cosns− cosnt sinns)/2π

= sin(nt− ns)/2π
= sinn(t− s)/2π.
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Therefore the kernel is defined by:

Kst =
1

2π

∞∑
n=1

n sinn(t− s). (8.25)

This is the Fourier series for −δ′(t − s) as can be seen by noting that the
sines “pile up” to −∞ on the negative side of 0, and to +∞ on the positive
side of 0. Clearly K is not physically realizable; see Section 8.1.2.5 as well
as the following section.

8.1.2.7 Doublets and Physical Realizability

The field ∆2, defined as it is in terms of the doublet, violates several of our
physical realizability conditions (Section 7.1.2.1), since it is infinite valued at
the origin and discontinuous. However, just as we did for ∆1 (Frm. 8.1.2.5),
we can approximate ∆2 by various realizable functions. For example, we can
truncate the Fourier series given above. More directly, we can approximate
it by a square wave, ∆2

st ≈ Sε(s, t), where:

Sε(s, t) = −2/ε2, if − ε/2 < s− t < 0

Sε(s, t) = +2/ε2, if 0 < s− t < +ε/2

Sε(s, t) = 0, otherwise.

Clearly, ∆2 = limε→0 Sε. By using Sε we are approximating the derivative by
the “difference”:

φ′t ≈

∫ ε/2
0

φtdt−
∫ 0

−ε/2 φtdt

ε
. (8.26)

Notice that in field computation the difference is computed between two
“average” values, whereas in digital computation it is computed between the
values at two points.

8.1.2.8 Discrete Fourier Transform

Definition 8.1.7 Let β0, β1, β2, . . . be an orthogonal basis for Φ(Ω2) and
suppose Ω1 = {0, 1, 2, .., N}. The result of the discrete Fourier transform
FNφ is an N + 1 element discrete field σ, such that σn is the nth Fourier
coefficient of φ with respect to the βn. That is,

σn = (FNφ)n = φ · βn. (8.27)
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Note that we extract only the first N + 1 coefficients. There are two reasons
for this. First, extracting all the coefficients would require Ω1 to be infinite
(i.e. the natural numbers), which violates our condition that the domains of
fields be bounded (Section 7.1.2.2). The second reason is that higher order
coefficients frequently represent noise, and so should be suppressed. Never-
theless, later in this section we show a way to capture the full spectrum in a
physically realizable field.

Formula 8.1.6

FNφ = Kφ. (8.28)

where

K =
N∑
n=0

δn ∧ β∗n. (8.29)

Here δn is the Kronecker delta function defined by:

δn(n) = 1,

δn(m) = 0, n 6= m.

Alternately we can define the Kronecker delta in a way analogous to the
Dirac delta (Section 8.1.4). Thus δ(k) is 1 if k = 0, but 0 if k 6= 0. Then K
is defined:

Kmt =
N∑
n=0

δ(m− n)βn(t). (8.30)

Observe that K is in effect an “array” of the basis functions β0, β1, . . . , βN ;
Km = βm. Alternately, we may say that the kernel is the (truncated) series
of basis functions.

Proof: Although it is straight-forward to show the correctness of the formula
for K by expanding the product Kφ, we will show that the formula can be
derived directly from the definition, (FNφ)n = φ · βn. First note that any
N + 1-element “array” (discrete field) A satisfies

A =
N∑
n=0

δnAn. (8.31)
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since

Ak =

(∑
n

δnAn

)
k

=
∑
n

δn(k)An

= δk(k)Ak

= Ak.

Therefore, the Fourier transform can be represented:

FNφ =
N∑
n=0

δn(FNφ)n

=
N∑
n=0

δn(φ · βn)

=
N∑
n=0

(δn ∧ β∗n)φ

=

(
N∑
n=0

δn ∧ β∗n

)
φ

= Kφ.

�

8.1.2.9 Representing the Full Spectrum

To represent the full spectrum, we must find some way of fitting the infinite
set of natural numbers into finite space. Although there are a number of
ways of doing this, we choose a representation that may have some practical
applications. We define the following family of “regressive pulse functions”:

rn(x) = 1, if 2−n < x < 2−n−1

rn(x) = 0, otherwise.

In other words, r0, r1, . . . are a series of exponentially narrower contiguous
pulses of unit amplitude. We will use the nonzero portion of each pulse to
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represent a Fourier coefficient; therefore higher order coefficients will occupy
exponentially less space. It is easy to show that this transformation is the
integral operator:

F∞φ = Kφ =

(
∞∑
n=0

rn ∧ βn

)
φ, (8.32)

provided that the infinite sum exists. To show that it does, we assume that
the βn are orthonormal (vice merely orthogonal) and observe that ‖rn‖ =
2−n−1. Then, derive:

‖K‖ ≤
∑
n

‖rn ∧ β∗n‖

=
∑
n

‖rn‖‖β∗n‖

=
∑
n

2−n−1

= 1 <∞.

8.1.2.10 Continuous Fourier Transform

Definition 8.1.8 In this case we replace the discrete series of basis functions
β0, β1, . . . by a family of functions that depends continuously on a parameter
ω. For example, we may replace the complex exponential basis βn(t) = e−inω0t

by the family:
βω(t) = e−iωt. (8.33)

If we are concerned with the spectrum in only a finite interval Ω = [a, b], then
there is no difficulty extending the discrete case to the continuous case. Here
we define:

(F[a,b]φ)ω = φ · βω. (8.34)

If we want the full spectrum, then we have a representation problem, since
the domain of the resulting field would be [0,∞), which is not physically
realizable. In this case we choose some continuous monotonic mapping ρ
from [0,∞) into a bounded domain. An example ρ is

ρ(ω) = 1/(ω + 1). (8.35)

The resulting definition of the transform function is:

(Fρφ)ρ(ω) = φ · βω. (8.36)
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The field returned by Fρφ is physically realizable, since the image of [0,∞)
under ρ is [0, 1].

Formula 8.1.7 In the band-limited case we use the analogous formula to
that in Section 8.1.6:

F[a,b]φ = Kφ, (8.37)

where
Kωt = β∗ω(t). (8.38)

To compute the full spectrum, a different kernel is required:

Kst = β∗ρ−1(s)(t). (8.39)

Note that ρ−1 exists, since ρ is monotonic. Also note that, as before, the ker-
nel is the orthonormal basis (possibly reindexed to ensure a bounded domain).

Proof: First consider the band-limited case. Derive:

(Kφ)ω = Kω · φ∗

= φ ·K∗ω
= φ · βω
= (F[a,b]φ)ω.

Further, the field K exists, since fω depends continuously on ω.
For the full-spectrum case derive:

(Kφ)s = Ks · φ∗

= φ ·K∗s
= φ · β∗ρ−1(s)

= (Fρφ)s.

Hence (Kφ)ρ(ω) = φ · β∗ω. It remains to show that K exists. Assume an
orthonormal basis, ‖βω‖ = 1. Then:

‖K‖2 =

∫
Ω1×Ω2

K2
std(s, t)

=

∫
Ω1

∫
Ω2

|β∗ρ−1(s)(t)|2dtds
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=

∫
Ω1

‖β∗ρ−1(s)‖2ds

=

∫
Ω1

1ds

= |Ω1| <∞.

�

8.1.2.11 Inverse Fourier Transform

Definition 8.1.9 We consider the case of the finite-spectrum discrete Fourier
transform, although it will be apparent that the solution can be simply ex-
tended to the full-spectrum or continuous cases. Our goal is as follows. Sup-
pose that the generalized coefficients of φ beyond the N th are zero, then we
want F−1

N such that:
F−1
N (FNφ) = φ (8.40)

We are given a discrete field c such that cn is the nth generalized Fourier
coefficient, n = 0, 1, . . . , N . Then F−1

N takes the simple form:

F−1
N c =

N∑
n=0

cnβn. (8.41)

Formula 8.1.8
F−1
N c = K†c. (8.42)

where K is the kernel of the discrete Fourier transform (Frm. 8.1.6), which is
simply the “array” of conjugate basis functions. If we use FN for this kernel,
then the inverse transform is expressed more obviously by:

F−1
N c = F†Nc. (8.43)

Proof: Recall (Frm. 8.1.6) that the kernel of the discrete Fourier transform
is defined:

Knt = β∗n(t) = β∗nt. (8.44)

That is, K†tn = βn(t). Therefore,

(F−1
N c)t =

∑
n

cnβn(t)

=
∑
n

cnK†tn

= (K†c)t.
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Hence F−1
N c = K†c.

�

8.1.2.12 Using Fourier Methods to Compute Linear Operators

The Fourier transform permits a way computing linear operators that is
particularly suitable for neural implementation ?. To see this, observe that
for L : Φ(Ω)→ Φ(Ω′) and φ ∈ Φ(Ω):

Lφ = L

(∑
n

cnβn

)
=

∑
n

cnL(βn)

=
∑
n

cnλn.

Here the cn are the Fourier coefficients of φ, c = FNφ, and the λn ∈ Φ(Ω′) are
the values of L on the basis functions (i.e., λ0, λ1, . . . is the transfer function
of L). Then

L(φ) = cΛ = (FNφ)Λ = ΛT(FNφ), (8.45)

where Λ ∈ Φ({1, . . . , N}×Ω′) is defined

Λn = L(βn). (8.46)

In other words, any linear operator can be computed by extracting the Fourier
coefficients of its argument and using these to weight the values of the op-
erator on the basis fields. The advantage of this for neural implementation
is that if the input is band limited, then there are only a finite number of
coefficients. These can be represented by the “hidden units” between the
neural layers that compute FN and ΛT. The kernel of the linear operator is
of course ΛTFN .

The foregoing suggests a generalization based on the continuous Fourier
transform. We may compute any linear operator by:

1. Taking its Fourier transform (discrete or continuous).

2. Multiplying the result by a (discrete or continuous) product mask rep-
resenting the operator’s transfer function.
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3. Taking the corresponding inverse Fourier transform.

This suggests that a general purpose field computer could be structured
around Fourier transforms.

8.2 Multilinear Operators

8.2.1 Introduction

Like the linear operators discussed in Section 8.1, many of the multilinear
operators discussed here are not implementable by physically realizable field
products. They can, however, be approximated in a straight-forward way.

8.2.2 Examples

8.2.2.1 Local Product

Definition 8.2.1 The local product φ×ψ of two fields over the same domain
is defined:

(φ× ψ)s = φsψs. (8.47)

Formula 8.2.1

φ× ψ = Mφψ = M(ψ ∧ φ), (8.48)

where

Ms = ∆1
s ∧∆1

s. (8.49)

That is, Mstu = ∆1
st∆

1
su.

The unit impulse field ∆1 is defined in Def. 8.1.5 (p. 173). Since ∆1 is not
physically realizable, M will have to be approximated; see Sec. 8.1.2.5 (p.
174). Notice that the field product Mφψ is a very inefficient way to compute
the local product φ × ψ. The field product brings together all the possible
combinations (ψs, φt), but the field M ignores all except those for which
s = t. It is wasteful to use the power of global computation where only
local computation is required. This suggests that most general-purpose field
computers will have the local product operation built in.
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Proof: It is easy to check that the formula for M is correct:

[M(ψ ∧ φ)]s = (ψ ∧ φ) ·M∗
s

= (ψ ∧ φ) · (∆1
s ∧∆1

s)
∗

= (ψ ·∆1
s)(∆1

s · φ)

= ψsφs.

The last two steps follow from Thm. 7.4.4 (Section 7.4.2.1, p. 159) and the
sifting property of ∆1 (Eq. 7.46, p. 167).

It is also easy to derive the formula for M directly from the formula for
the kernel of a multilinear operator (Thm. 7.4.9, p. 164):

M =
∑
k

∑
l

(ξk × ξl) ∧ ξ∗l ∧ ξ∗k. (8.50)

Hence,

Mstu =
∑
k

∑
l

(ξk × ξl)sξ∗l (t)ξ∗k(u)

=
∑
k

∑
l

ξl(s)ξl(t)eξ
∗
l (t)ξ

∗
k(u)

=

[∑
l

ξl(s)ξ
∗
l (t)

][∑
k

ξk(s)ξ
∗
k(u)

]

=

[∑
l

ξ∗l (s)ξl(t)

]∗ [∑
k

ξ∗k(s)ξk(u)

]∗

=

[∑
l

(∆1
s · ξl)ξl(t)

]∗ [∑
k

(∆1
s · ξk)ξk(u)

]∗
.

The last step is by the sifting property, ∆1
s · ξl = ξ∗l . Now observe that in

the brackets we have the Fourier series for ∆1, hence:

Mstu = ∆1
s(t) ∆1

s(u)

= ∆1
s(t)∆

1
s(u)

= (∆1
s ∧∆1

s)tu.

�
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8.2.2.2 Linear Measure Spaces

In order to define the convolution and correlation of arbitrary fields we need
a subtraction operation on the domains of fields. That is, for any φ ∈ Φ(Ω)
for which we might want a convolution or correlation, we need s− t ∈ Ω to
be defined for all s, t ∈ Ω.

To this end, we define a linear measure space to be a measure space that
is also a linear space. Therefore, it has addition, subtraction and scalar
multiplication operations satisfying the usual properties.

There is one difficulty with this definition. Since a linear space must
be closed with respect to its operations (addition, subtraction and scalar
multiplication), it cannot be bounded, since it must contain at for every
real number a and every t ∈ Ω. Thus linear measure spaces violate one of
our physical realizability constraints, namely, that the domains of fields be
bounded (Section 7.1.2.2). This is a problem that is commonly faced in the
analysis of linear, shift-invariant systems, since most implementable systems
are bounded, and hence not completely shift-invariant. We shall take the
same pragmatic approach here that is commonly applied in that analysis:
apply the theory based on linear spaces, but be careful of “edge effects.”

8.2.2.3 Convolution

Definition 8.2.2 If Ω is a linear measure space (Section 8.2.2.2), then the
convolution φ ∗ ψ of two fields φ, ψ ∈ Φ(Ω) is defined:

(φ ∗ ψ)s =

∫
Ω

φs−tψtdt. (8.51)

Formula 8.2.2
φ ∗ ψ = Kφψ = K(ψ ∧ φ), (8.52)

where
Kstu = δ(s− t− u). (8.53)

Since the field K is defined in terms of the unit impulse field δ = ∆1 (Section
8.1.2.5), it must in practice be approximated.

Proof: It is easiest to establish this result by direct expansion of the product:

(Kφψ)s =

∫
Ω

(Kφ)stψtdt
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=

∫
Ω

∫
Ω

Kstuφuduψtdt

=

∫
Ω

∫
Ω

δ(s− t− u)φuduψtdt

=

∫
Ω

φs−tψtdt

= (φ ∗ ψ)s.

The second to last step follows from the sifting property of δ.

�

Remark 8.2.1 Notice that if φ, ψ ∈ Φ(Ω), then K ∈ Φ(Ω×Ω×Ω), which is
of much higher dimension than the fields being convolved. We will discuss
alternative approaches to convolution later (Sec. ??).

8.2.2.4 Use of Convolution to Implement Linear, Shift-Invariant
Operators

Many linear, shift-invariant operators can be implemented more efficiently
by convolution than by general field product. For example, the derivative
operator (Defn. 8.1.6, p. 174) can be implemented by:

Dφ = −δ′ ∗ φ, (8.54)

where δ′ is the unit doublet (Frm. 8.1.5, p. 175). To see this, observe

(−δ′ ∗ φ)s = −
∫
δ′s−tφtdt = φ′s (8.55)

by the sifting property of the doublet (p. 175). This formula should be
compared with that in Frm. 8.1.5 (p. 175):

Dφ = ∆2φ. (8.56)

Although neither δ′ nor ∆2 is physically realizable, δ′ has the advantage that
it is of lower dimension: δ′ ∈ Φ(Ω), but ∆2 ∈ Φ(Ω × Ω). Therefore, δ′ will
generally be easier to represent in field computers.

For another example of the use of convolution, consider the indefinite in-
tegral (Defn. 8.1.3, p. 172), which is also shift invariant. Define the Heaviside
field υ to be a slice through ∆0:

υs = ∆0
s0. (8.57)
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It has the property:

υs =

{
1, if s ≥ 0
0, if s < 0

. (8.58)

This field can be convolved with an arbitrary field to compute its indefinite
integral: ∫

φ = υ ∗ φ. (8.59)

To see this, observe:

(υ ∗ φ)s =

∫
Ω

υs−tφtdt

=

∫
Ω

∆0
s−t,0 φtdt

=

∫
Ω

∆0
st φtdt

=

(∫
φ

)
s

.

The foregoing examples suggest that convolution is a useful operation to
include in general purpose field computers.

8.2.2.5 Correlation

Definition 8.2.3 If Ω is a linear measure space (Section 8.2.2.2), then the
correlation φ ? ψ of two fields φ, ψ ∈ Φ(Ω) is defined:

(φ ? ψ)s =

∫
Ω

φ∗t−sψtdt. (8.60)

Remark 8.2.2 Notice that for real-valued fields correlation differs from con-
volution only in having ‘t−s’ where the latter has ‘s−t’. (For complex-valued
fields, correlation also has a complex conjugate, as you see here.)

Remark 8.2.3 The correlation of two different fields is usually called cross-
correlation, whereas the correlation of a field with itself is called autocorre-
lation.
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Formula 8.2.3
φ ? ψ = Kφψ = K(ψ ∧ φ), (8.61)

where
K =

∑
k,l

(ξk ? ξl) ∧ ξ∗l ∧ ξ∗k. (8.62)

Proof: This is simply an application of Thm. 7.4.3.3 (p. 164).

�
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Chapter 9

Universal Field Computation

9.1 Introduction

In Sections ?? and ?? we discussed the utility of general purpose field com-
puters, and claimed that there exists a universal set of field operations that
permits the approximation of any field transformation in a large and use-
ful class. In this chapter we present one such universal set and give several
examples of the resulting approximations.

9.2 Approximation Based on Taylor Series

9.2.1 Derivatives of field transformations

Our goal is to find ways of approximating field transformations. The notion of
a derivative is important for understanding approximations of real functions
(for instance, in understanding the Taylor series). For many of the same
reasons, it is necessary to investigate the derivatives of field transformations.
However, since fields are functions (Sec. 7.1.2.1), we need the derivative of
an operator on a function space. There are two kinds of derivatives that may
be defined, the Fréchet (Sec. 3.4.1) and Gâteaux (Sec. 3.4.2). For fields they
happen to be equivalent (Sec. 3.4.3). It will be noted that these derivatives
are defined on functions between Banach spaces (complete normed linear
spaces). Since Hilbert spaces are Banach spaces, we can apply these results
(Sec. 5).

191
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9.2.2 Gradients of Operators

9.2.2.1 Definition of Gradient

Based on the analogy with finite-dimensional spaces (MacLennan, 1987b) we
define the gradient of a field transformation T : Φ(Ω1) → Φ(Ω2) at a point
φ ∈ Φ(Ω1) to be the field K ∈ Φ(Ω2 × Ω1) satisfying the following property:

T ′(φ)(α) = Kα, for all α ∈ Φ(Ω1). (9.1)

In other words, the derivative T ′ is an integral operator with (Hilbert-Schmidt)
kernel K. Sufficient conditions for the existence of a gradient are discussed
below (p. 192).

The notation ∇T (φ) denotes the gradient of T at φ. Thus,

T ′(φ)(α) = [∇T (φ)]α. (9.2)

It will also be convenient to use the notation ∇αT (φ) for the directional
derivative of T in the “direction” α:

∇αT (φ) = ∇T (φ)α = T ′(φ)(α). (9.3)

This permits ∇α to be treated as an operator; operator techniques are ex-
ploited in MacLennan (1987a,b).

It will be useful to consider the form taken by higher order directional
derivatives. Supposing that all the gradients exist, observe:

T (k)(φ)(α1) · · · (αk) = ∇kT (φ)α1 · · ·αk
= ∇kT (φ)(αk ∧ · · · ∧ α1)

= ∇αk
· · · ∇α1T (φ).

Thus, a k-th order differential can be expressed as a k-fold product with the
k-th order gradient (if it exists), or as a product between the gradient and
the k-fold outer product. These relationships depend on the properties of
outer products discussed in Sec. 7.4.2.2.

9.2.2.2 When Can a Derivative Be Expressed as a Product?

Another way of asking this is “When do gradients exist?” Yet another way
of asking it is, “When are derivatives integral operators (of Hilbert-Schmidt
type)?”
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In this section we present practical sufficient conditions for the existence
of gradients. Since derivatives are linear (or multilinear) these conditions are
direct applications of the results in Sec. 7.4.3.

For practical applications it seems reasonable to assume that field trans-
formations have filtered inputs (see Sec. 7.4.3.2 for the definition of a filter).
Typically there are limitations on the gradients sustainable in the media
used to represent the input fields to a transformation (Sec. 7.1.2.3). Also,
higher order components typically represent noise, and we do not want our
transformations to be excessively sensitive to noise (Sec. 7.1.3).

Therefore, we consider the form of derivatives of transformations that can
be written T = G◦F , where F is a filter (Theorem 7.4.7) and G is the “ideal”
operator to be computed. By the formula for the derivative of a composition
(Prop. 3.4.4, p. 39) we have:

T ′(φ)(α) = (G ◦ F )′(φ)(α)

= G′[F (φ)][F ′(φ)(α)]

= (G′ ◦ F )(φ)[F ′(φ)(α)].

Notice that the input to G′ is also filtered by F : (G′ ◦F )(φ). Also note that
since F is a filter it is linear, and so by Prop. 3.4.1 (p. 38) F ′(φ) = F . Hence,

T ′(φ)(α) = (G′ ◦ F )(φ)[F (α)]. (9.4)

That is,

T ′(φ) = (G′ ◦ F )(φ) ◦ F. (9.5)

Hence, T ′(φ) can be written in the form H ◦ F , and so the gradient ∇T (φ)
exists. Since the gradient has the appropriate form (H ◦F ), the higher order
gradients also exist.

The existence of gradients of multilinear operators exist under similar
circumstances.

Summarizing, gradients exist for operators that are sufficiently insensitive
to higher-order (typically, higher frequency) components of their inputs. In
particular, if the operators are band-limited (insensitive to all components
beyond a certain order) then the gradients exist. However, they also exist if
there response rolls off as an absolutely summable sequence.
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9.2.3 Taylor’s Theorem

9.2.3.1 Taylor’s Expansion in Derivatives

The standard Taylor theorem from functional analysis, like the more familiar
Taylor theorem from real analysis, permits the expansion of a function in an
infinite series about a point. The difference is that in the present case the
function is a field transformation, and the point is a field. The theorem was
stated in Sec. 3.5, but we repeat it here for convenience.

Theorem 9.2.1 (Taylor) Suppose U is any open subset of Φ(Ω1) and T :
Φ(Ω1)→ Φ(Ω2) is a map which is Cn in U (that is, the first n derivatives of
T exist). Let φ ∈ U and α ∈ Φ(Ω1) be such that φ+ θα ∈ U for all θ ∈ [0, 1].
Then:

T (φ+ α) =
n−1∑
k=0

T (k)(φ)(α)k

k!
+Rn(φ, α), (9.6)

where

Rn(φ, α) =

∫ 1

0

(1− θ)n−1T (n)(φ+ θα)(α)n

(n− 1)!
dθ. (9.7)

Here ‘(α)k’ denotes k occurrences of the argument α. Also note that T (0) = T .
In uncurried form the Taylor expansion is:

T (φ+ α) =
n−1∑
k=0

dkT (φ,

n︷ ︸︸ ︷
α, . . . , α)

k!
+Rn(φ, α), (9.8)

where

Rn(φ, α) =

∫ 1

0

(1− θ)n−1dnT (φ+ θα,

n︷ ︸︸ ︷
α, . . . , α)

(n− 1)!
dθ. (9.9)

and the appropriate number of α arguments (zero or more) must be supplied
for dkT .

9.2.3.2 Taylor’s Expansion in Gradients

If the first n gradients of T are defined (Section 9.2.2.2), then its Taylor
expansion is:

T (φ+ α) = T (φ) +
n∑
k=1

∇k
αT (φ)

k!
+Rn(φ, α). (9.10)
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As shown in Section 9.2.2.1, the kth term can be written in any of the
following forms:

1

k!
∇k
αT (φ) =

1

k!
∇kT (φ)

k︷ ︸︸ ︷
α · · ·α

=
1

k!
∇kT (φ)α(k).

where by α(k) we mean the k-fold outer product

k︷ ︸︸ ︷
α ∧ α ∧ · · · ∧ α. The two

forms on the right are especially useful, since they separate the part of the
term which is fixed by the point of expansion, ∇kT (φ), from the part which
is variable, α.

The remainder term is:

Rn(φ, α) =

∫ 1

0

(1− θ)n−1∇n
α(φ+ θα)

(n− 1)!
dθ. (9.11)

9.2.3.3 Horner’s Rule Expansion

As is done for conventional polynomials, we can eliminate the need to com-
pute higher (outer product) powers of α by using a form of “Horner’s Rule.”
Consider the 3-term Taylor expansion:

T (φ+ α) ≈ T (φ) +∇T (φ)α +
1

2
∇2T (φ)α(2). (9.12)

This can be written

T (φ+ α) ≈ T (φ) +

[
∇T (φ) +

1

2
∇2T (φ)α

]
α. (9.13)

In general, define

Qk(φ, α) = ∇kT (φ) +
1

k + 1
Qk+1(φ, α)α. (9.14)

for k ≥ 0 where ∇0T = T . Then the infinite Taylor expansion is given by

T (φ+ α) = Q0(φ, α). (9.15)

The Horner’s Rule expansion has direct relevance to implementation of field
transformations by neural networks incorporating conjunctive synapses (sigma-
pi units); see ?.
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9.2.4 Summary of Taylor Series Approximation

We have already seen (Ch. 8) that any reasonable linear or multilinear field
transformation can be approximated by a general field product. The results
of this section show that reasonable (i.e. sufficiently differentiable) nonlinear
transformations can be approximated by a field polynomials, that is, by a
local sum of general products. We conclude that the following constitute a
universal set of operators:

1. Local sum: (φ+ ψ)t = φt + ψt,

2. General product: (ΨX)su =
∫

Ω
ΨstXtudt.

(Note that the scalar and outer products, which also appear in field poly-
nomials, are degenerate cases of the general product, and so are not strictly
necessary.) Of course, practical general purpose field computers will imple-
ment a larger set of primitive operations.

9.3 General Polynomial Approximation

The Taylor series approximation of field transformations suffers from a lim-
itation similar to that of the Taylor series approximation of real functions,
namely, the approximation is only locally good. That is, since the Taylor
series extrapolates from a fixed point, the accuracy tends to fall off rapidly
with the distance from that point. This is not an important limitation if our
only purpose is to establish a universal set of operations. If, however, we
are interested in practical field computation, then the limitation is signifi-
cant. In this case we require polynomials that satisfy some global criterion
of goodness.

The problem of the polynomial approximation of field transformations
can be put as follows. Consider the nth degree polynomial:

Pn(φ) = K0 +K1φ+K2φ
(2) + · · ·+Knφ

(n). (9.16)

How can we choose the fields K0, . . . , Kn so as to minimize the “distance”
between Pn and the desired transformation T? The difficulty is to define an
appropriate distance between field transformations. The usual development
of an approximation theory presumes an inner product norm and a basis.
Unfortunately, we have not found a suitable way to define an inner product
on field transformations.
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One way to compare field transformations is to compare their values on
a finite set of input fields:

δ(T, U) =
m∑
k=1

‖T (φk)− U(φk)‖. (9.17)

Although this measure is only a pseudo-metric,1 it is nevertheless useful for
a number of purposes.

1For a pseudo-metric δ(x, y) = 0 need not imply x = y.
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Chapter 10

Local Transformations

10.1 Theory

In this section we consider the special case of (nonlinear) local transforma-
tions. These are transformations in which each point of the output field is a
function of the corresponding point of the input field:

[T (φ)]t = Ft(φt). (10.1)

We write F for the local transformation that applies Ft at each point t; thus:

[F (φ)]t = Ft(φt). (10.2)

Suppose that for all t ∈ Ω, Ft : [a, b]→ K. Then the type of F is

F : Ω→ [a, b]→ K, (10.3)

and hence the type of F is:

F : Φ[a,b](Ω)→ ΦK(Ω). (10.4)

Although Taylor’s theorem can be used to derive the power series of a local
transformation (MacLennan, 1987a), a more general result is just as easy to
obtain:

Theorem 10.1.1 Suppose that F : Φ[a,b](Ω)→ ΦK(Ω) and that the series

Ft(x) =
∞∑
k=0

αktx
k (10.5)

199
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converges uniformly with respect to t and x. Then F is given by the following
(L2) convergent series:

F (φ) =
∞∑
k=0

αk × φk. (10.6)

Here φk denotes the k-fold local product:

φ0 = 1

φk+1 = φ× φk, k ≥ 0.

We call transformations such as Eq. 10.6, local field polynomials or local
power series, since the powers are computed by local products.

Proof: Let ε > 0 be chosen; we must show that there is an N such that∥∥∥∥∥F (φ)−
n∑
k=0

αk × φk
∥∥∥∥∥ < ε (10.7)

whenever n ≥ N . Let ζ = ε|Ω|−1/2. Since the series for Ft(x) converges
uniformly, we know that there is an N , independent of t and x, such that∣∣∣∣∣Ft(x)−

n∑
k=0

αktx
k

∣∣∣∣∣ < ζ (10.8)

whenever n > N . Now consider:∥∥∥∥∥F (φ)−
n∑
k=0

αk × φk
∥∥∥∥∥

2

=

∫
Ω

[
F (φ)−

n∑
k=0

αk × φk
]2

t

dt

=

∫
Ω

[
Ft(φt)−

n∑
k=0

αktφ
k
t

]2

dt

≤
∫

Ω

ζ2dt

= ζ2|Ω|
= ε2.

Hence, ∥∥∥∥∥F (φ)−
n∑
k=0

αk × φk
∥∥∥∥∥ < ε. (10.9)
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�

The common case where F is a constant function, that is, Ft = f for all t, is
especially useful:

Corollary 10.1.1 If f : ΦI(Ω)→ ΦK(Ω) and I is in the interval of conver-
gence of

f(x) =
∞∑
k=0

akx
k, (10.10)

then this series converges:

f(φ) =
∞∑
k=0

akφ
k. (10.11)

Here akφ
k denotes a scaling of φk by ak ∈ C. If this is not a primitive

operation, then it can be accomplished by a local product with the constant
field ak1.

Proof: It is well-known that if I is in the interval of convergence of
∑∞

k=0 akx
k

then the series converges uniformly in I. Hence the theorem applies.

�

10.2 Examples

10.2.1 Importance of Sigmoid Nonlinearities

We begin by exploring the field computation of two local transformations
with a “sigmoid” shape. Such transformations are important because of
their applications in neural networks. The functional behavior of the most
common artificial neurons are defined by the equation

yi = σ

(
N∑
k=1

Wijxj

)
. (10.12)

This defines the activity level yi of an output neuron i (1 ≤ i ≤M) in terms
of the activities xj of the input neurons j (1 ≤ j ≤ N). The “weights” Wij

reflect the strength and polarity (excitatory or inhibitory) of the synapses
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between neurons j and i. The sigmoid function σ is a nonlinear function
whose effect is to “sharpen up” the value computed by the summation; it
acts as a “soft threshold.” Notice that if we think of x, y and W as finite
fields, then the preceding equation can be expressed as a field computation:

y = σ(Wx). (10.13)

We are of course most interested in the case where x, y and W are continuous
fields, but the mathematics is the same. In the following subsections we
discuss the field computation of two common sigmoid transformations.1

10.2.2 Hyperbolic Tangent

Definition 10.2.1 The hyperbolic tangent sigmoid transformation is

tanh : Φ[a,b](Ω)→ Φ[−1,1](Ω), (10.14)

where −π/2 < a < b < π/2. Its effect as a soft threshold can be seen in its
continuous variation between these values:

tanh(−∞) = −1,

tanh(0) = 0,

tanh(+∞) = +1.

The tanh function is most useful when we want the nonlinearity to preserve
the sign of the input. It also arises naturally in analog VLSI implementations
of neural networks (Mead, 1989, p. 69 and passim).

Formula 10.2.1

tanh(φ) = φ−1

3
φ3+

2

15
φ5− 17

315
φ7+· · ·+22n(22n − 1)B2n

(2n)!
φ2n−1+· · · , (10.15)

where B2n is the 2n-th Bernoulli number.

Proof: This follows directly from Cor. 10.1.1 and the Maclauren series for
tanh (National Bureau of Standards, 1965), whose interval of convergence is
(−π/2, π/2).

�
1For neural networks there is little practical difference between different sigmoids, since

the effect of scaling can be accomplished by modifying the weights, and the effect of
translation by applying a constant bias to the neuron; see ?.



10.3. REPLACING LOCAL FIELD POLYNOMIALS BY SIGMOID FUNCTIONS203

10.2.3 Logistic Function

Definition 10.2.2 The sigmoid function most commonly used in neural net-
works is the logistic function, given by

lgst(x) =
1

1 + e−x/T
. (10.16)

It can also be defined as a translated, scaled hyperbolic tangent:

lgst(x) =
1

2
tanh

( x

2T

)
+

1

2
. (10.17)

It is a soft threshold, as can be seen from its behavior:

lgst(−∞) = 0,

lgst(0) = 1/2,

lgst(+∞) = 1.

This simoid is most useful when the output is to be interpreted as a prob-
ability. The parameter T , commonly called “computational temperature,”
adjusts the slope of the sigmoid at the origin (which is 1/T ). At T = 0 it
becomes a step function (threshold). We consider here the corresponding local
transformation lgst : Φ[a,b](Ω)→ Φ[0,1](Ω), where −πT < a < b < πT .

Formula 10.2.2

lgst(φ) =
1

2
+

1

4T
φ− 1

48T 3
φ3 +

1

480T 5
φ5 − 17

80640T 7
φ7 + · · · . (10.18)

Proof: The series can be derived by direct differentiation, or from the series
for tanh by the relation lgst(x) = 1

2
tanh(x/2T ) + 1

2
. Since the radius of

convergence for the tanh series is π/2, the radius for lgst will be πT .

�

10.3 Replacing Local Field Polynomials by

Sigmoid Functions

Sections 10.2.2 and 10.2.3 showed how a local sigmoid transformation could
be computed by a local polynomial. On the other hand, artificial neurons of-
ten have a built in sigmoid function, and we can expect many field computers
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will provide a local sigmoid transformation. For this reason it is important
to ask the converse question: When can a field polynomial be computed by
a local sigmoid transformation? The following equations characterize a sig-
moid centered at the origin, but with a bias of b, a slope m at the origin, and
asymptotic values b± µ:

σ(0) = b, (10.19)

σ(x)− b = b− σ(−x), (10.20)

σ(+∞) = b+ µ, (10.21)

σ′(+∞) = 0, (10.22)

σ′(0) = m, (10.23)

σ′(x) ≥ 0, (10.24)

σ′(x) < m, x 6= 0. (10.25)

Now consider a power series for σ:

σ(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · . (10.26)

Equation 10.19 tells us a0 = b. Also, Eq. 10.20 tells us σ(x) + σ(−x) = 2b.
But,

σ(−x) = a0 − a1x+ a2x
2 − a3x

3 + · · · . (10.27)

Therefore,

2b = σ(x) + σ(−x) = 2b+ 2a2x
2 + 2a4x

4 + · · · , (10.28)

and we conclude that the power series contains only odd powers. Further-
more, by Eq. 10.23 and

σ′(x) = a1 + 3a3x
2 + · · · (10.29)

we know a1 = m. Thus the power series for a sigmoid must look like this:

σ(x) = b+mx+ a3x
3 + · · · . (10.30)

This suggests that we ask when a cubic of the form

f(x) = b+mx+ a3x
3 (10.31)
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can be approximated by a sigmoid function. This cubic can be easily seen to
satisfy Eqs. 10.19, 10.20 and 10.23. Since f ′(x) = m + 3a3x

2, it will satisfy
Eq. 10.25 only if a3 < 0. Thus we rewrite it

f(x) = b+mx− ax3, (10.32)

where a > 0. The cubic differs from the sigmoid in its asymptotic properties
(Eqs. 10.21 and 10.22), so we must restrict our attention to the portion of
the cubic between its extema. To determine their location, set f ′(r) = 0 and
then since m− 3ar2 = 0 we find

r = ±
√
m/3a. (10.33)

Therefore, we will be able to approximate f(x) by σ(x) only if |x| ≤ r, the
radius of the cubic sigmoid. Equation 10.24 is satisfied within this radius.

For a specific example, suppose we want to approximate Eq. 10.32 by a
scaled, translated hyperbolic tangent:

σ(x) = b+ µ tanh(νx). (10.34)

First, observe that

σ(0) = b, (10.35)

σ′(0) = µν. (10.36)

Therefore, if we let m = µν, then f and σ will agree at 0 in their value and
derivative. We need an additional condition to determine the values of µ and
ν. Since the argument of x is restricted to [−r, r] we require f(r) = σ(r).
Substituting into the power series for tanh yields

b+mr − ar3 = b+ µ[νr − (νr)3/3 + · · ·]. (10.37)

Therefore,
mr − ar3 = µνr − (µν3/3)r3 + · · · . (10.38)

If we neglect higher order terms, and let m = µν, then we have

mr − ar3 = mr − (mν2/3)r3. (10.39)

Hence, a = mν2/3 and so ν =
√

3a/m = r−1. Thus, the sigmoid approxi-
mates the cubic if

ν ≈ r−1, (10.40)

µ ≈ mr. (10.41)
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That is, the cubic

f(x) = b+mx− ax3, |x| ≤ r =
√
m/3a (10.42)

may be approximated by the sigmoid

σ(x) = b+mr tanh(x/r). (10.43)

Therefore, if we must compute the local field polynomial

T (φ) = b1 +mLφ− a(Lφ)3, (10.44)

then this can be accomplished by a composition of a local sigmoid and a
linear transformation:

T (φ) ≈ σ(Lφ). (10.45)

This is especially important for neural networks, which generally have the
effect of a linear transformation followed by a sigmoid nonlinearity. In this
case the input weight matrix is r−1L and the output is scaled by mr and
biased by b.2

2Of course this is not the only way to approximate a local cubic by a sigmoid. We
could for example pick µ and ν to minimize the L2 error: ‖σ − f‖2.



Chapter 11

The Problem of High
Dimensional Gradients

11.1 The Problem

Consider the kth term in the Taylor expansion:

1

k!
∇kT (φ)α(k). (11.1)

If α ∈ Φ[a, b] is a field defined over a closed segment of the real line, then
α(k) is a field defined over a k-dimensional hypercube. Unfortunately, fields
of dimension higher than 3 are, seemingly, unrealizable.1 In other words,
there seems to be no way to build a field computer that can store fields like
α(k), for k > 3. The immediate problem of raising α to a high power can be
eliminated by alternate forms of the Taylor expansion, such as that given by
Horner’s Rule (Sec. 9.2.3.3, p. 195), but we are left with the problem that
the gradients are of high dimension. In particular, if T : Φ(Ω1) → Φ(Ω2),
then

∇kT (φ) ∈ Φ(Ω2 × Ωk
1). (11.2)

In general, for any field polynomial
∑N

k=0Kkφ
(k) the coefficient fields are of

successively higher dimension, Kk ∈ Φ(Ω2 × Ωk).
There are several ways to avoid higher dimensional fields. One, which

is discussed in detail in ?, is to discretize the field. A second solution is to

1See Caulfield (1987) for an exception, however.
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represent one dimension by time. For example, if the field Ψst is represented
by a time-varying field (Ψs)t, then in the field product

(Ψφ)s =

∫
Ω

Ψstφtdt (11.3)

the integral can be computed by accumulating the product Ψstφt over an
interval of time Ω = [to, tf ]. Of course this approach buys only one additional
dimension. A third solution is applicable when a higher dimensional field is
sparse, that is, zero over most of its domain. For example, if Ψ ∈ Φ(Ω× Ω)
satisfies

Ψst = 0, if |s− t| > ε, (11.4)

then it may be approximately represented by the lower dimensional ψ ∈
Φ(Ω):

φs =

∫ s+ε

s−ε
Ψstdt. (11.5)

We can replace a higher dimensional general product Ψφ by a lower dimen-
sional local product 2ε(ψ × φ) as shown by this derivation:

(Ψφ)s =

∫
Ω

Ψstφtdt

=

∫ s+ε

s−ε
Ψstφtdt

≈
∫ s+ε

s−ε
ψsφtdt

= ψs

∫ s+ε

s−ε
φtdt

≈ ψs

∫ s+ε

s−ε
φsdt

= 2εψsφs.

There are also various mixed strategies, and no doubt other solutions that
may be useful in various situations.
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11.2 Field Computation in Alternate Domains

11.2.1 Introduction

Another approach to the problem of higher dimensional gradients is to map
the gradient into a lower dimensional space, and do the corresponding com-
putations in this lower dimensional space. For example, suppose Ω ⊂ E2 is
an appropriate subset of Euclidean two-space. Further suppose that Ψ,X ∈
Φ(Ω2) are two higher dimensional (in fact four-dimensional) fields. It seems
that there ought to be a continuous function R : Φ(Ω2) → Φ(Ω′), with
Ω′ ⊂ E2, that maps four-dimensional spaces into two-dimensional spaces in
such a way that we can find an operation IP : Φ(Ω′)× Φ(Ω′)→ R that does
a four-dimensional inner product on the two-dimensional surrogates of the
fields:

F ·G = IP[R(Ψ), R(X)]. (11.6)

In fact, such continuous maps R exist; they are based on space-filling curves,
such as Peano curves (see Section 11.3). There remains the problem of
whether lower dimensional correspondents of the product operation (IP in
this example) exist. In this section we show that they do.

11.2.2 Measure Preserving Change of Domain

Suppose we have a field Ψ ∈ Φ(Ω) and we want to represent it by a field ψ ∈
Φ(Ω′). A typical motivation for this would be that Ω′ is of lower dimension
that Ω. Thus we want R : Φ(Ω) → Φ(Ω′) such that ψ = R(Ψ). The change
of domain is accomplished by letting

R(Ψ) = Ψ ◦ C, (11.7)

where C : Ω′ → Ω is bijective.2 The transformation R has the correct domain
and range, and loses no information (since C is bijective). It is also easy to
establish that R is linear:

[R(aΨ + bX)]x = [(aΨ + bX) ◦ C]x

= (aΨ + bX)Cx

= aΨCx + bXCx

= a(Ψ ◦ C)x + b(X ◦ C)x

= a[R(Ψ)]x + b[R(X)]x.

2We will impose additional constraints shortly.
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Hence R(aΨ + bX) = aR(Ψ) + bR(X).

We now impose an additional condition on C: we require it to be measure-
preserving. That is, for S ⊆ Ω and S ′ = C−1[S] (i.e., S ′ is the inverse image
of S under C) we have ∫

S

ftdt =

∫
S′
f(Cs)ds. (11.8)

That is, ∫
S

Φtdt =

∫
S′

[R(Φ)]sds. (11.9)

Under this assumption we find that R is an isometry (isometric transforma-
tion), since

‖R(Ψ)−R(X)‖2 = ‖R(Ψ− X)‖2

= ‖(Ψ− X) ◦ C‖2

=

∫
Ω′

(Ψ− X)2
Cs

ds

=

∫
Ω

(Ψ− X)2
tdt

= ‖Ψ− X‖2.

An isometry is a homeomorphism, so we’ve shown that under these assump-
tions the spaces Φ(Ω) and Φ(Ω′) are homeomorphic (and in fact isometric).
Further, since an isometry is necessarily continuous, we’ve shown that the
transformation R is continuous.

11.2.3 Transformations in the Alternate Domain

To complete the replacement of a domain Ω by a more convenient domain
Ω′, we must also replace transformations T on Φ(Ω) by corresponding trans-
formations T ′ on Φ(Ω′) so that

T (Ψ) = T ′[R(Ψ)]. (11.10)

(In some cases it is more convenient to have R[T (Ψ)] = T ′[R(Ψ)].)
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11.2.3.1 Inner Product

We consider some examples, of which the simplest is the inner product. We
want IP : Φ(Ω′)× Φ(Ω′)→ R such that

Ψ · X = IP[R(Ψ), R(X)]. (11.11)

We proceed to derive IP:

Ψ · X =

∫
Ω

ΨtXtdt

=

∫
Ω

(Ψ ◦ C ◦ C−1)t(X ◦ C ◦ C−1)tdt

=

∫
Ω

[R(Ψ)]C−1
t

[R(X)]C−1
t

dt

=

∫
Ω′

[R(Ψ)]s[R(Ψ)]sds

= R(Ψ) ·R(X).

Hence, let

IP(ψ, χ) = ψ · χ, (11.12)

and then Ψ · X = IP[R(Ψ), R(X)], as we might expect.

11.2.3.2 Local Transformations

By an analogous derivation it is easy to see that if f(Ψ,X) is any local binary
operation, then

R[f(Ψ,X)] = f [R(Ψ), R(X)]. (11.13)

Simply observe that

{R[f(Ψ,X)]}s = [f(Ψ,X)]Cs

= f(ΨCs ,XCs)

= f{[R(Ψ)]s, [R(X)]s}
= {f [R(Ψ), R(X)]}s.

That is R commutes with local transformations.
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11.2.3.3 General Product

Now we consider a more useful example, the general product. Suppose

Ψ ∈ Ψ(Ω′′ × Ω),

X ∈ Ψ(Ω).

We want to replace the product ΨX by a product ψχ in which

ψ ∈ Φ(Ω′′ × Ω′),

χ ∈ Φ(Ω′).

Derive:

(ΨX)s =

∫
Ω

ΨstXtdt

=

∫
Ω

[Ψ ◦ (I×C) ◦ (I×C)−1]st(X ◦ C ◦ C−1)tdt,

where the direct product (I×C)st = (s, Ct). Notice that (I×C) is an isomor-
phism, and let

S(Ψ) = Ψ ◦ (I×C). (11.14)

Then continue the derivation:

(ΨX)s =

∫
Ω

[S(Ψ)]s,C−1
t

[R(X)]C−1
t

dt

=

∫
Ω′

[S(Ψ)]su[R(X)]udu

= [S(Ψ)R(X)]s.

Hence,

ΨX = S(Ψ)R(X). (11.15)

11.2.3.4 Outer Product

Next we consider the computation of an altered outer product:

OP(φ, ψ) = R(φ ∧ ψ). (11.16)
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Our goal is to compute OP(φ, ψ) without generating the higher-dimensional
field φ ∧ ψ. The outer product is a bilinear operator, but can be expressed
as a local product of two linear operators, as follows:

φ ∧ ψ = (φ ∧ 1)× (1 ∧ ψ). (11.17)

This is convenient, since R commutes with local transformations:

R(φ ∧ ψ) = R(φ ∧ 1)×R(1 ∧ ψ). (11.18)

Each of the two factors are linear operators, so they have kernels which we
compute as follows (Eq. 7.48):

Kst = [(δt ∧ 1) ◦ C]s = (δt ∧ 1)Cs , (11.19)

K′st = [(1 ∧ δt) ◦ C]s = (1 ∧ δt)Cs . (11.20)

Then,
OP(φ, ψ) = Kφ×K′ψ. (11.21)

This formula involves no higher-dimensional fields (except K and K′, which
can instead be provided as primitive operators).

11.2.3.5 Outer Product Power

Finally, we define an altered outer-product power:

Pn(φ) = R[φ(n)]. (11.22)

To accomplish this it will be useful to have two domain bijections:

C : Ω′ → Ω× Ω′, (11.23)

C0 : Ω′ → Ω, (11.24)

and the corresponding representation transformations:

R(Ψ) = Ψ ◦ C, (11.25)

R0(Ψ) = Ψ ◦ C0. (11.26)

Note that R : Φ(Ω × Ω′) → Φ(Ω′) and R0 : Φ(Ω) → Φ(Ω′). Then we define
the powers recursively:

P1(φ) = R0(φ), (11.27)

Pn+1(φ) = OP[φ, Pn(φ)], n ≥ 1, (11.28)

where OP(φ, ψ) = R(φ∧ψ). Note that the computation of Pn(φ) makes use
of no fields of dimension greater than Ω× Ω′.
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11.2.3.6 Field Polynomials

The preceding derivations show that an arbitrary field polynomial can be
implemented by products over an alternative domain as follows:

N∑
n=0

Knφ
(n) = K0 +

N∑
n=1

S(Kn)Pn(φ). (11.29)

Notice that all the fields that constitute this polynomial belong to Φ(Ω),
Φ(Ω′) or Φ(Ω× Ω′). In particular:

K0 ∈ Φ(Ω), (11.30)

S(Kn) ∈ Φ(Ω× Ω′), n ≥ 1, (11.31)

Pn(φ) ∈ Φ(Ω′). (11.32)

11.3 Reduction of Dimension

We now return to the problem of the reduction of dimension. We are given
Ω and Ω′, where Ω′ is assumed to be of lower dimension than Ω. To apply
the preceding results we need a measure-preserving bijection C : Ω′ → Ω.
Fortunately, such functions exist, although they are a little unusual. For
example, suppose that Ω = [0, 1]2 and Ω′ = [0, 1]. Then there are various
space-filling curves (such as the Peano curve) C : [0, 1] → [0, 1]2. These
functions are continuous, because they are curves, and bijections, because
they are space-filling. (They are not, however, homeomorphisms, because
their inverses are not continuous, a result due to Brouwer (Hausdorff, 1957,
Section 36, pp. 228–236).

We also require that the space-filling curve C be measure-preserving. This
presents no difficulty if we take a curve C that is the limit of a sequence Cn
of functions Cn : Ω→ Ωn that divide Ω into narrower and narrower “strips”
and preserve the measure. For example, we may have Ωn = [0, 1/2n]× [0, 2n].
In practice, we are not much concerned about what happens in the limit,
since we have to use one of the finite approximations Cn anyway.

The foregoing discussion suggests that space-filling curves and, more gen-
erally, fractal curves may be important in the representation of higher dimen-
sional fields. Thus it is especially intriguing that some structures in the brain
seem to have a fractal geometry.
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Neural Implementation

12.1 Discretizing Fields

The goal of discretizing a field is to replace the continuous ensemble φt, t ∈ Ω,
by a finite set of values ui, i = 1, 2, . . . n. There are many ways this can be
done. For example, we can use sampling, selecting at random n points ti from
Ω, and letting ui = φti . Other discretization methods depend on partitioning
Ω:

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωn, (12.1)

where Ωi ∩ Ωj = ∅. Given such a partition, we can select ti ∈ Ωi and let
ui = φti . This ti may be selected randomly or by some regular process (e.g.,
each ti may be the “center” of the corresponding Ωi). The foregoing methods
all suffer from sampling error, i.e., the values at the chosen points ti might
not be representative of the values at all the points in Ωi.

Sampling error can be avoided by averaging the field’s value over each
partition. Thus we let

ui =

∫
Ωi
φtdt

|Ωi|
. (12.2)

This process leads to its own kind of error – averaging error – but it is more
tractable in many situations. In the remainder of Ch. 12 we assume that
field are discretized by averaging.1

1It should be observed that much of traditional numerical analysis is concerned with
the discretization of continuous functions, and hence is relevant here.
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12.2 Linear Field Transformations

Consider first a product between a fixed field L and a variable input field φ:2

ψ = Lφ. (12.3)

Suppose that the input field’s domain has been partitioned:

Ω = Ω1 + Ω2 + · · ·+ Ωn, (12.4)

and that the output field’s domain has also been partitioned:

Ω′ = Ω′1 + Ω′2 + · · ·+ Ω′m. (12.5)

Let u be the discretization of the input field:

uj = ωj

∫
Ωj

φtdt, (12.6)

where ωj normalizes for the size of Ωj:

ωj = |Ωj|−1. (12.7)

Let v be the discretization of the output field:

vi = ω′i

∫
Ω′i

ψsds, (12.8)

where
ω′i = |Ω′i|−1. (12.9)

Next derive a formula for v in terms of u:

vi = ω′i

∫
Ω′i

ψsds

= ω′i

∫
Ω′i

(Lφ)sds

= ω′i

∫
Ω′i

∫
Ω

Lstφtdtds

= ω′i

∫
Ω′i

∑
j

∫
Ωj

Lstφtdtds.

2We use ‘+’ to emphasize that the Ωi are disjoint.
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Since the average value of φt over Ωj is uj, we substitute the latter in the
equation to get:

vi ≈ ω′i

∫
Ω′i

∑
j

∫
Ωj

Lstujdtds

=
∑
j

ujω
′
i

∫
Ω′i

∫
Ωj

Lstdtds.

Now let

Mij = ω′i

∫
Ω′i

∫
Ωj

Lstdtds, (12.10)

and we have
vi ≈

∑
j

ujMij. (12.11)

Hence, as expected, v can be approximated by a matrix-vector product:

v ≈Mu. (12.12)

Clearly the approximation will be good to the extent that the fields L and
φ are smooth, and to the extent that the partition is fine in the regions of
highest gradient.

We relate the foregoing to neural networks. The product Lφ can be ap-
proximately implemented by a single layer neural network with linear neurons
as follows. Let the activity level uj of the ith input neuron be the average
value of φ over Ωj. Let the interconnection weights (synaptic strengths) be
given by Eq. 12.10. Then the activity vi of output neuron i approximates
the average value of ψ over Ω′i.

12.3 Nonlinear Field Transformations

forthcoming
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Appendix A

Notation

Notation Description Definition
Z integers
Q rationals
C complex numbers
R real numbers
R+ positive reals Def. 2.1.8 (p. 10)
R∗ non-negative reals Sec. 2.1.1 (p. 7)
En n-dimensional Euclidean space Def. 2.1.11 (p. 11)
d(·, ·) arbitrary metric Sec. 2.1.1 (p. 7)
dd discrete metric Sec. 2.1.4 (p. 11)
Lp Lp metric Sec. 2.1.2 (p. 8)
Lw
p weighted Lp metric Def. 2.1.9 (p. 10)
C1 Def. 2.1.16 (p. 12)
C2 Def. 2.1.17 (p. 13)
C∞ Def. 2.1.15 (p. 12)
C[a, b] continuous real functions Def. 3.2.4 (p. 36)
H Hilbert space Def. 5.2.2 (p. 81)

L(X, Y ) bounded linear operators Prop. 3.4.1 (p. 38)
Br(c) open ball Def. 2.2.1 (p. 13)
f [S] image of a set Def. 2.4.2 (p. 21)
2 the set {0, 1} Prop. 2.4.2 (p. 21)
0 zero vector or field Def. 3.1.2 (p. 32)
⊕ addition on linear space Def. 3.1.2 (p. 32)
⊕ direct sum Prop. 5.2.11 (p. 84)
⊗ scaling on linear space Def. 3.1.2 (p. 32)
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Notation Description Definition
N(·) arbitrary norm Def. 3.2.1 (p. 35)
‖ · ‖ arbitrary norm Not. 3.2.1 (p. 35)
‖ · ‖p Lp-norm Def. 3.2.2 (p. 35)

dT (φ, α) Gâteaux derivative Sec. 3.4.2 (p. 39)
F ◦G function composition
z, z∗ complex conjugate Def. 4.2.3 (p. 43)
< real part of complex number Ex. 4.2.2 (p. 43)
= imaginary part of complex number Ex. 4.2.2 (p. 43)
| · | absolute value or modulus Def. 4.2.4 (p. 44),

Def. 4.3.1 (p. 45)
arg argument or phase Def. 4.3.2 (p. 45)
2π 2× π representing one cycle Not. 4.3.1 (p. 45)
cis cos +i sin function Sec. 4.3.2 (p. 46)
A∠θ phasor notation p. 54
x · y inner product Def. 5.1.1 (p. 69)
〈x,y〉 inner product Not. 5.1.1 (p. 70)
〈φ | ψ〉 Dirac inner product Def. 5.1.6 (p. 71)
〈φ| Dirac bra notation Not. 5.1.2 (p. 72)
|ψ〉 Dirac ket notation Def. 5.1.2 (p. 72)

〈φ | L | ψ〉 Dirac quadratic form Def. 5.1.8 (p. 73)
|φ〉〈ψ| Dirac outer product Def. 5.2.16 (p. 89),

Def. ?? (p. ??)
`1 absolutely-summable sequences Def. 7.4.3.2 (p. 162)
`2 square-summable sequences Def. 5.1.5 (p. 71)
T † adjoint (conjugate Def. 5.1.7 (p. 72),

or Hermetian transpose) Prop. 5.2.17 (p. 89)
E{·} expectation value

Var{·} variance
ΦK(Ω) field space Sec. 7.1.2 (p. 150)

Ψφ, φΨ, φXψ,ΨX field products Sec. 7.4.1 (p. 155)
∧ field outer product Def. 7.4.5 (p. 156)
δt Dirac unit impulse Eq. 7.45 (p. 167)



Bibliography

Berberian, S. (1961). Introduction to Hilbert Space. New York: Oxford
University Press.

Bland, B. H., Anderson, P., Ganes, T., & Sveen, O. (1978). Automated
analysis of rhythmicity of physiologically identified hippocampal formation
neurons. Experimental Brain Research, 38, 205–219.

Boas, M. L. (1983). Mathematical Methods in the Physical Sciences. New
York, NY: John Wiley & Sons, second edition.

Bobrow, L. S. (1981). Elementary Linear Circuit Analysis. New York, NY:
Holt, Rinehart & Winston.

Brillouin, L. (1956). Science and Information Theory. New York, NY: Aca-
demic Press.

Caulfield, H. J. (1987). ParallelN4 weighted optical interconnections. Applied
Optics, 26(19), 4039–4040.

Cherry, C. (1978). On Human Communication. Cambridge, MA: MIT Press.

DARPA (1988). DARPA Neural Network Study. AFCEA International Press.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets.
Comm. Pure Applied Math., 41, 909–996.

Daubechies, I., Grossman, A., & Meyer, Y. (1986). Painless non-orthogonal
expansions. Journal of Mathematical Physics, 27, 1271–83.

Daugman, J. (1993). An information-theoretic view of analog representation
in striate cortex. In E. Schwartz (Ed.), Computational Neuroscience (pp.
403–423). Cambridge: MIT Press.

221



222 BIBLIOGRAPHY

Daugman, J. G. (1980). Two-dimensional spectral analysis of cortical recep-
tive field profiles. Vision Research, 20, 847–856.

Daugman, J. G. (1984). Spatial visual channels in the fourier plane. Vision
Research, 24, 891–910.

Daugman, J. G. (1985a). Representational issues and local filter models
of two-dimensional spatial visual encoding. In D. Rose & V. G. Dobson
(Eds.), Models of the Visual Cortex (pp. 96–107). New York: John Wiley
& Sons.

Daugman, J. G. (1985b). Uncertainty relation for resolution in space, spatial
frequency, and orientation optimized by two-dimensional visual cortical
filters. Journal of the Optical Society of America A, 2(7), 1160–1169.

Farhat, N. H., Psaltis, D., Prata, A., & Paek, E. (1985). Optical implemen-
tation of the hopfield model. Applied Optics, 24, 1469–1475.

Gabor, D. (1946). Theory of communication. Journal of the Institution of
Electrical Engineers, 93, Part III, 429–57.

Hamming, R. W. (1986). Coding and Information Theory. Englewood-Cliffs,
NJ: Prentice-Hall.

Hamming, R. W. (1989). Digital Filters. Englewood-Cliffs, NJ: Prentice-Hall,
third edition.

Hausdorff, F. (1957). Set Theory. New York, NY: Chelsea. Transl. John R.
Aumann et al.

Heil, C. & Walnut, D. (1989). Continuous and discrete wavelet transforms.
SIAM Review, 31(4), 628–66.

Jones, J. & Palmer, L. (1987). An evaluation of the two-dimensional Gabor
filter model of simple receptive fields in cat striate cortex. Journal of
Neurophysiology, 58(6), 1233–1258.

Kainen, P. C. (1992). Orthogonal Dimension and Tolerance. unpublished,
Industrial Math, Washington, DC.

MacKay, D. M. (1969). Information, Mechanism and Meaning. Cambridge,
MA: MIT Press.



BIBLIOGRAPHY 223

MacLennan, B. (1987a). Field Computation and Nonpropositional Knowl-
edge. Technical Report NPS52-87-040, Naval Postgraduate School.

MacLennan, B. (1988a). Field computation: A model of massively paral-
lel computation in electronic, optical, molecular and biological systems.
In Parallel Models of Intelligence: How Can Slow Components Think So
Fast?, AAAI Spring Symposium (pp. 180–183).

MacLennan, B. (1989). Continuous Computation: Taking Massive Par-
allelism Seriously. Technical Report CS-89-83, University of Tennessee,
Knoxville, Department of Computer Science.

MacLennan, B. J. (1987b). Technology-independent design of neurocomput-
ers: The universal field computer. In M. Caudill & C. Butler (Eds.), Pro-
ceedings of the IEEE First International Conference on Neural Networks,
volume 3 (pp. 39–49).: IEEE Press.

MacLennan, B. J. (1988b). Logic for the new AI. In J. H. Fetzer (Ed.), As-
pects of Artificial Intelligence (pp. 163–192). Dordrecht: Kluwer Academic
Publishers.

MacLennan, B. J. (1993). Information processing in the dendritic net. In
K. H. Pribram (Ed.), Rethinking Neural Networks: Quantum Fields and
Biological Data (pp. 161–197). Hillsdale, NJ: Lawrence Erlbaum. Also
available from web.eecs.utk.edu/~mclennan.

MacLennan, B. J. (2009). Field computation in natural and artificial intelli-
gence. In R. Meyers et al. (Ed.), Encyclopedia of Complexity and System
Science chapter 6, entry 199, (pp. 3334–3360). Springer.

MacLennan, B. J. (2017). Field computation: A framework for quantum-
inspired computing. In S. Bhattacharyya, U. Maulik, & P. Dutta (Eds.),
Quantum Inspired Computational Intelligence: Research and Applications
chapter 3, (pp. 85–110). Cambridge MA: Morgan Kaufmann / Elsevier.

Mallat, S. (1989a). Multiresolution approximations and wavelet orthonormal
bases of L2(r). Transactions American Mathematical Society, 315(1), 69–
87.



224 BIBLIOGRAPHY

Mallat, S. (1989b). A theory for multiresolution signal decomposition: The
wavelet representation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 11, 674–693.

Marsden, J. E. (1973). Basic Complex Analysis. San Francisco, CA: W.H.
Freeman & Co.
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