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Embodied computation is computation in which information processing
emerges from and directly governs physical processes. As an example
we present artificial morphogenesis, which uses computational processes
analogous to those in embryological development in order to assemble
complex physical structures. We discuss the requirements for a formal-
ism or programming language for embodied computation oriented toward
artificial morphogenesis and present a preliminary design for such a formal-
ism. Use of the formalism is illustrated by several embodied computation
problems of increasing complexity.
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1 BACKGROUND

1.1 Embodied Computation
Pfeifer, Lungarella, and Iida [47] provide a concise definition of embodi-
ment: “the interplay of information and physical processes.” Hence, embodied
computation may be defined as computation whose physical realization is
directly involved in the computational process or its goals [34,39]. It includes
computational processes that directly exploit physical processes for compu-
tational ends and those processes in which information representation and
computation are implicit in the physics of the system and its environment,
which effectively represent themselves. It also includes computational pro-
cesses in which the intended effects of the computation include the growth,
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assembly, development, transformation, reconfiguration, or disassembly of
the physical system embodying the computation. Embodied computation is
based on some of the insights from embodied cognition and embodied arti-
ficial intelligence [8, 10, 11, 16, 25, 26, 42, 46–48], but extends them to all
computation [34, 39].

The most common model of computation (binary digital logic) is far
removed from the physical processes by which it is implemented, and this has
facilitated a beneficial independence of computer design from device technol-
ogy. Thus our technological investment in computer design has been preserved
through several generations of device technology (from relays to integrated
circuits). We have had the luxury of using a large number of devices, operating
sequentially, to implement each computational primitive (e.g., addition). This
is because computation and the physical processes realizing it have existed at
different scales of space and time. However, as in the coming decades we enter
the era of post-Moore’s Law computing, increasing the density and speed of
computation will require a greater assimilation between computational and
physical processes [34–36,39]. In part this will be accomplished by develop-
ing new physical systems and processes for computation, but the other half
of the equation is to develop new models of computation that are closer to the
laws of physics. The challenge is to identify models that are sufficiently low
level to be readily implementable and sufficiently high level to be relatively
independent of particular implementation technologies.

One of the advantages of embodied computing is that many computational
processes are performed by physical systems “for free.” For example, neural
networks often make use of universal approximation theorems based on lin-
ear combinations and simple sigmoidal functions [24, pp. 208–94]. However,
sigmoidal behavior is a common consequence of many physical processes,
in which some resource is exhausted, and therefore sigmoids are available
“for free” without additional computation. Similarly, negative feedback often
arises from the natural degradation or dissipation of physical substances, and
so these processes are directly available for embodied computation. Further,
stochastic effects, which are unavoidable in many physical systems, espe-
cially at the nanoscale, can be exploited as sources of free variability in
algorithms such as stochastic resonance [4], simulated annealing [28], and
other stochastic optimization processes.

Traditionally we have designed computers to operate with sequential logic,
and then we have attempted to increase computation speed by using these
sequential machines in parallel. In embodied computation, in contrast, the
concurrency typical of physical, chemical, and biological processes is directly
exploited to achieve parallelism. Sequentiality, where necessary, is imposed
on an inherently parallel process. A simple example application of “paral-
lelism for free” is diffusion, which occurs naturally in many fluids, such as
liquids and gasses, and in other media; for example, cell-to-cell diffusion is
critical in embryological morphogenesis [29]. Diffusion can be used for many
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computational processes, including broadcasting information, optimization,
constraint satisfaction, and massively parallel search, such as in path plan-
ning through mazes [27, 44, 49, 54, 58]. Diffusion is expensive to implement
by conventional computation, but it comes for free in many physical systems.

A common tradeoff faced by many search algorithms is exploration ver-
sus exploitation, that is, the acquisition of new information versus the use
of the information already obtained. Embodied computation systems often
naturally and implicitly implement a dynamic balance between exploration
and exploitation. A well known example is ant foraging behavior, in which
ants imperfectly follow pheromone-marked trails to food sources [9]. Ini-
tially, random wandering implements unbiased exploration, but as knowledge
is acquired, positive feedback biases activity toward exploitation. Built-
in negative feedback (arising “for free” from degradation and dissipation
of pheromones) ensures that in the absence of positive feedback, the bal-
ance shifts from exploitation back toward exploration. Thus simple physical
processes implement a parallel control system that sensitively and robustly
manages the acquisition and use of information.

Cell-sorting by differential adhesion is an example, from embryological
development, of a natural embodied computation process that makes produc-
tive use of physical phenomena [17, ch. 4]. In this process there is a mixed
population of cells with different degrees of cohesion. Under conditions of
random motion (e.g., undirected wandering), the cells sort themselves out into
spatially separated groups. In the absence of constraints, the cells form two
concentric spheres, with the more tightly cohering particles in the center. In
the presences of constraints, the particles sort themselves into separated tis-
sues or bodies. This is an important process in embryological morphogenesis,
and may be useful in artificial morphogenesis in nanotechnology and related
applications. A similar process is lumen formation resulting from polarized
cells with nonuniform distributions of adhesion molecules [17, pp. 78–80].
Under random motion the cells sort themselves into a low-energy configura-
tion in which there are hollows (lumens) bounded by the less adhesive faces
of the cells.

Nature also provides informative examples of how the physical system may
be its own representation, which are relevant to the application of computa-
tional ideas in nanotechnology. For example, stigmergy refers to the process
wherein the “project” undertaken by one or more organisms embodies the
information required to continue and complete the project [9]. The best-
known example is wasp nest building [7]. The partially completed nest itself
provides the stimuli that guide the individual wasps in the construction pro-
cess. Therefore there is no need for the wasps to have representations of the
completed nest or of the current state of its construction, or to have an internal
“program” for nest construction. In this way, relatively simple agents (with
modest information processing capacity) can construct complex, functional
structures.
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Typically, the structure of a computational system governs its function,
that is, the computation it performs. Conversely, in algorithmic assembly a
computational process governs the assembly of some physical structure [3,30,
31, 50, 51]. However, some embodied systems integrate these two processes.
For example, in embryological morphogenesis, the physical structure of the
embryo governs the very computational processes that create the physical
structure of the embryo. Structure governs function, and function creates
structure.

Further, since embodied computation systems are potentially capable of
modifying their own structure, they can be naturally adaptive. Beyond this,
they may be “radically reconfigurable,” that is, able to reorganize their physi-
cal structure to adapt to changing circumstances and objectives [33]. A related,
but very important, property is self-repair, since acceptable configurations
often can be defined as stationary states to which the system automatically
reconfigures after damage. Finally, embodied computation systems can be
designed for self-destruction, which is especially important for nanoscale
systems. If they can reconfigure themselves, they can also deconfigure them-
selves, rearranging their components into inert and potentially recyclable
material. As we know, apoptosis (programmed cell death) is essential both
in embryological development and in the maintenance of a well-functioning
body.

Despite the opportunities of embodied computing, there are also also
challenges. We are used to programming in an idealized world of perfect
logic, independent of physical realization, and therefore embodied computing
presents unfamiliar problems, for we have to pay more attention to the phys-
ical realization of an embodied computation and its environment. However,
embodied computation is not simply applied physics, for although embodied
computation makes more direct use of physical processes than does conven-
tional computation, its focus is on processes that are relatively independent of
specific physical systems, so that they can be applied in a variety of physical
substrates. For example, reaction-diffusion systems can be instantiated in a
wide variety of media [1]. Further, since natural computation is embodied,
we often can look to natural systems to learn how to implement artificial
embodied computing systems.

1.2 Artificial Morphogenesis
Our research is currently focused on a particular application of embod-
ied computation that is of central importance in nanotechnology: artificial
morphogenesis [35, 38]. While a variety of self-assembly processes have
been applied to nanomaterials, these have not solved the problem of assem-
bling systems that are hierarchically structured from the nanoscale up to
the macroscale. Some of the issues are being addressed in the context of
research in programmable matter and reconfigurable robotics, but we believe
that these efforts would be improved by a more morphogenetic approach, for
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embryological morphogenesis is the best example that we have of successful
self-assembly of physical systems structured from the nanoscale up to the
macroscale.

Morphogenesis has a number of special characteristics that distinguish it
from most other self-organizing processes, and we believe that these char-
acteristics will be important in embodied computation. For example, we
commonly think of computation as taking place in a fixed substrate, and many
self-assembly processes also assume a fixed substrate or matrix in which
agents move. In morphogenesis, in contrast, the computational medium is
assembled by the computational process, as a zygote develops into a hollow
blastula and then into a more complex structure of tissues, which govern the
information and control processes in the medium. Although cellular automa-
ton (CA) models, for example, have been applied productively to the study of
localized pattern formation processes, they are inadequate for describing mor-
phogenesis as a whole. CA models assume a predefined regular spatial grid,
whereas biological morphogenesis creates the space (the embryo) in which
(and relative to which) development occurs. Generally speaking, in nature
self-organization proceeds without the benefit of fixed, predefined reference
frames and coordinate systems, which is one source of the robustness of these
processes.

In morphogenesis, tissues (groups of cells with a common function) form
and reform under control of their inherent self-organizing processes. We think
of the embryo as solid, but most of the tissues are elastic, at least during devel-
opment, and elastic properties influence the forms that develop [56, ch. 6].
In other cases, tissues behave more like viscous fluids, perhaps percolat-
ing through a more solid matrix, and this fluid motion is essential to cell
migration during development [5][17, pp. 92–4][55]. Non-cellular substances,
such as morphogens and other signaling chemicals diffuse like gases through
anisotropic media, but cells also exhibit facilitated diffusion [17, pp. 13–15,
156, 252]. In many cases, tissues occupy a middle ground between solid
and fluid, with viscoelastic properties [17, pp. 21–2, 133]. Generally speak-
ing, morphogenesis takes place in the relatively unexplored realm of soft
matter [13][17, p. 2], and our theories of embodied computation, at least as
applied to morphogenesis, need to take account of its characteristics.

Morphogenesis proceeds through a carefully orchestrated series of over-
lapping parallel phases, which have the characteristics of a coordinated
algorithm [57]. In this robust process, the completion of one phase signals the
initiation of the next through a combination of chemical signals and changing
cell states. Temporal patterns often create spatial patterns (as in the clock-and-
wavefront model of segmentation [12, 15, 22]), and morphogenesis may be
best understood as the creation of patterns in four dimensions [21, p. 504n].

Developmental biologists have identified about twenty fundamental pro-
cesses involved in morphogenesis [17, pp. 158–9][52]. If indeed, these pro-
cesses are sufficient to produce complex, hierarchically-structured systems,
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such as vertebrate organisms, then they define an agenda for embodied
computation applied to artificial morphogenesis.

2 REQUIREMENTS FOR A FORMALISM

One goal of our research is to develop and evaluate formal methods for
embodied computation oriented toward artificial morphogenesis. This implies
several requirements.

First, the goals of embodied computation are best served by a continuous
perspective, since the laws of physics are primarily continuous (ordinary and
partial differential equations). This is especially true in our intended appli-
cation area, morphogenesis, for tissues and their environments are naturally
treated as continua (e.g., epithelia, mesenchyme, blood). Furthermore, the
objective of post-Moore’s Law computing is greater densities, greater speed,
and greater parallelism, all of which make computation, at a macroscopic
scale, look like a continuous process occurring in a continuous medium. While
some of these phenomena are physical continua (e.g., electrical fields), oth-
ers are phenomenological continua composed of microscopic discrete units
(atoms, molecules, cells, microrobots, etc.).

Nevertheless, the two perspectives — the discrete and the continuous —
are complementary. In many applications of embodied computation, espe-
cially when the computational process is implemented by very large numbers
of computational units, we will want to be able to move fluently between
the two perspectives. This is especially the case in morphogenesis, where we
are faced with both discrete and continuous phenomena. In the early stages
of development there is a small discrete number of cells (1, 2, 4, 8, etc.)
with specific shapes and arrangements; in later stages, when there are more
than ∼ 10 000 cells, it is more convenient to treat the cell masses as vis-
coelastic tissues and apply continuum mechanics [17]. Therefore a formalism
for embodied computation should support a systematic ambiguity between
discrete and continuous models. That is, so far as possible, the formalism
should be interpretable as describing a mathematical continuum or a large
set of discrete units, and as describing either a continuous- or discrete-time
process.

Thus, the formalism should support complementarity by treating bodies,
tissues, and other macroscopic masses as comprising an indefinitely large
number of elements, which we interpret ambiguously as infinitesimal points
in a continuum or as members of a finite, discrete set of units. Adapting
the terminology of continuum mechanics, we call these elements particles
when it is more convenient to think of them as discrete units, and material
points when it is more convenient to think of them as infinitesimal points in
a continuum. The continuous perspective also helps ensure that algorithmic
processes scale to very large numbers of units.
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To maintain these complementary interpretations, the formalism should
treat the elements as having a small, indeterminate size, and therefore the
formalism should describe the properties of elements in terms of intensive
quantities, such as number density and mass density, which do not depend on
size, in preference to extensive quantities, such as volume and mass, which
do. The individual cells constituting a tissue may have definite shapes, orien-
tations, etc. that are relevant to the morphogenetic process (e.g., controlling
cell adhesion, cell migration, etc.), and so these properties cannot be ignored.
The solution is to treat these properties as intensive quantities (e.g., aspect
ratios, probability density functions of orientations).

The formalism should be suitable for describing embodied computing pro-
cesses in all kinds of media, including solids, liquids, gases, and physical
fields. Further, viscoelastic media (so-called “soft matter” [13]) are impor-
tant in morphogenesis; for example, mesenchyme is best characterized as
viscoelastic [17, p. 98][18]. Therefore, we expect to be dealing with mate-
rials of differing viscosity and elasticity. Indeed, soft matter might be a
new metaphor in morphogenesis, succeeding the crystal, field, and fabric
metaphors discussed by Haraway [23]. Finally, some of these materials may
be anisotropic (e.g., epithelium), and our formalism must accommodate that
possibility.

The formalism must be capable of describing active elements, such as living
cells and microrobots, as well as passive elements, such as diffusing chem-
icals, fluid media, and solid substrates. In particular, the formalism should
be applicable to living agents as well as to nonliving ones, for embryologi-
cal morphogenesis, which is the inspiration for this technology, is based on
living cells, and we also want to address artificial morphogenetic processes
based on genetically engineered organisms and other products of synthetic
biology.

Energetic issues are critical to embodied computational systems, which
must be maintained in a nonequilibrium state either for a definite duration
or indefinitely. Therefore the formalism needs to be able to describe and
define the flow of matter and energy through the system. Active elements
have to be powered in some way, either continuously during operation or by
being arranged initially in a nonequilibrium state. We anticipate that embodied
computational systems will be fueled in a variety of ways and powered by a
variety of energy sources (electrical, chemical, optical, thermal, mechanical,
etc.). Therefore the formalism needs to be able to define the dynamical and
spatial relations among energy sources and other elements. Dissipation of
energy is especially critical for microscopic nonequilibrium systems, and
should be addressed by the formalism. Similarly, embodied computation must
address the disposal of other waste products, such as unrecyclable chemical
reaction products. The elimination of waste products may be implemented by
diffusion, convection, or more structured transport processes, as defined in
the embodied computation system.
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Descriptions of morphogenetic and developmental processes in terms of
partial differential equations are frequently expressed relative to a fixed, exter-
nal three-dimensional reference frame. There are two problems with this.
First, the natural reference frame is the developing body itself, which might
not have any significant relationship to a fixed frame (e.g., the developing
embryo, with its intrinsic frame, in variable relation to a terrestrial frame).
Second, since active elements (such as migrating cells) are responding to their
local environments (e.g., chemical gradients in their immediate vicinity), it
it natural to describe their behavior in terms of their intrinsic coordinates
(e.g., ahead/behind, above/below) or their immediately local frame (e.g., the
substrate on which or medium through which they are migrating). Therefore
tensors seem to be the best way to describe the properties and behaviors of
elements.

It is essential that a formalism for embodied computation integrate
smoothly with the usual mathematical formulations of physical, chemical,
and biological processes. It should be easy to translate between computa-
tional and mathematical expressions so that the full range of physical theory
and mathematical method can be applied to embodied computation. On the
one hand, this will permit mathematical analysis to be applied, when the
appropriate methods and results exist. On the other hand, since many of these
systems are complex and nonlinear, the power of contemporary mathematical
analysis may be insufficient to understand these systems. Therefore, the for-
malism should facilitate simulation of a system by straightforward translation
into behavioral rules (“programs”) for the elements. The formalism should be
operational as well as analytical, that is, a programming language.

Due to the mathematical intractability of many interesting systems, we
expect embodied computation to have a significant experimental component.
Thus, as already mentioned, we expect simulation to play an important role in
the design, evaluation, and testing of embodied computation systems before
they are physically realized. In most respects the required simulation tools
will be similar to those commonly used in computational science, but there
are at least two differences.

First, biologists often find it convenient to express regulatory networks
qualitatively, using influence models to indicate, for example, that one gene
product enhances or represses the expression of another gene, or that a
molecule regulates an enzyme [59]. These qualitative regulatory relationships
are an important tool for conceptualizing control processes in which the quan-
titative relationships are unknown or are not considered critical. Therefore, the
formalism should permit the expression of qualitative control relationships.

Second, in embodied computation, especially as it pushes towards the
nanoscale, noise, error, uncertainty, defects, faults, and other sources of
indeterminacy and unpredictability are unavoidable [32]. They should not
be treated as secondary effects, taken into account only as an afterthought,
but rather as essential properties of the medium of embodied computation.
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Thus we seek first to exploit them as computational resources — sources of
free variability — and only if that fails, to minimize them as interference.
Therefore a formalism for embodied computation should be oriented toward
the description of stochastic processes. Further, since many self-organizing
processes depend on stochasticity and sampling effects for symmetry break-
ing, the formalism should admit them (in effect as processes in which discrete
phenomena can influence structures in continuous media).

3 A FORMALISM FOR EMBODIED COMPUTING

Having outlined the requirements for a formalism for embodied computation,
we present a preliminary description.

Substances: One of the central concepts in the proposed formalism is a
substance, which refers to a class of phenomenological continua with sim-
ilar properties, especially from a computational perspective (e.g., cohesion,
viscosity, behavioral repertoire). They are defined by (perhaps fuzzy) ranges
of parameter values, ratios of parameters, etc. Some of the most familiar
substances are solids, liquids, and gases. Other useful classes are incompress-
ible, viscous, elastic, and viscoelastic substances. Our notion of substance
includes other spatially distributed quantities, such as electromagnetic, opti-
cal, thermal, and gravitational fields (more abstractly, scalar, vector, and
tensor fields).

Substances are naturally organized in a hierarchy, from the most general
classes (e.g., solid, liquid, gas) to specific physical substances (e.g., liquid
water, oxygen gas, mesenchyme, a specific extracellular matrix). (Of course
there are borderline cases.) The more generic classes are more useful from a
computational perspective, since they have the potential of being realized by a
greater variety of specific substances. For example, for the purposes of embod-
ied computation it may be sufficient that a substance diffuse and degrade at
certain relative rates, and be producible and detectable by other particles, but
the choice of specific substance might be otherwise unconstrained.

It is apparent that substance hierarchies have similarities to class hierar-
chies in object-oriented programming, but there are also some differences.
First, as will be explained below, the instances of substance classes are con-
tinuous bodies (or tissues) rather than discrete atomic objects, which are
the instances of classes in object-oriented programming. Second, while sub-
stances are similar to classes in that they are defined by subclass relationships,
by variables associated with their particles, and by common behaviors, in
addition substances are defined by constraints on the values of these vari-
ables. Thus, substance definitions are more like definitions in mathematics
or physics than like class definitions in an object-oriented programming lan-
guage. Nevertheless, it is our intent that substance definitions be sufficiently
formal that they can be used in simulations (i.e., as programs).
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Bodies: In object-oriented programming the instances (members) of
classes are discrete atomic objects, which frequently act as software agents. In
our formalism for embodied computing, in contrast, instances of substances
are called bodies or tissues, which are phenomenological continua of ele-
ments (discrete particles or infinitesimal material points). Typically bodies
are homogeneous, that is, composed of elements of a particular type that is
characteristic of the substance’s definition (e.g., water molecules, cells in a
particular state of differentiation).

Several bodies may occupy the same region of space and interact with each
other. For example, the same region may be occupied by a volume of diffusing
chemical and by a mass of cells following the chemical gradient. The kind
and degree of interpenetrability possible, as well as other interactions, are
determined by the definitions of the substances. Some bodies may be quite
diffuse (e.g., disconnected cells migrating through mesenchyme).

Mathematically, a body is defined to be an indefinitely large set B of
elements (particles or material points). We say “indefinitely large” to maintain
the systematic ambiguity between the infinite number of material points in a
continuum and the finite but large number of particles in a discrete ensemble.
It is often convenient to think of the elements of B as labels or identifiers for
the elements. At any given time t each element P ∈ B has a location in a region
of three-dimensional Euclidean space E defined by a vector p = Ct(P), where
Ct is a continuous function that maps B into this region. As in continuum
mechanics, Ct defines the configuration of B at time t, and therefore Ct reflects
the deformation of the body as a consequence of its own internal dynamics
and its interaction with other bodies.

An embodied computation system comprises a finite and fixed number of
bodies (or tissues), each having properties that allow it to be classified as one
substance or another. The behavioral dynamics of these bodies, in mutual
interaction, defines the dynamics of the embodied computation system, but
it must be prepared in some appropriate initial state. This is accomplished
by specifying that a particular body of a defined substance occupies a spec-
ified region of Euclidean space and by specifying particular initial values
for the variable properties of the substance throughout that region (i.e., for
each element constituting the body). (In many cases the values will be uni-
form throughout the region or vary randomly according to some distribution.)
Examples include a concentration of a substance in a small volume (e.g., an
injected chemical or an inoculation of identical cells), the definition of a uni-
form gravitational or electrical field, and a bath at a specified temperature and
occupying a defined region. While the full generality of mathematics may be
used to define the initial bodies, we are most interested in physically feasible
preparations, but this depends on the specifics of the embodied computation
system.

Elements: A substance is defined in terms of the properties and behav-
iors of its elements, and so we need to consider how they may be defined
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consistently with the requirements of Sec. 2. For most purposes the formalism
makes use of material (Lagrangian, reference) descriptions of these proper-
ties and behaviors, rather than a spatial (Eulerian) reference frame. This
means that we consider a physical quantity Q as a time-varying function of
a fixed particle P ∈ B as it moves through space, Q(P, t), rather than as a
time-varying property q(p, t) at a particular fixed location in space, p ∈ E .
For example, if temperature is the property, then we think of the temperature
as a (perhaps variable) property of a moving particle, as opposed to thinking
of a (time varying) temperature field with respect to a fixed spatial reference
frame. In effect, the use of material variables in preference to spatial variables
is a particle-centered description, and is a more object-oriented or agent-based
way of thinking in that we can think of the particles as carrying their own prop-
erties with them and behaving like well-defined entities. (Obviously the two
reference frames are related by the configuration function, Ct .) The distinction
is illustrated by velocity. At any given time each particle P has a velocity V,
which is the material time derivative of its (coordinate-independent) position
vector, p: V(P) = Dtp = DtCt(P). On the other hand, the spatial derivative
v(p) = V

[
C−1

t (p)]
]
defines a velocity vector field with respect to the spatial

frame (the rate of change of spatial position at each spatial position).
As explained in Sec. 2, in order to maintain independence of the size of

the elements, so far as possible all quantities are intensive. This is one of
the characteristics that distinguishes this model of embodied computing from
ordinary mathematical descriptions of physical phenomena. For example,
instead of elements having a mass (which is an extensive quantity), they have
a (mass) density, the mass per unit volume, which is an intensive quantity
and doesn’t depend on the size of the elements. Similarly, instead of dealing
with N , the number of particles (e.g., cells or molecules) corresponding to
an element, we deal with its number density n, the number of particles per
unit volume. Note that if the number density becomes very small, then the
dynamics will be subject to small sample effects, which are often important in
self-organization; they are discussed further below. There are various indica-
tors of when continuous mathematics is a good approximation. For example,
the Knudsen number Kn = λ/L is the ratio of a particle’s mean free path
length λ to a characteristic length scale L, such as its diameter. In the case
of morphogenesis, this could measure how many diameters a cell is likely
to move before its internal control processes can change its direction. For
low Knudsen numbers (< 1) it is safe to apply the approximations of con-
tinuum mechanics, but high numbers may require the methods of statistical
mechanics.

The requirement for complementary perspectives implies that the proper-
ties of elements be treated as bulk quantities, that is, as the collective properties
of an indeterminate ensemble of units (e.g., cells or molecules). This creates
special requirements when the units constituting an element might have dif-
fering values for an attribute. For example, cells, molecules, and microrobots
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have an orientation, which is often critical to their collective behavior. In
some cases all the units will have the same orientation, in which case the
orientation can be treated as an ordinary intensive property of the element.
In most cases, however, we must allow for the fact that the units may have
differing orientations (even if a consequence only of defects or thermal agi-
tation). Therefore, we have to consider the distribution of orientations; each
orientation (represented by a unit vector u) has a corresponding probability
density Pr{u}. If n is the number density of an element, then n Pr{u} is the
number density of units with orientation u. Equivalently, the orientation may
be interpreted as a vector-valued random variable, U.

Morphogenesis in development sometimes depends on cell shape; for
example, a change from a cylindrical shape to a truncated cone may cause a
flat tissue to fold [17, pp. 113–16][45]. Generally a shape can be expressed
as a vector or matrix of essential parameters that define relevant aspects of
the shape. Two complexities arise in the expression of shape in this for-
malism for embodied computing. First, the shape must be expressed in a
coordinate-independent way, which means that we are dealing with a shape
tensor. Second, since an element represents an indefinite ensemble of units,
shape must be treated as a probability distribution defined over shape tensors,
or as a tensor-valued random variable.

One of the advantages of object-oriented programming and agent-based
simulations is the ability to describe and reason about each agent as an indi-
vidual, obeying its own behavioral rules [6]. It may seem that the proposed
formalism loses this attractive feature because, while the individual units may
behave like independent agents (and have, for example, a definite orientation),
the units are below the level at which the formalism operates. Rather, it oper-
ates at the level of elements, which comprise an indefinite number of units
(each of which may have its own orientation). However, we can recover some
of the intuitive understandability of agent-based descriptions by thinking of
the elements as quasi-agents with indefinite properties. For example, we can
think of an element as having an indeterminate orientation, with the proba-
bility of a specific orientation given by the distribution of orientations in that
element.

Therefore, we treat the properties of elements as random variables with
associated probability distributions. The distributions are determined by the
values of the constituent units, but that is below the level of abstraction of
the formalism, for which the distributions are taken as primitive. This does
not solve all the problems, however, and in particular we must take care of
small sample effects, which may be crucial to self-organization. Another issue
is how to manipulate reliably non-independent random variables. Therefore
one goal of our project is to formulate rules of inference that allow reliable
description and control of elements as quasi-agents.

Morphogenetic processes, both natural and artificial, can be described at
many different levels, from individual units (cells, microrobots, molecules) to



ijuc_fp(1)_maclennan page 13

ARTIFICIAL MORPHOGENESIS AS AN EXAMPLE OF EMBODIED COMPUTATION 13

masses of units that can be treated as infinitesimal elements of a continuum.
The latter is our approach, since it admits of the widest range of possible
physical realizations and because it focuses on morphogenetic algorithms that
will scale up to very large numbers of units. To establish that a proposed agent-
based implementation is correct, one must show that the continuous equations
are a sufficiently accurate description of the behavior of the agents en masse.
To mention a specific example, a stochastic differential equation describing
the random motion of an individual unit may realize a Fokker-Planck equation
defining the change in number density of the units (see Sec. 4.1).

To summarize the preceding discussion, all the variables representing
the state of an element should, so far as possible, be intensive quantities,
coordinate-independent (i.e., tensors), and generally interpreted as random
variables with an associated probability distribution.

Behavior: The behavior of the elements (particles, material points) of a
body is defined by rules that describe the temporal change of various quan-
tities, primarily intensive tensor quantities (coordinate-independent scalars,
vectors, and higher-dimensional objects). Such changes might be expressed
in continuous time, by ordinary differential equations, e.g., DtX = F(X , Y ),
or in discrete time by finite difference equations, e.g, "tX = F(X, Y ), where
"tX = "X/"t, "X = X(t + "t) − X(t), and the time increment "t is
implicit in the "t notation. Generally, these would be substantial or mate-
rial (as opposed to spatial) time derivatives, that is, derivatives evaluated
with respect to a fixed particle: DtX = ∂X(P, t)/∂t|P fixed. Similarly, we use
material differences.

In order to maintain complementarity between discrete and continuous
time, the proposed formalism expresses such relationships in a neutral
notation:

ÐX = F(X, Y ).

This change equation may be read, “the change in X is given by F(X , Y ).” The
rules of manipulation for the Ð operator respect its complementary discrete-
and continuous-time interpretations.

A particle-oriented description of behavior implies that in most cases active
particles (e.g., cells, microrobots) will not have direct control over their posi-
tion or velocity. Rather, particles will act by controlling local forces (e.g.,
adhesion, stress) between themselves and other particles in the same body
or in other bodies. Therefore, “programming” active substances will involve
implementing change equations that govern stress tensors and other motive
forces associated with the particles.

It not so difficult to program change equations as might be supposed.
Quantities that quickly saturate can be used like Boolean values, and Heav-
iside (unit step) functions can be used multiplicatively to turn processes on
or off depending on conditions, such as whether a quantity is greater than
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a threshold. In this way quite complex systems of hierarchical control can
be implemented in terms of continuous variables. (Examples can be found
in a technical report [37].) This may seem to be an indirect process, effec-
tively using analog computation to implement digital control, but it is a more
accurate reflection of conditions at the nanoscale, where digital perfection is
unrealistic.

As discussed in Sec. 2, noise, uncertainty, error, faults, defects, and
other sources of randomness are unavoidable in embodied computation, espe-
cially when applied in nanotechnology. Indeed, such randomness can often
be exploited as a computational resource — free variability — in embod-
ied computing. Therefore, the behavior of elements will often be described
by stochastic differential/difference equations. To facilitate the complemen-
tary continuous/discrete interpretations, it is most convenient to express these
equations in the Langevin form:

ÐX = F(X , Y , . . . ) + G1(X , Y , . . . )ν1(t) + · · · + Gn(X , Y , . . . )νn(t),

where the νj are noise terms, but we must be careful about the interpretation
of equations of this kind.

To see why, consider a stochastic integral, Xτ =
∫ τ

0 HtdWt , where W is a
Wiener process (Brownian motion). In differential form this is dXt = HtdWt .
To maintain complementarity, this should be consistent in the limit with the
difference equation: "Xt = Ht"Wt . This implies that the stochastic integral
is interpreted in accord with the Itō calculus. The corresponding stochas-
tic change equation in Langevin form is ÐXt = HtÐWt . Interpreted as a
finite difference equation it is "tXt = Ht"tWt , which makes sense. How-
ever the corresponding differential equation, DtXt = HtDtWt , is problematic,
since a Wiener process is nowhere differentiable. Fortunately we can treat
DtWt purely formally, as follows. First observe that "Wt = Wt+"t − Wt is
normally distributed with zero mean and variance "t, N (0, "t). Therefore
"tWt = "Wt/"t is normally distributed with unit variance, N (0, 1), and
"tWt can be treated as a random variable with this distribution. To extend
this to the continuous case, we treat ÐWt as a random variable, distributed
N (0, 1). Therefore the stochastic change equation ÐX = HÐW has consistent
complementary interpretations. Similarly, for an n-dimensional Wiener pro-
cess Wn, we interpret ÐWn to be an n-dimensional random vector distributed
N (0, 1) in each dimension.

As explained above (Sec. 2), one requirement for the formalism is that it
be able to express qualitative behavioral rules corresponding to the influence
diagrams widely used in biology. Therefore, we define the notation ÐX ∼
−X , Y , Z (for example) to mean that the change of X is “repressed” (negatively
regulated) by X and “promoted” (positively regulated) by Y and Z . We have
been calling such a relationship a regulation and read it, “the change in X
is negatively regulated by X and positively regulated by Y and Z .” Formally,
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ÐX ∼ −X, Y , Z is interpreted as a change equation ÐX = F( − X, Y , Z)
in which F is a function that is unspecified except that it is monotonically
non-decreasing in each of its arguments, so that the signs of the arguments
express positive or negative regulation.

4 EXAMPLES

4.1 Diffusion
Diffusion is an Itō process in an m-dimensional diffusion medium:

Ðp = µ + σ ÐWn,

where µ is a vector field in Rm characterizing drift, σ is an m × n tensor
field characterizing diffusibility in various directions and locations, and Wn

is an n-dimensional Wiener process driving the stochastic behavior. The drift
velocity, which represents directed movement, may result from external forces
(e.g., gravity, electrical field) or from particle activity (e.g., chemotaxis). The
diffusion tensor, which represents constrained undirected movement, may
result from Brownian motion or from active wandering [17, pp. 14–15].

A higher level description is given by the Fokker-Planck equation, which
describes the time-varying probability density function of particles (a scalar
field defined over the diffusion medium):

Ðφ = ∇ ·
[
−µφ + ∇ · (σσT φ)/2

]
.

Hence, µ represents the average particle velocity, and the rank-2 tensor
σσT/2 ∈ Rm×m represents the diffusion rates in various directions.

To give an idea of how simple diffusion could be expressed in operational
terms, we use a programming-language-like notation:

substance morphogen:

scalar field φ ‖ concentration
vector fields:

j ‖ flux
µ ‖ drift vector

order-2 field σ ‖ diffusion tensor

behavior:

j = µφ − ∇ · (σσT φ)/2 ‖ flux from drift and diffusion

Ðφ = −∇ · j ‖ change in concentration
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To describe the body constituting the system and its initial preparation we use
a notation such as the following, which describes a small spherical concen-
tration of the morphogen in the center of a cylindrical volume of the medium:

body Concentration of morphogen:
for X2 + Y 2 ≤ 1 and − 1 ≤ Z ≤ 1:

j = 0 ‖ initial 0 flux
µ = 0 ‖ drift vector
σ = 0. 1I ‖ isotropic diffusion

for X2 + Y 2 + Z2 ≤ 0. 1: φ = 1 ‖ initial density inside sphere
for X2 + Y 2 + Z2 > 0. 1: φ = 0 ‖ zero density outside sphere

4.2 Activator-Inhibitor System
Activator-inhibitor systems are two-component reaction-diffusion systems
that have proved useful as models of pattern formation in development
[20, 40, 41, 60]. Both components diffuse, the activator A promoting the pro-
duction of both, the inhibitor I repressing production. In the notation of the
formalism, this is:

substance activator-inhibitor:
scalar fields:

A ‖ activator concentration
I ‖ inhibitor concentration

order-2 fields:
σA ‖ activator diffusion tensor
σI ‖ inhibitor diffusion tensor

behavior:

ÐA ∼ A, −I , ((σAσT
A A)

ÐI ∼ A, −I , ((σIσ
T
I I)

Here ( = ∇ · ∇ is the Laplacian operator on tensor fields.

4.3 Deneubourg Model
Deneubourg’s model of pillar construction in wasp nests provides a good
example of a continuous model of a discrete process [14]. Termites T deposit
pheromone-bearing cement C at rate k1, from which the pheromone evapo-
rates at rate k2:

substance cement:
scalar field C ‖ pheromone-bearing cement conc.
scalars:
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k1 ‖ deposition rate
k2 ‖ pheromone evaporation rate

behavior:

ÐC = k1T − k2C ‖ deposition – evaporation

In this case we use change equations rather than regulations in order to express
the conserved relations implied by the shared constants k1 and k2. The air-born
pheromone φ degrades at rate k3 and diffuses subject to Dφ :

substance pheromone is cement with:
scalar field φ ‖ concentration in air
scalar k3 ‖ degradation rate
order-2 field Dφ ‖ diffusion tensor field

behavior:

Ðφ = k2C − k3φ + ((Dφφ) ‖ evap. from cement – degr. + diff.

The concentration T of cement-laden termites is given by:

substance termite-mass is pheromone with:
scalar field T ‖ density
vector field v ‖ velocity field
scalar r ‖ input flux of cement-laden termites
order-2 field DT ‖ diffusion (wandering) tensor field
scalar k4 ‖ strength of gradient following

behavior:

v = k4∇φ − T−1∇ · DT T ‖ gradient following – diffusion

Ðp = v ‖ change in position

ÐT = r − k1T − ∇ · (Tv) + v · ∇T ‖ change in material frame

Recall that p (spatial position) is a property of all substances, and so the equa-
tion for Ðp defines the motion (displacement and deformation) of the termite
mass. In general, when a particle P in one body refers to a variable Q charac-
teristic of another body, the variable is evaluated at the same spatial location
as P. For example, these equations for termite-mass refer to φ, which is a
property of the substance pheromone. Furthermore, gradients such as ∇φ are
evaluated in the spatial (Eulerian) frame, since this reflects the configuration
of the body at a given time.
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4.4 Vasculogenesis
For our next example we extend the model developed by Frederico Bussolino
and his colleagues of vasculogenesis, the early stages of formation of capillary
networks from dispersed endothelial cells [2, 19, 53] (cf. [43]). Aggregation
is governed by a morphogen that is released by the cells and that diffuses and
degrades.

substance morphogen:
scalar fields:

C ‖ concentration
S ‖ source

order-2 field D ‖ diffusion tensor
scalar τ ‖ degradation time constant

behavior:

ÐC = ((DC) + S − C/τ ‖ diffusion + release – degradation

The cells produce morphogen at a rate α and follow the gradient at a rate
governed by attraction strength β. Cell motion is impeded by dissipative
interactions with the substrate, which are measured by an order-2 tensor field
γ . Since cells are filled with water, they are nearly incompressible, and so
they have a maximum density n0, which influences cell motion; to accommo-
date this property (which will also apply to microrobots), the model uses an
arbitrary function, φ, that increases very rapidly as the density exceeds n0.

substance cell-mass is morphogen with:
scalar fields:

n ‖ number density of cell mass
φ ‖ cell compression force

vector field v ‖ cell velocity
scalars:

n0 ‖ maximum cell density
α ‖ rate of morphogen release
β ‖ strength of morphogen attraction

order-2 field γ ‖ dissipative interaction

behavior:

S = αn ‖ production of morphogen

‖ Follow morphogen gradient, subject to drag and compression:

Ðv = β∇C − γ · v − n−1∇φ

Ðn = −∇ · (nv) + v · ∇n ‖ change of density in material frame

φ =
[
(n − n0)+

]3 ‖ arbitrary penalty function
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5 CONCLUSIONS

We have outlined the requirements for a formalism — indeed a programming
notation — for embodied computation oriented toward morphogenesis, and
have discussed our approach to meeting these requirements. Fundamental to
this is massively parallel programming built on a foundation of continuum
mechanics and partial differential equations, which facilitates scaling up to
very large numbers of embodied computing units. We also presented several
examples of morphogenetic programming inspired by embryological morpho-
genesis. Much additional work remains to be done in order to complete the
definition of the formalism, including its rules of inference, and to evaluate its
usefulness for programming morphogenesis, which are our current activities.
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