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Abstract

We show that communication may evolve in a population of simple machines
that are physically capable of sensing and modifying a shared environment,
and for which there is selective pressure in favor of cooperative behavior. The
emergence of communication was detected by comparing simulations in which
communication was permitted with those in which it was suppressed. When
communication was not suppressed we found that at the end of the experiment
the average fitness of the population was 84% higher and had increased at a rate
30 times faster than when communication was suppressed. Furthermore, when
communication was suppressed, the statistical association of symbols with situ-
ations was random, as is expected. In contrast, permitting communication led
to very structured associations of symbols and situations, as determined by a
variety of measures (e.g., coefficient of variation and entropy). Inspection of the
structure of individual highly fit machines confirmed the statistical structure.
We also investigated a simple kind of learning. This did not help when commu-
nication was suppressed, but when communication was permitted the resulting
fitness was 845% higher and increased at a rate 80 times as fast as when it was
suppressed. We argue that the experiments described here show a new way
to investigate the emergence of communication, its function in populations of
simple machines, and the structure of the resulting symbol systems.



1 Introduction

1.1 Investigating Communication

What is communication? How can it emerge by natural selection? What form will
it take? What are the factors that influence its emergence or form? How do signs
come to have meaning? These are some of the questions to which this investigation
is addressed.

We believe that these questions will not be answered by armchair theorizing; we
seem to have achieved all we can by that approach. Nor will they be answered by
studying small populations communicating in unnatural laboratory environments;
this approach loses ecological validity since it radically alters the pragmatics of com-
munication. It was the mistake of behaviorism. Therefore, it seems that these ques-
tions can only be answered by empirical investigation of populations communicating
in their natural environments (or laboratory environments faithful to them in the
relevant ways); this of course is the ethological approach.

We do not believe, however, that ethology will answer all our questions about
communication. This is because many of the deepest problems pertain to the mental
phenomena that accompany the external behavior: When can a symbol be said to
have a meaning? What is intentionality? We have argued [9] that answering ques-
tions such as these will require an understanding of the neural mechanisms by which
communication is generated. Thus a complete theory of communication must inte-
grate an ethological account of its function with a neurophysiological account of its
mechanism.

Unfortunately, the integrated approach that we envision is beyond the empirical
capabilities of contemporary ethology and neuroscience. For this reason, and because
science usually progresses fastest when it can investigate phenomena in their simplest
and most controllable contexts, we have been studying the evolution of communication
in populations of simple machines.

This solves the problems we have mentioned in the following ways. First, the
mechanism is transparent. Since these are simple machines (e.g., finite state machines
or simple neural networks), we can give a complete account of any communication
that takes place. Second, by allowing the population of machines to evolve, we know
that if communication emerges then it must confer some selective advantage on the
machines that communicate — that is, it is relevant for survival. Thus the pragmatics
of communication is preserved, since it is occurring in its “natural” environment (the
simple, but complete world of the machines). By this approach we combine ecological
validity with the kind of experimental control that has produced the best examples
of science. But it is predicated upon our getting populations of simple machines to
communicate.



1.2 What is Communication?

How can we tell if two machines are communicating? This is not a trivial question, as
shown by the fact that it is sometimes difficult to determine whether or not a given
animal interaction is communication. For example, there is more to communication
than one organism doing something that another organism notices, since by that def-
inition almost all behavior is communication, and the term looses its significance.
We might claim that communication necessarily involves the intent of the signaler to
influence the receiver’s behavior, but if attributing intent to lower animals is contro-
versial, attributing it to simple machines is reckless.! Gordon Burghardt’s definition
of communication seems to provide a way out of this dilemma:

Communication is the phenomenon of one organism producing a signal
that, when responded to by another organism, confers some advantage
(or the statistical probability of it) to the signaler or his group. [4, p. 16]

In other words, to identify an event as a communication act we need to be able to
establish: (1) that an organism caused some change in the environment, (2) that a
second organism responded to that change, and (3) that the event tends to confer
selective advantage on the first organism or its group.

In the case of our simple machines, establishing (1) and (2) is unproblematic (we
can simply look at the structure of the machines). Establishing (3), however, requires
us to determine the selective value of certain behaviors. The most reliable way of
accomplishing this is to follow the evolution of the population, and observe which
behaviors confer selective advantage.

This is the approach we have taken in these investigations. We start with pop-
ulations of randomly generated simple machines (essentially finite state machines)
that have the capability of altering the environment in a way that can be sensed by
the other machines. Further, we stipulate that the fitness of machines depends on
their ability to cooperate, and that each machine’s fitness determines its probability
of breeding or dying. Thus there is selective pressure in favor of cooperation, but not
directly in favor of communication. Our hypothesis is that under these conditions
communication — as defined by Burghardt — will emerge. It does.

2 Procedure

2.1 Environment
2.1.1 Structure

There are two components to the environment, a global environment and a set of
local environments (one per machine). All the machines have access to the global

!Further, since we hope that these investigations will shed some light on the nature of intention-
ality, 1t would be ill-advised to take it as a given.
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environment, which they can either read or write. On the other hand, each machine
can read only its own local environment; it has no direct access to the states of
the other local environments. Further, the local environments cannot be written by
any of the machines; they are set by an independent random process. (See Fig. 1
for the structure.) Note that the only way one machine can tell the state of its
local environment to another is by putting some information about it in the global
environment.

2.1.2 States

The contents of the environments are objects drawn from two alphabets. There are
(G possible global environment states, sometimes called symbols, and L possible local
environment states, sometimes called situations. In this implementation the states
are represented by numbers in the range 0, ..., G — 1 for the global environment, and

0,...,L — 1 for the local.

2.1.3 Change in the Local Environments

The local environments of all the machines are set at intervals called minor cycles or
“days.”? In the current simulation these changes are random, so there is no way they
can be predicted by the machines.

ZWe refer to the various time units of the simulation as “hours,” “days” and “weeks.” These are
not intended to have any relation to real hours, days or weeks. They are simply convenient terms
for keeping the size of the units in order. Quotation marks are used to remind the reader of this
metaphorical use of terminology.



2.2 Machines
2.2.1 Structure and Behavior

The machines that make up the population are a kind of finite-state machine. The
state transition is determined by three factors: the machine’s current internal state
(s), the global environment state (), and the machine’s local environment state ().
The result of the transition is a new internal state (s') and a response. There are two
kinds of responses, actions and emissions. An emission emit(y’) includes an object +'
drawn from the set of global environment states, and results in this object becoming
the new global environment state. An action act()') includes an object A\ drawn
from the set of local environment states. Such an action is considered “effective” only
if it matches the local environment of the last emitter (see Section 2.3). Thus the
transition function of each machine is a total function of the form:

(5,7, A) — (', r(2))

where r = emit or act and « = 7' or X, respectively.

2.2.2 Learning

The machines can also operate in a mode which permits a simple kind of learning.
When learning is permitted, a machine may change its transition table so that in the
future it will act in the way that would have been appropriate this time. Specifically,
suppose that in a context (s,7,A) a machine responds act()\') but that the effective
action would have been X’ (i.e., X was the last emitter’s local environment state).
Then, learning occurs by replacing the (s,+, A) entry of the machine’s transition table
with (s¢',act(A\”)). Therefore, in the future the transition table will implement

(s,7,A) — (&', act(\"))

This will hold until the next time that A" is an ineffective action in the context

(5,7, A)-

2.2.3 Representation

Since the internal state and local and global environment states are all represented
by natural numbers, the transition table can be represented as an array indexed by

(5,7, A):

(5,7, A) | (s, 7(2))




Similarly, since s’ and x are represented by natural numbers and r can be represented
by a bit, the table entries can be represented by triples of natural numbers (see Table
15, p. 31, for an example). The initial population of machines is obtained by setting
their transition tables to random numbers in the appropriate ranges.

2.3 Fitness and Breeding

As is common in genetic algorithms and simulations of natural selection, an individ-
ual’s probability of breeding is directly dependent on its “fitness,” and its probability
of “dying” is nversely dependent on its “fitness.” This “fitness” is simply a score
computed on the basis of the individual meeting some criteria (“acting well”). First
we discuss the determination of a machine’s fitness, then we discuss the way this
influences breeding probability.

2.3.1 Fitness

We want to put selective pressure on the evolution of communication, and one way
to do this is to select for cooperative activity that cannot take place reliably without
communication. Therefore we consider machines “fit” to the extent that they act in a
way that matches another machine’s local environment. We make the problem harder
— and put more pressure in favor of communication — by considering a machine to
have acted correctly only when its action matches the local environment of the last
emitter. In this case both machines, the emitter and the receiver, are credited with a
successful cooperation.

Of course, it is quite possible that a machine’s action will coincidently match the
last emitter’s local environment; the frequency with which this can be expected to
happen is calculated later (Section 2.7.1). We will be looking for fitness scores above
this “guessing” or “chance” level.

Each machine responds a number of times in one “day,” at intervals called “hours.”
The fitness of the machines is accumulated over a longer interval, called a major cycle
or “week,” which comprises a number of “days.” Since the local environments change
once per “day,” the fitness scores reflect each machine’s response to a variety of
environment states.

2.3.2 Breeding

Once per “week” two individuals are chosen to “breed” and one is chosen to “die” (i.e.,
be replaced by the single offspring of the breeders). The probability of an organism
breeding or dying depends on its fitness score, which has been accumulated over the
preceding “week.” The probability of breeding is given by

_ %

pk—Pa



where ¢y, is the fitness of machine k, P is the population size, and « is the average
fitness of the population (o = P71 3. ¢;). (If @ = 0 we set py = 1/P.) Thus breeding
probability is proportional to fitness. We do not require the breeders to be different
machines. The probability of dying is given by

B—¢n
P(B - a)

where (3 is the fitness of the most fit individual in the population. (If & = 3 we set
gr = 1/P.) Thus probability of dying decreases monotonically with fitness, although
not linearly. Since the selection of machines to breed and die is probabilistic, the
individual that dies could be one of the breeders.

Each machine has two associated data structures representing transition tables,

qk =

called the genotype and the phenotype, which are used in breeding and behavior,
respectively. In contrast to genetic algorithms, which usually represent the genotype
by a bit string, we represent it by a list containing all the entries in the transition
table. For an example, the 64 element list of all the triples shown in Table 15 (p. 31)
is a genotype.

The genotypes of the breeders are “crossed over” at two randomly chosen crossover
points to yield the offspring’s initial genotype (i.e. before mutation). Thus, if
(Gy,...,G,) and (G, ..., G") are the parents’ genotypes, then the offspring’s geno-
type is

(Grovo G, Gl Gy Grgas oo G
where j and k are the random crossover points. Crossover is at the level of transition
table entries; that is, each gene is a triple G; = (s, r(«)). Thus crossover cannot break
up responses; this is different from most genetic algorithms and seems to improve
performance in this case.

After crossover, the offspring’s genotype is mutated with probability p. Mutation
involves randomly choosing a gene and replacing it with a random triple. Thus we
pick random ¢*, s*, r* and a* (all in the appropriate ranges), and replace gene G« by
(s, 7(2%)).

The phenotype is the transition table used to determine the machine’s behavior;
this is the table in which we look up (s,7,A) and which yields the response (s, r(x)).
In the current experiment the initial phenotype is completely determined by the
genotype, since they are both representations of the transition table. Furthermore, if
learning is suppressed, they remain the same, since there is no other mechanism for
phenotypic change. On the other hand, learning allows the phenotype to change, as
discussed above (Section 2.2.2). Notice, however, that it is the genotype that is used
for breeding, so there is no genetic mechanism for passing on acquired behavior. (On
the other hand, acquired behavior can indirectly affect the genotype of the offspring,
the so called “Baldwin Effect” [1, 7, 10].)

The noninheritability of acquired behavior leads to an important difference be-
tween our breeding algorithm and that common in genetic algorithms. The latter



typically implement breeding in distinct “generations,” with all of the individuals of
the population being replaced at one time. A parent’s genetic contribution to the
next generation is proportional to its fitness. In contrast, we replace the population
incrementally, breeding and killing one machine per “week.” Since the probabilities of
breeding and dying are determined by fitness, the stochastic behavior of our algorithm
should be similar to that typical of genetic algorithms. There is an important excep-
tion, however. When learning is permitted, our algorithm permits acquired behavior
to be passed from machine to machine, in effect permitting a “culture” to be passed
from “elder” machines to “younger” machines (or vice versal). Since this informa-
tion is part of the phenotype but not the genotype, the genetic algorithm’s wholesale
population replacement prevents the information from being passed on (except indi-
rectly through the Baldwin effect). In effect each generation must learn from scratch.
We expect such “cultural” transmission to be very important to more sophisticated
communicative behaviors. (See also [2, 5].)*

2.4 Suppression of Communication

Following Burghardt’s definition (p. 3), we will say that communication is taking
place only when we can show that some advantage is conferred on the emitter or its
group. In this context, this means that communication should be associated with
an increased average fitness of the population. But increased relative to what? To
determine if communication is taking place it is useful to compare the fitness of the
population when communication is possible to that when it is impossible.

To allow this comparison, our simulation has a switch that, when set, suppresses
communication. This is accomplished by writing a random symbol into the global
environment every time a machine responds (regardless of whether the response is an
action or an emission). Thus, if any machine is trying to communicate, its attempts
will be thwarted, since the global environment is constantly changing outside its
control.?

When communication has not been suppressed, we say it is permitted. This does
not mean that communication will take place, only that it will not be actively pre-
vented.

3The learning that we implement could still be considered individual rather than social, since a
machine’s behavior changes only when it acts incorrectly [3]. On the other hand, it would be simple
to have machine’s learn from other, more fit machines without the cost of their own incorrect action.
This fits Boyd & Richerson’s definition of culture: “Culture is information capable of affecting
individuals’ phenotypes which they acquire from other conspecifics by teaching or imitation.”[3, p.
33] Imitative learning will be investigated in future experiments.

*In an earlier version of this simulation we attempted to suppress communication by replacing the
global environment by a random symbol whenever an emission took place. The resulting evolution
showed that this did not succeed in preventing communication since the machines were still able to
communicate (in a limited way) by the presence or absence of symbols!
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Figure 2: Effects of Smoothing Average Fitness

2.5 Measurements
2.5.1 Fitness

The two fitness parameters we track are the average fitness of the population, and
the fitness of the best individual. Since these vary considerably, however, we have
found it more useful to analyze a smoothed fitness that results from applying to the
raw fitness figures a moving window of size W.  Figures 2 and 3 show the effect
of smoothing; although there there is still considerable wiggle, a trend is at least
visible. In the remainder of this report we refer to smoothed average fitness as «
and smoothed best fitness as 3.5 Since the smoothed fitness numbers result from a
moving average, the corresponding plot labels are “mean avg fitness” and “mean best
fitness.”

In comparing evolution under various conditions (e.g., communication suppressed
or not, learning permitted or not), it is useful to be able to compare the rates at
which « and (8 change, called & and [3 respectively. To accomplish this we have used
linear regression and used the slope of the resulting line as the rate; examples are

®A certain quantization is apparent in the best fitness values. The quantum is H = 10
“hours” / “day” (in this simulation); since machines act once per “hour” and the local environments
change once per “day,” fitness often accrues in units this size.

mean avg fitness
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Figure 3: Effects of Smoothing Best Fitness

shown later (Section 3.1). Further, to simplify the computation, we computed the
regression only on the plotted « and [ values, which were every tenth value in these
simulations (see Table 1). Since the regression lines fit rather well, there seems to be
no harm in this preprocessing of the data.

2.5.2 Structure of Communication

If the population is evolving the ability to communicate, then this should be apparent
in its use of symbols. Therefore, whenever two machines successfully cooperate, we
consider an “apparent communication act” to have taken place. (It is only “apparent”
because it could have resulted from a lucky guess.) We keep track of such acts and
of the symbol/situation pairs they involve. More specifically, suppose that the last
emitter put the symbol v in the global environment and that its local environment is A.
If a later machine responds with act(A), then they have successfully cooperated, and
we say that the second machine apparently interpreted symbol v to denote situation A.
To keep track of this we increment the (v, A) entry of a matrix, called the denotation
matrie.

The only trouble with the foregoing is that early in the simulation symbols will
be used randomly, and this random usage may swamp later more organized use. To
avoid this, the denotation matrix reflects only those apparent communication acts

10

mean best fitness



that occurred in a moving window containing the last W “weeks” of the simulation.
Thus the denotation matrices shown in this report reflect only the “recent” use of
symbols (see Tables. 3 and 4, pp. 21 and 22, for examples).

If communication is not taking place, and cooperation is being achieved by guess-
ing, then we would expect symbol/situation pairs to occur with equal frequency. The
resulting denotation matrix should be very uniform, that is, all its entries should be
about the same size. On the other hand, we can imagine an “ideal” language to
have exactly one symbol for each situation, and vice versa. The resulting denotation
matrices would be very nonuniform, with only one nonzero entry in each row and in
each column. Thus nonuniformity (i.e. deviation from a uniform distribution) reflects
structure in the apparent use of symbols to denote situations. How can this structure
be quantified?

We have chosen two ways of quantifying the nonuniformity of the denotation ma-
trices. The first makes use of the fact that the standard deviation (o) of a distribution
measures the amount of spread of that distribution around its mean. However, since
the actual number of apparent communication acts may differ from run to run, we
have to correct for the value of the mean (u) if we are to get a measure that allows
comparisons between runs. Therefore, we use the coefficient of variation as a measure
of the nonuniformity (structure) of the denotation matrices:

Vi=o/pu

Thus, V' measures the amount of spread in units of the mean. For a uniform distri-
bution, ¢ = 0 and therefore V' = 0.

Another measure of the nonuniformity of a distribution is entropy. For a two-
dimensional discrete probability distribution p, \ the entropy is defined:

H = — Zp%/\ lg pya

VoA

(We use lg x = log, . We compute the entropy in terms of base 2 logarithms because
it gives more meaningful numbers in this case.) The probabilities are computed from
the denotation matrix D is the obvious way:

D%A

Z’V,A D’VvA

The maximum state of uniformity has all the probabilities equal, p,» = 1/GL. In
this case the entropy is maximum:

H,=-> (GL)"g(GL)™" =1gGL
YA

In all the experiments described here, G = L, so letting N = ¢ = L we find that the
entropy of the uniform distribution is:

Pyx =

H,=2lgN

11



This is the maximum entropy, and represents a completely unstructured use of the
symbols.

The minimum entropy occurs when all the entries of D are zero, except one. Such
a “0 distribution” has an entropy of 0, which is the minimum.

Hs =0

This is not a situation we expect to arise, however, since it means that one particular
symbol is being consistently used for one particular situation, but that the other
symbols are unused and the other situations cannot be denoted. This is an “over-
structured” language that’s not very useful, so we ask what the entropy would be of
the “ideal language,” in which one symbol denotes one situation and vice versa. In
this case D has N equal, nonzero entries, one in each row and column, which yields
an entropy
Hr=-=>(1/N)lgl/N =1gN
v

Thus the entropy can vary from 2N, for a completely unstructured language, down to
N for the “ideal” language, down to 0 for the “over-structured” language.® In these
experiments N = 8 (Table 1), so H, =6 and H; = 3.

To simplify interpreting entropies, we introduce a new parameter n representing
the lack of structure in the denotation matrix:

= lg N
We have n = 1 for the uniform language, n = —1 for the over-structured language,

and 1 = 0 for the ideal language.
It is not clear which (if any) of these measures of linguistic structure will prove
most useful, so we’ve listed all three for each denotation matrix shown later.

2.6 Parameters for These Experiments

The parameters used in these experiments are summarized in Table 1. Notice that
since the number of internal states is one, the machines have no memory. Hence they
are effectively dictionaries that map symbol/situation pairs into responses (either act
or emit). They can be visualized as follows:

(v, ) | ()

In this next section we analyze the results that can be expected under these conditions.

5Note that an entropy of lg N does not necessarily mean that the language is “ideal,” only that
it has the same degree of structure.

12



Table 1: Parameters Used in Experiments

parameter value

population P =100

number of local states (“situations”) | L = 8

number of global states (“symbols”) | G =38

number of internal states I=1

mutation rate p=0.01

simulation time T = 5000 “weeks”

major cycle D =5 “days” [ “week”
minor cycle H =10 “hours” /“day”
smoothing window W =50 “weeks”

plot interval every tenth “week”
breeding interval one individual per “week”
fitness interval accumulated over one “week”
environment changes once per “day”

2.7 Analysis
2.7.1 Random Population

As a baseline for evaluating the fitness of populations, we estimate the average fitness
of a population of random machines (i.e., the contents of the transition tables are
completely random). We do this by computing the expectation value of a response,
which is

E{response} = %E{act} + %E{emit}

since action and emission are equally likely. If the response is an action, then there
is a 1/L chance that the action agrees with the local environment of the last emitter.
Hence,

Efact} =1/L

If the response is an emission, then the score received by the machine will depend
on the responses of the other machines; in particular, it can accumulate points only
until the next emission takes place. For each of the following machines there is a 1/2
chance that it will emit. If it acts rather than emits, then there is a 1/L chance that
it will act correctly. Thus we can estimate the expectation value of an emission by
the infinite series:

. 1 /1 1 /1 171
Efemit} = 5(5*5(3*5(3* )))
- Ll )

9L 2 4

13



— 1)L

This is only an estimate, but it is a good one.”

Given the foregoing we see that the expectation value for a response is
E{response} = 1/L

Therefore, since each machine responds once per “hour,” and fitness is accumulated
over a “week,” which is DH “hours,” we see that the expected fitness of a random
individual, and hence the average fitness of the population, is:

a, = DH/L

For the parameters used in these experiments (Table 1) the fitness of the random
population is a,, = 50/8 = 6.25.

2.7.2 Optimal Population: Two Varieties

Define a perfect emitter to be a machine that in a situation A always produces a
unique symbol vy, and a perfect receiver to be a machine that always responds to
the symbol v, with act(A). It is then easy to see that in the optimal population (in
terms of average fitness) we have one perfect emitter and P — 1 perfect receivers. To
understand why, suppose we have a population with F perfect emitters and P — F
perfect receivers. When a perfect emitter emits, it will accrue fitness until the next
perfect emitter is encountered. If the perfect emitters are distributed uniformly in
the population, then we can expect each perfect emitter to accrue (P — E)/E points
each “hour” (i.e., each time around the population). In this same period of time,
each perfect receiver accrues 1 point. Therefore, since fitness is accumulated over a
“week,” which is DH hours long, the expected fitness for perfect emitters is

P—F
bp = DH—=
and for perfect receivers is
¢r=DH
Therefore, for a population with E perfect emitters we expect an average fitness
E P—F P—F
oy = Lort (P B)on _ oy P B
P P
The expected fitness of the best individual is just ¢p:
P—-F
p=DH——
5 =

“TIt’s an estimate because in fact the series terminates after P terms. The exact expectation value
is (1/L)(1 — 1/2F); in these experiments P = 100.

14



Table 2: Fitness of a Population of Optimal Emitters and Receivers (P = 100,
DH =50)

Eloy| 8
11 99 | 4950
2| 98 | 2450
31 97| 1617
41 96 | 1200
51 95| 950
10 ] 90 | 450
12 ] 88 | 367
20| 80 | 200

Since for there to be both emitters and receivers we must have 0 < £ < P, we see
that ap and (g are maximized when FE = 1:

o =2DH(P —1)/P, 3= DH(P—1)

For later reference, we tabulate in Table 2 a7, and 35, for several values of £ (assuming
P =100 and DH = 50; see Table 1).

Notice that an optimal population is not very robust; if its single perfect emitter
“dies” (which can happen no matter how fit it is), then the average fitness of the
population will drop to zero. Thus it seems that only populations with £ > 1 will
persist for long; the simulations seem to bear this out (see Section 3.4 and especially
Figs. 18 and 19). There is also another evolutionary force towards £ > 1. When
E = 1 the fitness of the perfect emitters is very high relative to that of the receivers
(see Table 2). This means that the breeding pair will almost surely be two perfect
emitters, and likewise their offspring. Thus the emitters will tend to drive out the
receivers (raising F). This will lower the emitters’ relative fitness, which will give the
receivers a chance to breed. It seems likely that an equilibrium value of £ could be
reached (although of course the population could have more complicated dynamics).

2.7.3 Optimal Population: One Variety

Another peculiarity of this “perfect” population is that there are two distinct kinds
of machines (viz., perfect emitters and perfect receivers). This is also not a stable
situation, since a cross of a perfect emitter with a perfect receiver will not produce
either. This will become likely as E grows sufficiently to give the emitters and receivers
comparable fitness. Thus, it seems unlikely that a perfect population will stay perfect
for long. These consideration have led us to impose an additional constraint on the
optimal population, namely, that all the genotypes be identical. Since a uniform
environment tends to eliminate genetic diversity, this seems a more likely outcome.

15



To estimate the fitness under this assumption, we first observe that all the ma-
chines are identical, and so they can be represented by a single transition table. In
each context (v, A) this table will produce either an emission or an action. Therefore,
suppose that in a given context the machine emits 4. That machine will accrue credit
until another machine emits; in the meantime the global environment will remain
constant and equal to 4. This means that the actions of the succeeding machines
are completely determined by the state of their local environment (which is set ran-
domly) and the v row of the transition table. Now suppose that in each row there
are A actions and I — A emissions. For a perfect population all the actions will be
correct, so the score accrued by the emitter will be:

S = %<1+%<1+%(1+---)))
(A/L) + (AL + (AL + -+
= A/(L - A)

This is also the number of receivers involved in these communication acts, and they
each receive one point (for a total of S). Since the total number of machines involved
is S + 1, we compute the average fitness (per hour) as 25/(S + 1) = 2A4/L. This is
maximized when the number of actions per row, A, is [ — 1 (since otherwise there
would be no emissions). Hence, the average fitness of the optimal population is

o =2DH(1 —1/L)

For the parameters used in these experiments (Table 1), this is a* = 87.5, which is
much closer to the values actually achieved in the simulations (see Fig. 18 and the
discussion on p. 32).%

3 Results

3.1 Rate of Fitness Change

First we discuss four typical experiments, all of which start from the same population
of random machines. Later (Section 3.4) we see how these conclusions generalize to
different initial populations.

Figure 4 shows the smoothed average fitness (o) when communication is sup-
pressed and learning is disabled.? As expected, « drifts around the chance level

8In general, since all the machines are identical, we might expect the best fitness to equal the
average. However, by chance a machine might have the opportunity to emit each “hour” in the
“week,” which would give it a score * = DHS = DHA/(L—A) = DH(L—1) = 350 (for A = L—1).
This is also in line with the simulations.

9Note that in these figures every tenth value is plotted.
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17



17

mean best fithess

y = 15.454 + 1.1653e-4x R"2 = 0.175

14

™~

L L 1 v 1

' Y T r
o 1000 2000 3000 4000 5000 6000

birth

Figure 5: Best Fitness: Communication and Learning Suppressed

(6.25),'° although linear regression detects a slight upward slope (5.6 x 107°). Fitness
stays within about 7% of the chance level. The smoothed fitness of the best individual
([3) shows a similar lack of direction; see Fig. 5.

Figure 6 shows the evolution of the smoothed average fitness (o) when communi-
cation is not suppressed. It begins at the chance level, but by the end of 5000 “weeks”
has reached 10.14, which is 62% above the chance level. This is in spite of an apparent
“genetic catastrophe” at about ¢ = 3500, from which the population did not recover
before the termination of the experiment. Linear regression shows that the average
fitness is increasing at a rate (&) that is over 16 times as fast as when communication
was suppressed. The smoothed fitness of the best individuals is increasing at an even
faster rate ([3), see Fig. 7.

Figure 8 shows the evolution of & when both learning and communication are
permitted. The rate is three times that when learning was suppressed, and over 50
times that when both communication and learning were suppressed. Figure 9 shows
the evolution of 3 when communication and learning are both permitted.

Finally, Fig. 10 shows the evolution of @ when learning is permitted but commu-
nication is suppressed. Remarkably, fitness is slowly decreasing. We do not yet have
an explanation for this phenomenon. Figure 11 shows an analogous decrease in (3.

10The chance level is that of a random populations; see Section 2.7.1.
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Figure 6: Average Fitness: Communication Permitted, Learning Suppressed
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Figure 7: Best Fitness: Communication Permitted, Learning Suppressed
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Figure 8: Average Fitness: Communication and Learning Permitted

3.2 Comparison of Denotation Matrices

Next we consider the denotation matrices for the four experiments. Table 3 shows the
matrix when communication and learning are both suppressed. It is very uniform,
as indicated by its coefficient of variation, V' = 0.52, and the “unstructuredness
parameter” n = 0.92, which is quite close to 1 (no structure). There is nevertheless
a definite pattern in this matrix: each column is quite uniform in value. We have no
definitive explanation for this pattern, but expect that it reflects the initial population
of random machines.

Table 4 shows the denotation matrix when communication is permitted. Its
nonuniformity is apparent to the eye and measured by V' = 2.05; in other words,
the standard deviation is almost twice the mean. Also notice that our measure of
lack of structure has decreased to n = 0.35, which is significantly closer to the “ideal
language’s” n = 0.

We can see from the matrix (Table 4) that most of the symbols have fairly specific
“meanings,” which we can compile into a “dictionary” (Table 5). No symbols are
univocal, but a few come close. For example, 90% of the uses of symbol 1 referred
to situation 0; all the remaining uses referred to situation 7 (see Table 4). Similarly,
87% of the uses of symbol 0 refer to situation 1. On the other hand, symbol 4 is
distinctly equivocal, being used 63% of the time for situation 0 and 37% of the time
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Table 3: Denotation Matrix: Communication and Learning Suppressed

symbol 0

1

2

situation

3

4

5

6

7

113
119
141
104
127
119
114
133

= O Ut = W — O

308
332
334
329
322
346
327
344

129
145
145
165
150
167
145
166

18
19
21
21
23
27
19
12

302
296
303
297
272
291
305
306

349
357
342
362
327
341
372
321

429
474
438
438
477
445
430
456

310
295
273
282
269
303
261
292

V = 0.527397
H = 5.751526
n=0.9171753
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Figure 10: Average Fitness: Communication Suppressed, Learning Permitted

Table 4: Denotation Matrix: Communication Permitted, Learning Suppressed

situation

symbol 0 1 2 3 4 5 6 7
0 0 2726 0 0 168 130 82 30
1] 896 0 0 0 0 0 0 100
2 0 0 2v8 1101 265 99 0 0
31 270 0 0 611 4 0 4192 39
4 | 2530 0 0 0 1 0 0 1492
5 0 397 806 1896 1 0 10 210
6 0 70 371 619 2921 0 0 0
71 935 202 0 498 0 0 1194 212

V = 2.054575

H =4.063197

n = 0.354399
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Table 5: Dictionary Compiled From Denotation Matrix

symbol | situation

0 1

=1 O Ot = W N —
<o
@]
bt
\]
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Table 6: Denotation Matrix: Communication and Learning Permitted

situation

symbol 0 1 2 3 4 5 6 7
0 27 2845 393 0 2258 179 0 0
1 0 516 0 3864 1221 987 1662 4532
2| 296 2756 198 844 1893 0 1374 0
3 0 817 0 216 0 0 2193 126
4 36 3365 7926 547 0 1143 444 0
5 0 0 100 297 0 103 63 778
6 1 3936 31095 24580 4780 28302 2086 1589
7| 3685 2 0 2 768 2603 4273 5762

V' =2.411387

H =4.011914

n = 0.3373047

for situation 7.

Note that this observed ambiguity may reflect either one “language community”
using the symbol for two different situations, or two communities, each with its own
language. We cannot distinguish these possibilities from the denotation matrix alone.
Instead, we must “dissect” the actual machines constituting the final population, a
process demonstrated below (Section 3.3).

Finally, observe that there are no symbols that refer unambiguously to situations
2 or 5, although there is a symbol (viz. 5) that often refers to situation 2. There are
no symbols in this language for situation 5.

Table 6 shows the denotation matrix that resulted when both communication and
learning were permitted. It is even more nonuniform than Table 4, with V = 2.41
and n = 0.34. On the other hand, it is somewhat harder to extract a dictionary from
this matrix, perhaps reflecting language instability that could result from learning.
In other words, the ability to learn permits pro tempore languages to be set up that
will function adequately for a “day” (i.e. until the next environment change).

Table 7 shows the denotation matrix that resulted from suppressing communica-
tion but permitting learning. As expected, it is very uniform (V' = 0.53, n = 0.92).

For comparison, Figures 12, 13, 14 and 15 show average fitness evolution for a
different random population. The denotation matrices are in Tables 8, 9, 10 and 11.
They do not differ qualitatively from what we’ve seen.

From the denotation matrix in Table 9 we can extract two dictionaries, the re-
ception dictionary (Table 12), which maps symbols into situations, and the emission
dictionary (Table 13), which maps situations into symbols. In each case we pick the
largest entry on the row (for a symbol) or column (for a situation), unless the largest
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Table 7: Denotation Matrix: Communication Suppressed, Learning Permitted

mean avg fltness

situation
symbol 0 1 2 3 4 5 6 7
0| 1058 322 564 277 692 641 74 429
111036 316 517 267 703 654 89 425
211066 299 547 324 681 636 88 413
311085 335 628 320 651 647 94 403
411019 324 570 302 668 676 85 422
511019 342 577 295 673 644 78 427
6| 1091 334 556 287 628 619 71 431
711125 315 589 295 692 697 90 435
V =0.549618
H =5.769859
n = 0.9232863
6.4 7
6.2 -1 :. \:_‘f' .\‘-. .'::
HECE S
ssd ¥ % i
-~ - *.; :'
5.6 LA ES
5.4 S
y = 5.8553 + 1.5538e-5x RA2 = 0.007
52 I T T r . r
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birth

Figure 12: Average Fitness: Communication and Learning Suppressed
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Table 8: Denotation Matrix: Communication and Learning Suppressed

situation

symbol 0 1 2 3 4 5 6 7
320 138 189 360 266 354 224 8&9
364 130 189 359 261 342 266 75
332 126 184 385 2352 365 257 82
350 125 193 366 257 351 255 98
340 119 190 354 254 356 225 78
328 145 170 343 244 348 217 86
345 119 194 374 214 361 237 78
346 149 159 343 242 383 226 83

V = 0.409451
H = 5.868233
n = 0.9560777

= O Ut W N — O

12

1y =5.9460 + 8.2454e-4x R"2 = 0.862

mean avg fitness
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Figure 13: Average Fitness: Communication Permitted, Learning Suppressed
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Table 9: Denotation Matrix: Communication Permitted, Learning Suppressed

situation

symbol 0 1 2 3 4 5 6 7

0] 695 5749 0 1157 0 2054 101 0
1]4242 11 1702 0 0 0 1 0
2| 855 0 0 0 0 603 862 20
3 0 0 0 0 1003 430 0 1091
4 0 0 0 0 0 0 2756 464
5 0 0 40 0 548 0 817 0
6| 1089 90 1 281 346 268 0 62
7 0 201 0 288 0 0 2 0

V = 2.272352

H =3.915812

n = 0.3052707

60

y = 43.361 + 2.3092e-3x R*2 = 0.850

mean avg fitness
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Figure 14: Average Fitness: Communication and Learning Permitted
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Table 10: Denotation Matrix: Communication and Learning Permitted

situation
symbol 0 1 2 3 4 5 6 7
0 0 0 2946 0 0 63> 4239 3233
1] 2084 0 672 1457 0 6701 8517 1284
2 0 0 646 433 0 230 63 879
3 0 1074 446 46 2315 1623 0 1265
4 | 27850 5504 0 2326 11651 243 3428 20076
5| 1301 0 0 854 858 368 0 0
6| 13519 2676 0 2223 2391 874 0 644
7 356 226 365 107 1357 27 100 1
V =2.165397
H = 4.208782
n = 0.4029273
13.6
. y = 13.328 - 1.3347e-4x R"*2 = 0.538
13.44" . i
1324
13.0
12.8
12.6
12.4 T T T T T T T
o 1000 2000 3000 4000 5000 6000
birth

Figure 15: Average Fitness: Communication Suppressed, Learning Permitted
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Table 11: Denotation Matrix: Communication Suppressed, Learning Permitted

symbol

1

2

situation

3

4 3 6 7

=1 O O e W — O

173
152
148
174
178
160
168
183

429
406
444
441
448
464
486
474

398
444
461
476
464
437
463
438

591
612
668
636
641
665
630
620

358 596 745 594
386 560 752 559
371 590 700 565
367 552 736 566
351 554 757 522
350 567 705 582
387 570 762 572
383 539 724 558

V' =0.335501
H =5.90837
n = 0.9694567

Table 12: Reception Dictionary

symbol

0

=1 O O = W N

—

situation
1
0
0or6
4or7

1 or3

Table 13: Emission Dictionary

situation +—

0

=1 O O = W N

29

symbol
1

W kO W oo



Table 14: Bidirectional Dictionary

symbol +— situation

0 1
1 0
3 4or7
4 6

two are nearly equal, in which case we list both.!!

Notice that the reception and emission dictionaries are not inverses of each other;
there is no requirement that a symbol mean the same thing to an organism when it
is received as when it is emitted. However, by comparing Tables 12 and 13 we can
see that half of the symbols are in fact used bidirectionally; these are shown in Table
14.

Observe that this population has evolved a language in which a symbol ambigu-
ously denotes situations 4 and 7, in either direction. This is remarkable consistency
of usage.

3.3 Analysis of Phenotypes

If Tables 9, 12, 13 and 14 reflect the language being used by this population, then we
ought to be able to see some evidence of it in the structure of the machines. Therefore
we have “dissected” the most fit individual from this experiment (Experiment ID
#1213).

In Table 15 we see this machine’s transition table listed by input symbol (global
environment state); this is the machine’s effective reception dictionary. Table 16 lists
the same transition table by situation (local environment state); this is its effective
emission dictionary. Each triple represents (1) the new internal state (always 0 in
these experiments), (2) the kind of response (0 = act, 1 = emit), and (3) the action
or emitted symbol.

We can now compare the reception dictionary extracted from the population (Ta-
ble 12) with that implicit in the most fit individual (Table 15). There are 13 matches;
5.5 would be expected by chance.'? (The matches are shown in boldface.) Similarly
we can compare the population and individual emission dictionaries; there are 12
matches where only 4 would be expected (Table 16).

Obviously this kind of “dissection” of individual machines is quite laborious. Auto-
matic tools need to be developed for analyzing the evolved structure and for gathering

1 Notice that Table 13 shows that symbol 0 almost means “lowest bit is 1”7 since we have 1+ 0,
3—~0and 55— 0.

1211 entries on the right of Table 12 x 1/2 expected match each (8 chances to hit 1 of 16
possibilities).
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Table 15: Reception Dictionary of Best Individual

situation
symbol 0 1 2 3 4 5 6 7
0({011(010]003]005/001(000|014|001
11002016 /015|017 013|010(000(000O0
2/000(010(012]013,013(005|{006|013
3/012(007]011(010,005 (013|015 |00¢4
410121005012 {016/006(016[014{003
5(010(004]011]016/006|017|006/| 015
6004005017 (013|007|012]000]011
71016 1012001016012 |016]010]012
Table 16: Emission Dictionary of Best Individual
symbol
situation 0 1 2 3 4 5 6 7
0({011]002]000(012]012{0101]004|016
11010/ 016 010,007 | 0050041005012
2003015012011 012|011|017(001
3/005(017(013]010]016[016]013|016
41001{013{013[{005|006 006 007012
5(000(]010(005(013]016(017]012|016
6(014]000]006|]015]014{006 (000|010
7/001 (000013004003 ]015(011]012
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Figure 16: Average Fitness: Communication Permitted, Learning Suppressed

more sophisticated statistics.

3.4 Additional Experiments

Figures 16 — 19 show the fitness evolution for the longest simulations run to date:
50000 (5 x 10*) “weeks.” In all of these it is apparent that the rate is decreasing, so it
seems reasonable to fit a log curve to the data. Notice especially that in Figs. 18 and
19 the fitness seemed to have reached a plateau at about ¢ = 15000, which continued
until the “catastrophe” at about ¢ = 45000. Presumably the population would have
recovered from this had the experiment continued. In any case, it appears that o = 57
and 3 = 210 are the equilibrium values.!? The final denotation matrices are in
Tables 17 and 18. From Table 17 we can see that symbols 1, 2, 3 and 5 have distinct
meanings, symbol 4 has two clear meanings, and symbols 0, 6 and 7 are not used
at all. This is reflected in the value n = —0.2, which indicates an “over-structured”
language (see p. 12). The lower coefficient of variation when learning was permitted
(V' =2.23, Table 18) was presumably a result of the “catastrophe.”

Table 19 lists final fitness (a, ), rate of fitness change (&, ) and measure of

B 13More specifically, the averages of the values from ¢ = 15000 to t = 45000 are & = 56.634 and
G = 210.380.
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Figure 17: Best Fitness: Communication Permitted, Learning Suppressed

Table 17: Denotation Matrix: Communication Permitted, Learning Suppressed

situation

symbol | 0 1 2 3 4 5 6 7
010 0 0 0 0 0 0 0
110 0 11014 5 1393 0 2 0
219 3 0 0 0 0 0 2494
310 2 0 0 0 629 0 1
410 181 0 0 3560 0 4696 1
510 0 0 20334 0 4 0 3898
610 0 0 0 0 0 0 0
710 0 0 0 0 0 0 0

V = 3.914863

H =2.398098

n = —0.200634
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Figure 18: Average Fitness: Communication and Learning Permitted
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Figure 19: Best Fitness: Communication and Learning Permitted
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Table 18: Denotation Matrix: Communication and Learning Permitted

situation
symbol 0 1 2 3 4 5 6 7
0 0 2 0 8907 0 0 0 0
1 0 0 1070 0 606 0 4667 0
2 0 16647 21703 0 1 0 0 0
3 0 1666 2440 0 0 1358 0 882
414695 1339 1 7445 330 1277 0 0
5] 660 0 0 0 0 0 0 90
6 0 0 1 16793 270 12149 0 21167
7 0 0 0 2121 2785 0 337 2563
V = 2.358346
H = 3.685994
n = 0.2286647
Table 19: Summary of Fitness Rates for Individual Experiments
ID Comm Learn o ¢ o ¢ V H n
1217a N N 6.22  15.82 0.16 0.53 0.41 5.87 0.96
0104a N N 6.40  16.18 0.56 1.17 0.53 5.75 0.92
1213 Y N 11.13  53.74 8.2 31.4 227 3.92 0.31
1214 Y N 12.78  65.22 13.0 724 4.00 2.93 -0.02
1215 Y N 12.48  57.70 13.4 492 2.01 4.21 0.40
0104 Y N 10.14  50.52 9.4 39.3 2.05 4.06 0.35
1215b Y Y 56.05 223.28 23.1 199.7 217 4.21 0.40
1216 Y Y 59.90 219.72 33.9 213.3 3.37 3.39 0.13
0104b Y Y 62.99 339.84 29.3  357.9 241 4.01 0.34
0104c N Y 13.06  26.68 —0.78 —1.79 0.55 5.77 0.92
0107 N Y 12,58 2444 —-1.33 -=-3.42 0.34 5.91 0.97
Notes:

ID = experiment identification number
Comm = communication permitted
Learn = learning permitted

a and [3 scaled by 10*
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Table 20: Summary of Fitness FEvolution

Comm/Learn
N/N Y/N Y)Y NJY
6.31 11.63  59.65 12.82
16.00  56.80 260.95  25.56
036 11.0 2877 —1.06
0.85 48.1  257.0 —-2.61
0.47  2.58 2.65 0.44
581 3.79 3.87 5.84
n 0.94  0.26 0.29 0.95

T @@ R

a ratio 1 1.84 9.45 2.03
( ratio 1 355 16.31 1.60
& ratio 1 30.6 79.9 —2.94
3 ratio 1 566 3024 —3.07
V ratio 1 5.52 5.66 0.94
H™! ratio 1 1.53 1.50 0.99
n~! ratio 1 3.62 3.24 0.99

Note: a, [3 scaled by 10*

structure (V, H, n) for several experiments that were run for 5000 “weeks.” The
table indicates whether communication and learning were permitted. In Table 20
we have averaged the runs with the same communication and learning parameters
so that their effect is more apparent. In the remainder of this section we summarize
these effects.

With communication permitted, the average fitness increases at a rate over 30
times as fast as when it is not. Also, the fitness of the best individuals increases as
a rate over 50 times as fast, the coefficient of variation is over five times as large,
the entropy is significantly decreased (by a factor of 1.5), and the structure measure
(n~!) is over three times as large.

When both communication and learning are permitted, average fitness increases
at a rate 80 times as fast as when neither is permitted. Best fitness increases at a
rate over 300 times as fast, but the coefficient of variation is about the same as with
no learning and entropy is slightly higher (perhaps reflecting more rapid linguistic
change).

On the other hand, when learning was permitted but communication suppressed,
the fitness actually decreased, albeit slowly. At this time we do not have an expla-
nation for this phenomenon, nor indeed for the slow increase of fitness when both
communication and learning are suppressed. In both cases there should be no se-
lective pressure, since it is impossible to improve on guessing. However, it must be
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pointed out that the rates are very slow. For example, in the case where communi-
cation and learning are both suppressed, the average fitness stays very close to the
chance level (within 1%),'* so perhaps the change is a result of genetic drift.

As expected, when communication is suppressed, the suppression or not of learning
has little effect on the structure of the language; V, H and n are all similar in the
two cases.

4 Future Investigations

There are many issues that need further investigation. Some of these can be settled
by gathering additional statistics. For example, we would like to know the fraction
of emissions that lead to successful communication acts. We expect this to be 1/L
when communication is suppressed (due to guessing), but significantly higher when
communication is permitted.'® It would also be interesting to compare the number
of communication acts that result from learning as opposed to inheritance.

We want to investigate several kinds of learning. For example, the current “single
trial learning” can lead to instability in the phenotype. Perhaps it would be preferable
to require some reinforcement before learning takes place. Also, machines now learn
through their own trial and error, but it would be simple to have them learn from
other, more fit machines, thus permitting true cultural inheritance [3].

“Dissecting” individual machines is labor intensive, so we would like to be able
to automate the process. We would also like more systematic comparisons of the
structure of the machines and the statistical distribution of communication acts. For
example, we would expect that the denotation matrix implicit in the population
(perhaps weighted by fitness) should be highly correlated to the denotation matrix
derived from the simulation.

In all the experiments described in this report we have taken G = L, that is,
the number of possible symbols is the same as the number of possible situations.
Suppose we take G > L; then there are more symbols than we need. Will we find
some symbols being unused? Or will we find synonymous symbols? Or multiple
language communities using different symbols for the same situation?

On the other hand suppose we take G < L; then there are too few symbols. In
this case, if the machines have more than one internal state, we might find that the
population begins to string symbols together to denote situations. What syntax will
they use? Will “word order” be significant? Will there be a definite grammar? Will
more than one language evolve? If so, how will they interact?

14The average a reached for the two experiments was 6.31. Since the chance level is 6.25, we have
6.31/6.25 = 1.0096.

15Tn fact this ratio is currently computed, but over the entire simulation, not just the last W
“weeks.” Therefore, the ratio is dominated by the early phases of the evolution, before communica-
tion has emerged.
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If environmental situations had features that were somewhat independent, would
separate symbols for these features emerge? Would there be any evidence of linguistic
categories (e.g. nouns, verbs, modifiers)?

Suppose we impose a spatial metric on the environments (so that some are closer
than others), and make probability of communicating and breeding decrease with
distance. Will we find geographically local languages evolving? What will be the
dynamics of their boundaries?

We anticipate a number of interesting differences would result from using neural
networks, rather than finite state machines, to determine the behavior of the indi-
viduals in the population.!® The sources of these differences include the continuous
response of neurons, which may result in “continuous” languages, and the ability to
use the genotype to govern a more complicated developmental process than has been
the case so far. Neural networks would also permit more realistic investigations of
learning.

5 Conclusions

We have shown that communication may evolve in a population of simple machines
that are physically capable of sensing and modifying a shared environment, and for
which there is selective pressure on cooperative behavior. The emergence of communi-
cation was detected by comparing simulations in which communication was permitted
with those in which it was suppressed. When communication was not suppressed we
found that at the end of the experiment the average fitness of the population was
84% higher and had increased at a rate 30 times faster than when communication
was suppressed. Furthermore, when communication was suppressed, the statistical
association of symbols with situations was random, as was expected. In contrast,
permitting communication led to very structured associations of symbols and situa-
tions, as determined by a variety of measures (V, H, n). Inspection of the structure
of individual highly fit machines confirmed the statistical structure.

Our simulations also investigated a simple kind of learning. This did not help
(and in fact hurt) when communication was suppressed, but when communication
was permitted the resulting fitness was 845% higher and increased at a rate 80 times
as fast as when it was suppressed.

Finally, we believe that the experiments described here show a new way to investi-
gate the emergence of communication, its function in populations of simple machines,
and the structure of the resulting symbol systems.

181n fact this was our original intent; using FSMs was intended as a preliminary investigation to
develop the required procedures.
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