
Synthetic Ethology and Communication                                                         1

DRAFT

Not to be Reproduced or Generally Distributed

Submitted to Adaptive Behavior

Synthetic Ethology and the Evolution of Cooperative
Communication

Bruce J. MacLennan* & Gordon M. Burghardt†

*Computer Science Department

University of Tennessee, Knoxville TN 37996, U.S.A

MacLennan@CS.UTK.EDU

(615)974-5067

FAX:  (615)974-4404

†Psychology Department & Graduate Program in Ethology

University of Tennessee, Knoxville TN 37996, U.S.A

BURGHD@UTKVX.UTK.EDU



Synthetic Ethology and Communication                                                         2

Abstract.  Synthetic ethology is proposed as a means of conducting controlled experiments

investigating the mechanisms and evolution of communication.  After a discussion of the goals and

methods of synthetic ethology, two series of experiments are described based on at least 5000

breeding cycles.  The first demonstrates the evolution of cooperative communication in a

population of simple machines.  The average fitness of the population and the organization of its

use of signals are compared under three conditions:  communication suppressed, communication

permitted, and communication permitted in the presence of learning.  Where communication is

permitted the fitness increases about 26 times faster than when communication is suppressed; with

communication and learning the rate of fitness increase is about 100 fold.  The second series of

experiments illustrates the evolution of a syntactically simple language, in which a pair of signals is

required for effective communication.

Keywords:  artificial life, communication, cooperation, entropy, ethology, evolution, genetic

algorithm, intentionality, language, learning, synthetic ethology
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Introduction

The Role and Scope of Synthetic Ethology

Description of Synthetic Ethology

Synthetic ethology is an approach to the study of animal behavior in which simple, synthetic

organisms are allowed to behave and evolve in a synthetic world.  Because both the organisms and

their worlds are synthetic, they can be constructed for specific purposes, in particular, for testing

specific hypotheses.  This approach permits more carefully controlled experiments than are

otherwise possible in ethology, because variables can be controlled more precisely, and the

evolution of identical populations can be studied under differing conditions.  In this paper we

demonstrate the application of synthetic ethology methods to the evolution of cooperative

communication.  Through the analysis of this important topic in theoretical and empirical ethology,

we want to stimulate discussion of the general utility of the synthetic ethology approach.

Synthetic Ethology Contrasted with Simulation

The techniques of synthetic ethology must be carefully distinguished from simulation or

mathematical modeling.  In a simulation, an attempt is made to imitate in a computer or other

modeling system the salient aspects of a complex situation that exists, at least potentially, in the real

world.  The design of a simulation is heavily theory-laden and necessarily highly selective.  This is

true even for models based on current theoretical and empirical understanding of the phenomena

being studied.  For out of the multitude of features in the natural situation, only a small fraction can

be selected for modeling.  This is the Achilles heel of simulation, for an inappropriate selection

vitiates the relevance of the model.  This problem is especially critical in ethology, because animals

respond so sensitively to their environments that it is often unclear whether a feature is relevant or

not.  Indeed, whether a simulation and its underlying assumptions is considered useful or valid is

often based on how robustly it matches our expectations (cf. Burghardt 1984, pp.13-15).
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In synthetic ethology, in contrast, we do not attempt to model any existing natural system.

Instead we construct “synthetic worlds” which are simple, but complete, and which manifest the

phenomena of interest.  By “complete” we mean that these worlds define all the conditions that

determine whether or not the synthetic organisms “survive,” that is, persist as definite structures.

In such a world, then, we can let evolution take its natural course.  However, because the world is

synthetic, it has important advantages:  (1) evolution proceeds much more quickly than in natural

worlds; (2) synthetic worlds, though complete, are much simpler than natural worlds; (3) all or

most of the variables can be directly controlled; (4) in particular, synthetic ethology permits

precisely controlled experiments in which exactly the same initial population and environment can

be observed to evolve under different conditions.  Thus synthetic ethology permits a degree of

experimental control usually seen only in the physical sciences, but without the sacrifice of

ecological validity that comes from studying animal behavior in unnatural environments.

The direct inspiration for our work is the synthetic psychology of Valentino Braitenberg

(1984).  He observes that the “law of uphill analysis and downhill invention” (p. 20) means that it

will generally be much more difficult to analyse an existing complex mechanism to determine its

internal structure than to design a system of comparable behavior.  The reason, in essence, is that

deduction is usually easier than induction.  The lesson is that traditional analytic (empirical)

approaches to the study of behavior should be complemented by synthetic approaches, which, if

nothing else, may suggest hypotheses to guide analysis and observation.  By affording more direct

experimental control, the synthetic approach seems more likely to suggest behavioral laws of great

generality, which can then be tested by the traditional approaches.

Synthetic Ethology applied to Communication

The synthetic approach is not only appropriate for strictly behavioral approaches to phenomena,

but is especially appropriate for phenomena, such as meaningful communication and language, that

philosophers take as examples of intentionality (e.g., Dennett 1987; Bekoff & Allen 1992).

Although some might hold that a scientific understanding of such mental phenomena requires an
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account in terms of the underlying neurophysiology (MacLennan 1988), the evolution of the

complex interaction of nervous systems and their environments is well beyond the current

capabilities of science and even basic terminology are still in dispute (e.g., Guilford & Dawkins

1991; Blumberg & Alberts 1992).  Further, in order to preserve the pragmatics of communication,

it is necessary to investigate it in the organisms’ natural environment, that is, the environment to

which it had become coupled through natural selection (MacLennan 1990, 1992).  To achieve this

coupling while retaining experimental control, we decided to have synthetic organisms evolve in

simple, yet complete synthetic worlds. Thus the origin of the term for our approach, synthetic

ethology.

The advantages of synthetic ethology can be illustrated by the difficulties inherent in the

behavior of concern here:  communication.  The first problem is one of definition:  how can a

behavior be identified as a communication act, an issue of some controversy (e.g., Burghardt

1970; Slater 1983)?  It is not sufficient to say it is a behavior of one organism that influences the

behavior of another, since such a definition is much too broad; it makes almost all behaviors

communication.  On the other hand, if we state that the communicator must have some intention of

influencing the receiver’s behavior, then our definition depends on the poorly understood and

teleological notion of intent.   Indeed, it begs the question of intentionality, which it was our

purpose to investigate.

A definition by Burghardt (1970) finessed the issue of intent by the requirement that the

behavior be likely to influence the receiver in a way that benefits, in a probabilistic manner, the

signaller or some group of which it is a member.  Often this group is based on genetic relatedness,

and thus the communication act must be adaptive, in an evolutionary sense, to the communicator.

One difficulty with this definition is that it may be difficult to establish operationally whether in fact

a particular behavior, on the average, enhances the fitness of the signaller or its group, since the

benefit could be long term or indirect, and confounded with many other influences.  Here is a

situation where synthetic ethology may be helpful, for we can construct two synthetic “worlds”

differing only in whether the behavior in question is possible.  Then we can follow the course of
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evolution in these worlds and observe any differences that arise.  Furthermore, we can run the

experiment many times, with controlled or random variations, and so separate general laws from

historical accidents.  In ethology, the most comparable approach would be the use of “natural

experiments,” in which functions can be inferred from comparative studies of animals with

different ecologies (cf. Tinbergen 1963).

Related Methodologies

Synthetic ethology can be compared with several related techniques.  One is computational

neuroethology, which is concerned with simulating the neural mechanisms underlying an

organism’s interaction with its environment (Beer 1990; Beer et al. 1990; Cliff 1990).  To date,

most research in computational neuroethology has focused on single organisms in simple

environments, but when it investigates populations in complete environments then it corresponds

to synthetic ethology.

Artificial life is a very new discipline (Langton 1989; Meyer & Wilson 1991; Langton et al.

1992); it has been defined as “a field of study devoted to understanding life by attempting to

abstract the fundamental dynamical principles underlying biological phenomena, and recreating

these dynamics in other physical media — such as computers — making them accessible to new

kinds of experimental manipulation and testing” (Langton 1992, p. xiv).  In addition to behavioral

phenomena, artificial life is concerned with prebiotic chemical evolution, self-reproduction,

artificial metabolism, evolutionary dynamics, development, learning and cultural evolution.

Synthetic ethology holds much the same relation to AL (artificial life) as synthetic psychology

holds to AI (artificial intelligence).  Both AL and AI are quite broad in their scope, but emphasize

the construction of systems exhibiting the relevant phenomena (life or intelligence).  In both

synthetic ethology and synthetic psychology, in contrast, the concern is more specifically scientific

rather than technological, since the goal is to use the synthetic approach to understand the natural

phenomena, rather than to produce useful artifacts.  Nevertheless, there is a great deal of overlap,
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and when AL is used to study behavioral and social phenomena that are closely coupled to their

environment, then it is essentially the same as synthetic ethology.

Finally, we need to contrast our analysis of communication with studies of the evolution of

cooperation (e.g., Axelrod 1981, 1984).  As described below, our experiments investigated the

evolution of communication in an environment that selects for cooperation.  As in the prisoner’s

dilemma games, there is a cost to attempting to cooperate; typically it is a lost-opportunity cost, but

we have also imposed specific communication costs, with little difference in outcome.  (By a lost-

opportunity cost we refer to the fact that, although the reward for cooperation may be high, there is

no reward for an attempted cooperation that is not reciprocated, whereas noncooperative action has

a reliable, though probabilistic, reward.)  Thus, while the evolution-of-cooperation experiments

differ from ours in that they have not addressed the evolution of communication, they are similar in

that they have shown that cooperative behavior can evolve if it leads to higher fitness than

noncooperative behavior.

Experiments

General Methods

Prerequisites to Communication

Our goal in these experiments was to design a synthetic “world” that is as simple as possible while

still permitting communication to evolve.  A first prerequisite for communication is that some

organisms have access to information (knowledge) that others do not, for if they all have access to

the same information, no communication is necessary.  The nonshared information could be about

the organism’s own internal state (e.g., hunger), or it could be about features of the external state

of the environment that cannot be directly perceived, or as well perceived, by the other organisms.

A second requirement is that this local information must “matter”; it must have some relevance

or significance to the organisms.  In particular, if its transmittal is to constitute communication

according to the definition given above, then its reception must tend to confer some advantage on
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the sender or its group (which may, of course, include the receiver).  An example of such

communication is that which facilitates cooperation that benefits both the sender and the receiver.

Therefore we have constructed our synthetic world to select for a kind of cooperation that can be

accomplished more effectively by access to information that is not directly perceivable, but which

might be communicated.

Shared and Local Environments

For communication to be possible there must be a shared global environment in which some

organisms can make changes that can be sensed by other organisms.  We made this shared

environment as simple as possible:  a single variable that can take on one of a finite number of

values.   It is easiest to think of this variable as a medium such as the “air” and each possible value

as one of a finite number of distinct “sounds,” only one of which is allowed to be in the air at a

time.  Notice that the shared environment has no geometry:  there is no space through which

signals propagate, nor do they have a direction; when a signal is emitted it is immediately available

to every simulated organism.

For communication to have any value, some organisms must have access to information that

others could use, but which is otherwise unavailable to the second organism.  Therefore, in these

experiments, we gave each simulated organism a local environment which it alone was able to

sense directly.  The local environment can be thought of as some features of the immediate vicinity

of the organism, which can be “felt” by that organism, but not “seen” by any more distant one.

Since organisms cannot sense each other’s local environments, there are no geometrical relations

between them.  They are not in a rectangular grid, nor are some closer than others.  The

implications of this local “privacy” and the lack of geometrical assumptions can be the subject of

future studies.

In these experiments we made the local environments as simple as possible:  each was a single

variable that could take on one of a finite number of values.  We often find it useful to think of a

local environment’s state as representing some kind of potential prey in the organism’s vicinity.
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Cooperation

In these experiments, cooperation takes the form of one organism acting in a way appropriate to a

different organism’s local environment.  We may think of it as two animals together capturing a

large prey animal that neither could bring down alone.  Since local environments are set randomly

and a potential cooperator cannot directly sense the state of another’s local environment, it has only

two choices:  to guess the other’s local state, or to acquire it by means of communication (through

the global environment).  We can therefore detect communication by levels of cooperation that

exceed that expected by chance.

In most of our experiments we have found it useful to impose an additional requirement on

cooperation.  With a limited number of possible local environment states (typically eight to sixteen)

and moderate size populations (typically at least 100 organisms), it is virtually assured that any

action attempted by a potential cooperator will match the local environment of some other

organism.  Therefore, we require a potential cooperator’s action to match the local environment of

the last emitter.  This places more selective pressure against guessing (and thus in favor of

communication) and therefore speeds up evolution; it does not have other significant effects.

The point is worth repeating that in synthetic ethology we are not attempting to simulate any

specific natural system.  Rather, since we are creating a world from scratch, we may build into it

any “natural” laws convenient for studying the phenomena of interest.  Thus, while there is

pedagogic value in conceptualizing the cooperative rule in terms of “two animals together capturing

a large prey animal,” the fact is that we have constructed the world so that the organisms in it will

be likely to reproduce only if they “cooperate” in the specified way.

Naturally, if the synthetic world is too alien, we may doubt the applicability to our world of

any observations made of the synthetic world.  This, however, is an unavoidable pitfall of

experimental science.  In constructing an artificial situation to facilitate the experiment, we run the

risk of altering precisely the phenomena of interest.  Replication and varying conditions will,

however, allow assessment of such a possibility.
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Simulated Organisms

We call the simulated organisms that were used in these experiments simorgs.  There are a number

of ways to control the behavior of simulated organisms.  An obvious and biologically plausible

method would be by a simulated neural network, and we have  used that approach (MacLennan &

al. 1990), as have other researchers (Werner & Dyer 1992).  In these experiments, however, we

chose a different control mechanism, called a finite-state machine because it can be in only one of a

finite number of states.  In effect it has only a finite number of bits of memory.  Finite-state

machines have the advantages that they are both readily understood intuitively and easy to represent

in genetic strings for simulated evolution.

The behavior of a finite-state machine is determined by a number of condition/effect rules.  The

conditions include the internal state of the simorg (corresponding to its “short-term memory,”

“mental state,” or “physiology”) as well as the sensible state of its environment (for us, the states

of the global environment and of its own local environment).  The effects include the new internal

state of the simorg, as well as any responses it makes, such as emitting a signal or attempting to

cooperate with another simorg.  In these experiments the rules have the form:

(Σ, γ, λ)  ⇒   (Σ ', R),

where Σ is an internal state value, γ is a global state value, λ is a local state variable, Σ' is a new

internal state value, and R is a response.  We may paraphrase the rule:  “If my current internal state

is Σ, and I sense γ in the global environment, and the situation in my local environment is λ, then

my new internal state will be Σ' and I will make response R.”  In these experiments the response is

either an emission (signal) or an action.  A emission has the form:

emit(γ'),

and puts the global environment into state γ'.  An action has the form:

act(λ'),
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and represents an attempt to cooperate with a simorg in situation λ'. If the local environment of the

last emitter is in state λ' then they cooperate, otherwise they do not.  It must be stressed that act(λ')

does not do anything beyond causing λ' to be compared to the last emitter’s local environment,

which results in cooperation if it matches, and a consequent increase in fitness (described later).

This rule for cooperation is not intended to model any specific situation in the natural world.

Our hypothesis relates communication and cooperation, but it says nothing about the kind of

cooperation.  In synthetic ethology, since we construct a “world” for the purposes of the

experiment, we have the freedom to build in a “law of nature” that selects for any sort of

cooperation we choose.  Nevertheless, the following analogy may help the rule to be understood.

We can imagine a group of hunters stationed in different territories.  When prey enters a hunter’s

territory he or she may signal that fact, and another hunter may respond and help to bring down the

prey, but to cooperate successfully, the helper must bring the appropriate tool (e.g., a fishing line,

a bola, or a bow and arrow).

Finite-state machines have a rule for every possible condition:  in these experiments, for every

possible combination of internal state, global state, and local state.  Thus the simorg’s behavior is

completely determined.  The collection comprising all a finite-state machine’s behavioral rules is

called its transition table, because it defines the machines transition from state to state.*  The

transition table can be depicted by a diagram such as Fig. 1, which shows its internal states (the

circles) and the conditions on some of the transitions between them (the lines).  The machines used

in these experiments had from 64 to 128 rules in their transition tables, so they are too complicated

to show in this way.

* A transition table, which is a one-dimensional array that defines the behavior of a deterministic machine in each

possible situation, must be distinguished from a transition matrix, which is a two-dimensional array that defines the

probability of state transitions for a nondeterministic machine.
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A transition table can be represented in a “genetic string” in a simple way.  We have seen that

the global environment states can be represented by integers 1, 2, …, G and the local environment

states by 1, 2, …, L.  If the machines have I internal states, then these too can be represented by

integers 1, 2, …, I.  Therefore, we see that a transition table must have IGL entries to define the

simorg’s behavior under all conditions.  Thus a simorg’s complete behavioral repertoire can be

defined by a genetic string with IGL “genes,” one for each possible condition.  For example, in the

first series of experiments described below, L = G = 8 and I = 1, and so each simorg had 64

genes.  In the second series of experiments, L = 8 and G = I = 4, so these machines had 128

genes.

The effect of each rule is to determine one of I possible new internal states, and to either emit

one of G possible signals, or to attempt one of L possible actions.  Thus there are E = I(G + L)

possible effects for each condition.  These can be encoded in the genetic string if each gene has E

alleles, represented by the integers 1, 2, …, E.  In these experiments E was typically 16 or 64

(i.e., 4 to 6 bits).  The use of genetic strings is described below (“Selection and Reproduction”).

Finally, we turn to learning and experiential effects, broadly considered.  These are an

important factor in the behavior of many organisms, and one of our goals is to use synthetic

ethology to study it.  Learning is especially relevant to communication, since we would like to

compare the efficacy and flexibility of innate (or closed) and learned (open) communication

protocols (“languages”).  Guilford & Dawkins (1991) point out that learning and memory are key,

but little studied, processes in signals and their evolution.  In these experiments we studied only

the simplest kind of single-case learning.  Specifically, when a learning simorg “makes a mistake”

by acting noncooperatively, then we change its transition table so that it would have acted correctly

under the current conditions.  That is, suppose the rule that matches the current state is:

(Σ, γ, λ)  ⇒   (Σ', act(λ')),

but that the local environment of the last emitter is in state λ'' ≠ λ', and so cooperation fails.  The

acting simorg learns by changing this rule in its transition table to:
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(Σ, γ, λ)  ⇒   (Σ ', act(λ'')),

which would have been the correct action.  The assumption is that there is some chance that it will

be the correct action the next time these conditions occur.  Clearly, this learning rule could easily

lead to instability.  Nevertheless, it seems to work rather well (see below, “Results”).*   It may be

conceived as similar to an animal using observational information to correct its response after the

fact from a limited set of alternatives.  Alternately, we may imagine a hunter signalling that a certain

kind of prey is in his or her territory; potential cooperators must bring the appropriate tool in order

to cooperate, but if they do not, then they may alter their behavior once they have discovered what

tool they should have brought.

Selection and Reproduction

Whenever a simorg acts in a way appropriate to the local environment of the last emitter, then we

say that cooperation has taken place, and award both the emitter and the receiver a point of credit;

we may think of it as the stored energy resulting from eating food.  We call the credit accumulated

by a simorg its “fitness,” but it must be kept in mind that this means nothing more than the number

of times it has successfully cooperated.  Since this “fitness” is used to determine which simorgs

“breed” and which “die,” we are selecting for simorgs that cooperate.

An experiment runs for a number (typically several thousand) of breeding cycles, each of

which comprises a number of environmental cycles, each in turn comprising several action cycles.

During an action cycle each simorg reacts to its environment as determined by its transition table

(its behavioral rules).  The simorgs react one at a time in a fixed order determined by their position

in a table.  After five action cycles, all the local environments are changed randomly, and the

simorgs are allowed to react again.  After 10 such environmental cycles, two simorgs (parents) are

* Instability could result because a single mistake causes a change of behavior.  Thus the behavior of a well-

cooperating simorg could be disrupted by a signaller that emits the wrong signal.  Nevertheless, single-case learning

is not uncommon in nature.
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selected for breeding and one simorg (moriturum) “dies,” with all selections being based on the

“fitness” accumulated during the breeding cycle.  The resulting single offspring replaces the

“deceased” simorg in the population, thus keeping the population size constant.  In effect we are

simulating a population equal to the carrying capacity of the environment.  This simplifies the

experiment, since we don’t have to worry about populations dying out or growing exponentially.

At the end of a breeding cycle every simorg’s fitness is reset to zero, and a new breeding cycle

begins.  The experiment continues for a fixed number of breeding cycles (5000 - 200,000 in these

experiments).

The parents and moriturum are selected stochastically, depending on their fitness. We have

made the probability of a simorg’s being selected as a parent proportional to its fitness, and its

probability of being the moriturum a simple monotonically decreasing function of its fitness (see

MacLennan 1990, 1992 for formulas).  In effect simorgs with more “energy reserves” are more

likely to breed, and those with less are more likely to die.  However, since the selection process is

stochastic, a very unfit simorg will occasionally be selected as a parent, or a very fit one as the

moriturum.  (Indeed, the same simorg could be selected for all three — effectively breeding with

itself and then dying in childbirth!)  However, in most cases the parents will not die, since they

probably have high fitness, whereas the moriturum probably has low fitness.

A brief walk through an entire breeding cycle may be helpful.  First the local environments are

initialized randomly.  Next all the simorgs are allowed to react, one at a time and in order.  A

simorg’s transition table tells it how to react to its environment, comprising the global environment

and its local environment.  It may react by emitting a symbol, that is, by changing the global

environment, or it may react by attempting to cooperate, an action that is successful only if it acts

appropriately to the last emitter’s local environment.  Thus communication takes the following

form.  Based on its local environment (and the global environment) a simorg places a symbol in the

global environment.  At a later time (and before another simorg has emitted a symbol), a second

simorg may react to the symbol in the global environment (and to its own local environment) by

attempting to cooperate.  If its action matches the local environment of the last emitter, then they
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both are given a point of fitness, otherwise they are not.  In the latter case, if learning is enabled,

then the receiving simorg changes its action under those circumstances (local and global

environment) to what would have been correct (though there is no guarantee that it will be correct

under the same circumstances next time).

Five times all the simorgs are allowed to react in this way, then the local environments are reset

randomly, and the simorgs are allowed to react to this new set of situations.  After ten such

changes of the local environments, breeding takes place.  Parents are chosen randomly, but

preference is given to the simorgs that have cooperated the most since the last breeding.  Likewise

simorgs that have not cooperated successfully are most likely to be chosen to “die,” that is, to be

replaced by the offspring of the parents.  After, say, 5000 breeding cycles of this kind, the

experiment is terminated and statistics are calculated.

Genotypes and Phenotypes

Associated with each simorg are two packages of information, which we call the genotype and the

phenotype.  The phenotype is the transition table used to generate the simorg’s behavior, and the

structure that is modified if and when the simorg learns.  In contrast, the genotype never changes

during the “life” of the simorg, but is related to the genotypes of its parents and offspring by

certain genetic operators described next.

When the parents have been chosen, the genetic strings representing their genotypes are

combined by a process called two-point crossover.  This means that (1) two points, η and θ, are

chosen randomly, and (2) between locations η and θ the genes are copied from one parent, and (3)

the remainder of the genes are copied from the other parent (see Fig. 2).  There is no distinction

between dominant and recessive genes, and all simorgs belong to one sex although two are

required for reproduction (hermaphrodites).

With low probability (usually 0.01) the genetic string is mutated after crossover.  If a mutation

is to occur, then a randomly chosen gene is replaced by a random allele (single point mutation). In

effect, a mutation replaces one entire entry in the finite-state machine’s transition table.  After the
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offspring’s genotype has been determined by crossover and mutation, it used to produce the actual

phenotypic transition table, and the resulting simorg replaces the moriturum.

Experiments, Measurements, and Statistics

If true communication (involving a sender) rather than information extraction is taking place, then it

must “confer some advantage (or the statistical probability of it) to the signaler or his group”

(Burghardt 1970, p. 16).  This is the kind of condition that synthetic ethology is ideally suited to

test, for we can start two synthetic worlds with the same population of random simorgs, but

prevent communication in one and not interfere with it in the other.  Systematic differences in the

future evolution of these worlds can then be attributed to communication.  In particular, we

suppress communication by randomizing the state of the global environment at every opportunity

(specifically, after every simorg responds).  In effect this raises the “noise level” to the point that

no communication is possible; under these circumstances cooperation can result only from lucky

guesses.

A second comparison that we can carry out with synthetic ethology is the evolution of

communication with and without learning.  It is a simple matter to allow the learning mechanism to

be turned on or off, a degree of control that would be difficult to achieve with natural organisms.

(As explained above, we considered only the simplest kind of single-case learning.)

We gathered a number of statistics during and after the experiments.  The most basic was the

“fitness,” that is, the number of successful cooperative acts.  This count was maintained for each

simorg and entered into the breeding and replacement decisions as already described.  We also

computed the average fitness of the population, smoothed over 50 breeding cycles, which was

written to a file for later plotting (e.g., Figs. 3-5).  After each experimental run was complete,

these data were used for other purposes, such as determining by linear regression the average rate

of fitness increase.  These measurements provide the most basic way of assessing the functional

effect of communication, since we can compare the rates of fitness change and fitness levels
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achieved under varying conditions, such as with communication suppressed or not, and learning

enabled or not.

Beyond merely detecting the presence of communication, we are also interested in studying its

structure.   In these experiments this was accomplished by gathering statistics on the local and

global environment states involved in successful cooperations.  Specifically, whenever two

simorgs cooperated we incremented a table entry corresponding to the “symbol” γ in the global

environment and the “situation” λ in the local environment of the last emitter.  The reason is that a

successful cooperation is prima facie evidence that for the emitter and receiver the symbol γ denotes

the situation λ.  Of course, the cooperation could have resulted from a “lucky guess,” but these

will be uniformly distributed across the table; frequently occurring symbol/situation pairs indicate

structured symbol use.  We refer to this table as a denotation matrix because it refers to apparent

use of symbols to denote situations.

We found that when the denotation matrix was accumulated over the entire experiment the

initial, random use of symbols obscured their later more structured use.  For this reason we

changed the denotation matrix to reflect only the most recent 50 breeding cycles of the experiment.

Thus we could track the evolution of the “language” used by the simorgs.  The matrices displayed

in Tables 1-3 show the statistical structure of the communication at the ends of the experiments (the

last 50 breeding cycles).

Although, as will be seen below, the increased structure of the denotation matrix when

communication is not suppressed is apparent to the eye, we also quantified its degree of structure.

If no real communication were taking place, then symbol/situation combinations should occur with

approximately equal frequency; therefore the denotation matrix would be quite uniform.  This

suggested several ways of measuring the “structure,” or deviation from uniformity, of the matrix.

One obvious possibility was the standard deviation, since it measures the spread of a distribution.

Unfortunately, the standard deviation varies with the number of cooperations, which makes it
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difficult to compare across experiments.  For this reason we computed the coefficient of variation

(CV) of the matrix, which measures the standard deviation in units of the mean, CV = σ/µ.

Another well-known measure of the uniformity of a probability distribution pk is its entropy or

information content, which is defined:

H = -Σk pk log pk .

The entropy is maximized by a uniform distribution, and decreases as it becomes less uniform.

The denotation matrix gives the frequencies of symbol/situation combinations; by treating this

frequency table as a probability distribution we were able use entropy to measure its uniformity.  It

is easy to show that for the uniform distribution the entropy is Hmax = 2 log N, where N = G = L

is the number symbols or situations (equal in these experiments).  (For simplicity of interpretation

we use base 2 logarithms throughout.)  For comparison, the entropy of an “ideal” language, in

which there is a one-to-one correspondence of symbols and situations, has an entropy Hideal = log

N.  In these experiments, since N = 8, Hmax = 6 and  Hideal = 3.*

There are, of course, other ways besides coefficient of variation and entropy for measuring the

structure of the evolved “language.”  For example, we have also used chi-square to test the

predictability of situations from symbols and vice versa.  The conclusions to be drawn are the

same, however.

Experiment 1:  Evolution of Simple Signals

Methods

In these experiments the number of possible global environment states G was equal to the number

of possible local environment states L.  That is, there were just enough possible “sounds” to

describe the possible “situations.”  In particular, G = L = 8, so the probability of a correct guess is

* An “ideal” denotation matrix has exactly one nonzero entry in each row and in each column, and all these nonzero

entries are the same, 1/N.  Thus the entropy is -log(1/N) = log N = 3, for N = 8.
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1/8.  The machines were given 0 bits of internal memory; that is, they had only one possible

internal memory state.  As a result, the rules in the transition tables of the finite-state machines have

the form of simple stimulus/response rules, where the stimulus is a symbol/situation pair (γ, λ),

corresponding to states of the global and local environments, and the responses are emissions or

actions.  An emission rule has the form:

(γ, λ)  ⇒  emit(γ'),

and an action rule has the form:

(γ, λ)  ⇒  act(λ').

Experiments were generally run for 5000 breeding cycles, although some were run 10 times as

long.  The local environments were changed randomly after every five action cycles, and a simorg

was replaced by breeding after every 10 local environment changes.  The population size was 100

and the mutation rate was 0.01, meaning that with 0.01 probability a gene was replaced by a

random allele.  The program itself is about 650 lines of Common LISP code, and runs identically

on a variety of workstations (a copy will be provided upon request).  Each 5000-cycle experiment

took about 100 min. of computer time (270 min. when learning was enabled) on a Sun-4

workstation.

Results

All in all, we made over 100 experimental runs, differing in random seed and other parameters

(e.g., suppression of communication).  We consider three evolutions starting from the same

random initial population; the results described are typical of all the experiments.  Figure 3 shows

the fitness of a population of nonlearning simorgs when communication was suppressed.  (All the

fitness plots included in this report are smoothed by a moving average of 50 breeding cycles.  This

makes the trends much more apparent.)  The fitness stayed within 12% of 6.25 cooperations per
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breeding cycle, the level of cooperation predicted for a population of “guessing” simorgs.*  Linear

regression detects a slight upward slope (3.67 × 10-5  coops./br. cyc./br. cyc.), a phenomenon we

address later.  Consider next Fig. 4, which shows the degree of cooperation among nonlearning

simorgs when communication was not suppressed; by the end of 5000 breeding cycles it had

reached 10.28 cooperations per breding cycle, which is 65% above the chance level.  Linear

regression shows that the fitness is increasing at a rate of 9.72 × 10-4, which is 26 times as fast as

when communication was suppressed.  Finally consider Fig. 5, which shows the degree of

cooperation when communication was not suppressed and the machines were capable of learning.

In this case the fitness achieved was 59.84 cooperations per breeding cycle, which is 857% above

the chance level, and was increasing at a rate of  3.71 × 10-3, which is 3.82 times the rate without

learning and one hundred times the rate when communication was suppressed.

Now we turn to the denotation matrices resulting from three evolutions beginning with the

same random initial population.  When communication was suppressed, the matrix shown in Table

1 resulted.  Visually, it is quite uniform, and this is confirmed by the coefficient of variation CV =

0.68 and by the entropy H = 5.66, which is near its maximum H = 6.  When communication was

not suppressed, a much more structured denotation matrix resulted (Table 2), an observation

confirmed by a higher coefficient of variation, CV = 2.04, and a lower entropy, H = 3.95; Fig. 6

shows how the entropy decreased during the evolution of the language.  Finally, when learning is

also enabled, we obtained the denotation matrix in Table 3, which is slightly more structured (CV=

2.72, H = 3.47).

By looking at the denotation matrices, which represent communicative activity over the last 50

breeding cycles, we can draw some conclusions about the “language” used by the simorgs.  First,

some symbols have almost come to denote a unique situation; for example Table 2 shows that 90%

of the recent uses of symbol 5 (in successful communication acts) referred to situation 2.  Second,

certain situations have symbols that typically denote them; in over 99% of the recent

* Analysis and calculation of the expected fitness of “guessing” simorgs can be found in MacLennan (1990).
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communications involving situation 7, it was denoted by symbol 2.  On the other hand, the matrix

also shows ambiguous symbol use; for example, in 65% of its recent uses symbol 2 denoted

situation 5, and in 31% it denoted situation 7.  Since the matrix reflects the collective

communication acts of the entire population, we cannot tell from it whether this multiple use of

symbols results from two subpopulations, or from individual simorgs using the symbol to denote

two situations.  Of course this information can be determined by looking at the individual simorgs,

a topic to which we now turn.

One of the significant advantages of synthetic ethology, beyond the experimental control

afforded, is the ability to have complete access to the mechanism by which behaviors are

generated.  There need be no mystery about how the simorgs are communicating, because the

process is completely transparent.  For example, we have “dissected” the most fit simorg from the

final population of an experiment to see how its use of symbols compares with that of the

population; we found over twice the number of coincidences that would be expected by chance

(MacLennan 1990, sect. 3.3).  Since the simorgs’ structures are available in the computer, it is

possible to write programs that scan them to look for patterns or to compile statistics.

To illustrate some of the interesting results of synthetic ethology experiments, Fig. 7 shows the

average fitness for an experiment comparable to Fig. 5 (i.e., communication permitted, learning

enabled), but with a different random starting population.  The fitness increased for the first 3000

breeding cycles at a rate of 9.77 × 10-4, which is a little slow; it’s more typical of a nonlearning

population, such as shown in Fig. 4, than of a learning population.  At approximately t = 3000 the

fitness decreased rapidly.  One possible cause is a “genetic catastrophe,” that is, a chance

coincidence of unfortunate occurrences, such as highly fit simorgs dying and unfit simorgs

breeding.  In other words, the average fitness could decrease because, coincidently, the fittest

simorgs died and the least fit simorgs survived.  Another possible cause is language instability

resulting from the very simple learning rule that we use; a chance encounter between an effective

communicator and noncommunicators can cause the communicators to rapidly “forget” their
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language.*  In other words, the fittest simorgs could become much less fit by losing their ability to

cooperate effectively.  In any case, about time t = 4000 the population began to recover, and at a

quite rapid rate, 5.08 × 10-3, which is 37% faster than that observed in Fig. 5.

Experiment 2:  Evolution of Complex Signals

Methods

In these experiments the number of possible global environment states was less than the number of

local environment states, G < L.  Thus, an adequate description of a local environment situation

would require the use of two or more symbols.  We picked L = 8, G = 4, so that two symbols

would be more than adequate (since with G = 4, two symbols could describe up to 16 situations).

So that the simorgs would be able to remember which of the four symbols they had already

sensed, we gave them two bits of memory.  Thus, the number of possible internal or “mental”

states was I = 4.  Notice that the simorgs still produce only one symbol per emission, and therefore

at most one symbol per action cycle.  However, since they have the theoretical ability to remember

the last symbol they emitted, they have the theoretical capability of emitting coordinated pairs of

symbols (on successive action cycles).  Similarly, since they have the theoretical ability to

remember the previous symbol they received, they likewise have the theoretical capability of

recognizing strings of symbols of length two.  However, remembering previous symbols is not

“wired into” our simorgs, though it may evolve.

As in the previous series of experiments, a breeding cycle comprised 10 sets of local

environment states, which were changed randomly every five action cycles. As before, the

population size was 100 and the mutation rate was 0.01.  Due to the increased complexity of the

* Of course, the cause of the fitness decline need not be a mystery; synthetic ethology permits us to “replay” that

period at “slow speed,” that is, to monitor the individual events as they occur.  We have not investigated this

particular instance of fitness decline since it was an isolated occurrence and did not seem relevant to our study.
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machines, evolution was allowed to continue much longer, from 1 × 104 to 2 × 105 breeding

cycles.

In order to increase selective pressure we also tried several variations, including raising the

fitness to a power (to exaggerate the difference between cooperators and noncooperators) and

imposing a penalty for unsuccessful cooperation (in which case we also provided initial “free”

fitness points — analogous to an initial energy reserve).  We also tried the experiment with

learning simorgs.

The program in this case was coded in both Common LISP (740 lines) and FORTRAN 77 (785

lines), and runs on a variety of workstations.  The 10000-cycle experiments described here used

the FORTRAN version (available upon request), and ran about 20 min. on a Sun-4 workstation.

Results

A typical experiment ran for 10000 breeding cycles.  The population size was 100, and the

machines had I = 4 internal states.  The local environments had L = 8 states, but the global

environment had only G = 4 states.  The fitness was squared and an initial fitness of 10 points

(equivalent to 10 cooperations) was provided.  The penalty for unsuccessful cooperation was the

same as the reward for successful cooperating, one point (thus each mistake cancels a

cooperation).  Thus the differences from experiment 1 were:  (1) there were 4 internal states rather

than 1 (thus permitting memory); (2) there were 4 global environment states rather than 8 (thus

there were insufficient states to denote the 8 local environment states); (3) the fitness computation

was slightly different.

Table 4 shows a typical denotation matrix.  By the end of the experiment, the entropy had

decreased from its maximum of Hmax = 7 to H = 4.62, which may be compared with the entropy

of the “ideal” matrix, Hideal = 3.  (See also Fig. 8.)

This denotation matrix reveals several characteristics of the language that had evolved.  First,

nonzero entries tend to occur in blocks of four, which reflects the fact that the second (most recent)
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symbol is usually the significant one.  For example, situation 7 is denoted exclusively by

“sentences” of the form ‘X2’.  Similarly, situation 5 is denoted primarily by ‘X1’ sentences.  This

dependence on the second symbol is not surprising, since it doesn’t require the simorg to

remember the previous symbol.  We do, however, observe some situations in which the both

symbols are being used.  For example, while ‘00’ and ‘01’ often mean situation 4, the sentence

‘20’ mostly denotes situation 0 and only infrequently denotes situation 4.  Other experiments

showed a preponderance of sentences of the form ‘XX’, which is another way of avoiding the

need for memory.

We conclude that in these experiments the machines did not evolve to make full use of the

communicative resources to denote the eight possible situations.  That this was not a simple matter

of insufficient time is shown by Fig. 8, which shows that the entropy had stopped decreasing after

about 5000 breeding cycles.  The population reached an evolutionary plateau.  This indicates that

making the step to multiple-symbol syntax is evolutionarily hard, an hypothesis that will be

explored in future experiments.

General Discussion

We summarize the main results of the two series of experiments.  In the first we showed that under

a variety of conditions a population of simple machines can evolve the ability to communicate in an

environment that selects for cooperative behavior.  When the possibility of communication is

suppressed, the machines cooperate at a very low level, as predicted by theoretical analysis.  On

the other hand, when communication was not suppressed, the machines did communicate, and as a

result they achieved a much higher level of cooperation, and the rate of fitness increase was an

order of magnitude greater.  Giving the machines a very simple kind of single-case learning

allowed them to cooperate even more effectively and to increase their fitness at a significantly

greater rate.  We also investigated the regularity of apparent symbol use and found it was nearly

random when communication was suppressed, but quite organized (as measured by entropy) when

it was not suppressed.  While a thorough comparison of our results to biological phenomena is not
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possible here, we do note that simple communication appears to occur in protista, bacteria, and

among cells in multicellular organisms, and may have been critical in the early development of

living systems.  The marked advantage of learning in communication and symbolic communication

is recognized in current cognitive ethology and comparative cognition (e.g. Ristau 1991; Roitblatt

1987; Savage-Rumbaugh, et al. 1993)

These results are quite replicable with different random initial populations, although of course

the exact measurements vary.  For comparison recall that in the experiments described (Figs. 3-5)

the rates of fitness change under the three conditions (communication suppressed, communication

permitted, communication with learning) were 0.367, 9.72 and 37.1, respectively, per 104

breedings.  In two other series of runs with different initial populations the corresponding rates

were somewhat lower:  0.16, 8.2, 23.1, and 0.56, 9.4, 29.3.  Averaging the three series together

shows that the fitness increased 25 times as fast when communication was permitted, and 82 times

as fast when learning was also enabled.

The second series of experiments was similar to the first, except that we created a situation in

which unique denotation of situations would require the use of pairs of symbols.  The results were

qualitatively similar, but the population did not unambiguously demonstrate the ability to use pairs

of symbols.  Additional experiments will be required.

We made several other observations that warrant mention.  In all of our experiments in which

communication was suppressed and learning was disabled, there was nevertheless a slight upward

trend in fitness.  We hypothesised that this resulted from the simorgs evolving to take advantage of

a specific feature of our selection algorithm.  Specifically, we consider cooperation to have taken

place if the a simorg’s action is appropriate to the situation of the last emitter.  Therefore, the

simorgs can “beat the odds” by signalling in only a subset of their situations, provided they also

evolve to guess only actions in that same subset.  We call this phenomenon partial cooperation
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through coadaptation.*  Several experiments confirmed this hypothesis, but we have not tried to

eliminate it since it is a low level effect and its prevention would complicate the experiments (see

MacLennan 1992 for details).

Another observation relates to our nondeterministic selection of parents.  Recall that the fitness

of a simorg determines only the probability of it reproducing; occasionally unfit simorgs will

reproduce and fit simorgs will not.  An earlier series of experiments used a deterministic strategy:

only the two most fit simorgs were allowed to breed.  In these experiments we never observed the

evolution of communication; the result was always a population of “silent guessers.”  We

conjecture that in the early stages of the evolution of communication, attempts to communicate are

often less effective than guessing, and so the deterministic selection strategy never permitted

nascent communicators to reproduce.  We have not attempted to test this conjecture, however.  But

our approach should allow comparison of the various views of the role of natural selection in

evolution  (cf. Endler 1986) as well as chance environmental events, genetic bottlenecks, and

shifting balance scenarios.

Another series of experiments has also demonstrated the evolution of communication in a

synthetic world.  Werner and Dyer (1992) put selective pressure on communication by making it

necessary for effective reproduction.  Specifically, the female simorgs are immobile, but can sense

the location of the males, whereas the males are blind but mobile.  Although males can encounter

and mate with females by a random walk, they can do so more effectively if the females “tell” the

males how they can be reached.  The experiments of Werner and Dyer may be contrasted with ours

in several respects.  First, they used a neural network model of behavior, whereas we used a finite-

state machine model.  Second, they used a concrete, “natural” activity (mating) as the source of

selective pressure, whereas we took advantage of the flexibility of synthetic ethology and defined a

* In previous papers we used the term “pseudo-cooperation.”  Partial cooperation is more accurate, since the

cooperation is real, but is possible in only a limited set of situations.  Note, however, that no communication is

involved, since the symbol placed in the global environment is irrelevant.
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more abstract criterion of cooperation.  Although their experiments are more biologically

suggestive, our design is more amenable to analysis and experimental control.  In spite of these

differences, many of their observations are qualitatively similar to ours, which lends support to the

thesis that synthetic ethology will aid the discovery of general laws.

Neural networks are an alternate to finite-state machines as models of behavior.  They have

been used successfully in synthetic ethology by Werner and Dyer (1992) and in unpublished

experiments of our own (MacLennan & al. 1990).  We used finite-state machines in these

experiments because of our prior experience in evolving them, and because they can be more easily

“dissected,” that is, analysed to determine their structure.  This is critically necessary in the early

stages of synthetic ethology, although we expect that in the long run neural networks will prove

necessary.  In addition to their more realistic characterization of the decision making process of

vertebrates, neural networks are able to behave more flexibly, especially in the presence of noise.

Further, they should permit the investigation of typical intensity  (Wiley 1983, Morris 1957), the

emergence of discrete symbols from continuously variable signals, a critical problem in cognitive

science (MacLennan 1993, 1994, in press).  Nevertheless, we have shown that even in this simple

synthetic world, comunication may evolve that exhibits some of the richness of natural

communication.
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Figure Captions

Fig. 1.  Example finite-state machine.  At any time the machine is in one of the states

indicated by the open circles.  Environmental/internal condition ck (which could include

sensory input), causes the machine to perform action ak and move to another state, as

indicated by the labeled arcs.  Since a machine’s current state is determined by its history of

prior conditions, it is a kind of memory.  In a finite-state machine there are only a finite

number of possible states, in effect, a finite number of bits of memory, since n bits of

memory are equivalent to 2n states.

Fig. 2.  Effect of two-point crossover operation, which is a simplified model of crossover

during diplotene stage of meiosis.  The genes between η and θ are taken from one parent

and the remainder from the other.

Fig. 3.  Average fitness of population with communication suppressed and learning

disabled.  The fitness is observed to vary around the level expected by chance, 6.25.

Linear regression shows a slight upward slope, 3.67 × 10-5.

Fig. 4.  Average fitness of population with communication permitted but learning disabled.

Linear regression shows that fitness is increasing at a rate of 9.72 × 10-4, which is 26 times

as fast as when communication was suppressed.

Fig. 5.  Average fitness of population with communication permitted but learning enabled.

Linear regression shows that fitness is increasing at a rate of 3.71 × 10-3, which is 3.8

times the rate without learning and one hundred times the rate when communication was

suppressed.  Notice that the average fitness of the population begins at a much higher level

than when learning was disabled (Figs. 3, 4); this is because each individual has four more

chances within an environmental cycle to respond correctly after it has “learned from its

mistake.”
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Fig. 6.  Entropy (measure of disorganization) of the “language” used by the population.

(By “language” we mean the communication pattern as represented in denotation matrix.)

The maximum possible entropy is 6, which represents completely disordered use of the

symbols.  Lower entropy is associated with more structured use of symbols.  An entropy

H = 3 is associated with univocal symbol use, that is, each symbol denotes a unique

situation.  In this case the the language has evolved from a completely disordered state to H

= 3.95, a more nearly ideal state.

Fig. 7.  Average fitness of another population with communication permitted and learning

enabled.  Notice the sudden decrease of average fitness about t = 3000.  This might have

resulted from a “genetic catastrophe” or from a sudden instability in the language.  Prior to

that time fitness had been increasing at a rate of 9.77 × 10-4, which is typical of a

population of nonlearners (e.g. Fig. 4).  After recovery began at about time t = 4000 the

fitness increased at a rate of 5.08 × 10-3, which is 37% faster than the population of

learners shown in  Fig. 5.

Fig. 8.  Entropy of two-symbol “language” used by population.  The maximum possible

entropy is 7 in this case.
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Tables

Table 1.  Denotation matrix resulting from experiment with communication suppressed and

learning disabled*

situation →

symbol ↓

0 1 2 3 4 5 6 7

0 180 201 27 712 149 296 254 292

1 202 191 21 707 140 268 240 338

2 196 199 24 699 145 284 235 290

3 168 154 20 713 135 312 214 314

4 200 182 15 643 149 310 226 284

5 206 183 28 684 142 283 243 280

6 204 191 21 676 145 290 221 310

7 198 186 19 689 128 276 236 297

* A denotation matrix shows the symbol/situation combinations occurring in successful

communications during the last 50 breeding cycles of the experiment.  It it thus a “dictionary” for

the “language” used by the simulated organisms.



Synthetic Ethology and Communication                                                         34

Table 2.  Denotation matrix resulting from experiment with communication permitted and learning

disabled.

sym.
sit. 0 1 2 3 4 5 6 7

0 0 0 2825 0 500 20 0 0

1 206 0 0 505 999 231 2 0

2 1 0 0 277 39 4935 1 2394

3 385 1 1 94 0 0 1483 1

4 0 292 0 0 19 555 0 0

5 0 0 1291 0 0 144 0 0

6 494 279 0 403 0 1133 2222 0

7 140 2659 0 202 962 0 0 0
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Table 3.  Denotation matrix resulting from experiment with communication permitted and

learning enabled.

sym.
sit. 0 1 2 3 4 5 6 7

0 3908 29172 1287 12281 2719 1132 93 3836

1 191 634 107 1039 0 0 2078 0

2 4675 1306 0 37960 85 410 7306 26611

3 0 410 0 0 0 126 1306 304

4 0 0 353 62 575 1268 420 519

5 36 0 46 469 0 0 0 26

6 1075 156 0 0 0 951 0 1086

7 0 73 54 0 2764 135 461 102
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Table 4.  Denotation matrix resulting from experiment investigating the evolution of complex

symbols*

sit.
sym. 0 1 2 3 4 5 6 7

0/0 31 22 42 0 144 0 0 0

1/0 26 15 62 0 175 0 0 0

2/0 119 23 44 0 47 0 0 0

3/0 8 9 18 0 31 0 0 0

0/1 0 54 106 2 74 59 516 0

1/1 0 33 174 3 423 227 1979 0

2/1 0 23 65 17 139 74 125 0

3/1 0 1 24 0 48 96 51 0

0/2 50 4 4 366 7 0 8 42

1/2 35 9 0 32 1 0 6 44

2/2 52 76 0 112 7 0 13 135

3/2 52 6 1 215 2 0 2 78

0/3 0 2 13 17 0 3 0 0

1/3 0 66 19 6 0 4 0 0

2/3 0 33 61 27 0 2 0 0

3/3 0 39 38 8 0 0 0 0

* “Symbol” denotes the last two symbols emitted by a simulated organism involved in a successful

communication act.
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Figures
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