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Abstract. It has been argued that neural networks and other forms of analog computation may transcend
the limits of Turing computation; proofs have been offered on both sides, subject to differing assumptions.
In this report I argue that the important comparisons between the two models of computation are not so
much mathematical as epistemological. The Turing machine model makes assumptions about information
representation and processing that are badly matched to the realities of natural computation (information
representation and processing in or inspired by natural systems). This points to the need for new models of
computation addressing issues orthogonal to those that have occupied the traditional theory of computation.
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1. Introduction

Hypercomputation may be defined as computation that transcends the bounds of Turing
computability, that is, super-Turing computation. Why would we suppose that such a thing
is possible, when Church’s thesis effectively defines computation to be Turing computation?
One line of argument comes from philosophers, such as Penrose (1989), who argue that
human cognitive abilities exceed those of digital computers; specifically, mathematicians can
decide Godel’s (formally) undecidable proposition. However, since human cognitive abilities
reside in the neural networks of the brain, one might conclude (or at least speculate) that
analog neural networks have super-Turing computational power.

Indeed, there is now considerable theoretical work showing that certain classes of ana-
log computers have super-Turing power. For example, Pour-El and Richards (1979, 1981,
1982) showed that non-Turing computable solutions can result from a Turing-computable
wave equation with Turing-computable initial conditions. Garzon and Franklin (1989, 1990;
Franklin and Garzon, 1990) have shown that discrete-time neural networks with a countable
infinity of neurons are more powerful than Turing machines (TMs), since they can solve
the Halting Problem. Stannett (1990) demonstrated that certain machines with continuous
dynamics can also solve the Halting Problem. Siegelmann and Sontag (1994) have proved
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that discrete-time recurrent neural nets with real-valued weights can have super-Turing
power. These results have been extended by Bournez and Cosnard (1995), who have shown
super-Turing power in a number of continuous-time and hybrid computation systems. On
the other hand, Maass and Sontag (1999) have shown that, in the presence of Gaussian or
similar noise, recurrent neural networks cannot recognize arbitrary regular languages, and
therefore have sub-Turing power.

Thus we may anticipate that the theoretical power attributed to analog computers may
depend somewhat delicately on the assumptions made in the theory. Interesting though
these investigations are, this paper will take a different approach to transcending Turing
computability. First, however, we must recall the assumptions underlying the theory of
Turing computability.

2. Assumptions Underlying Turing Computability

2.1. HISTORICAL CONTEXT

It is important to remember that the theory of Turing computability arose out of questions
of effective calculability in the formalist program in mathematics. The theory addresses the
sort of calculation that could be accomplished by mechanically manipulating formulas on
a blackboard of unlimited size, but using only finite effort and resources. Specifically, the
mathematicians that developed the theory were interested in what could be proved in formal
axiomatic theories. As a consequence, the theory makes a number of assumptions, which
are appropriate to its historical purpose, but must be questioned when the theory is used
for other purposes. Some of the developers of the theory of Turing computability were quite
explicit about their assumptions (e.g., Markov, 1961, chs. 1-2; see also Goodman, 1968,
ch. 5), but, as is often the case, later investigators have accepted them uncritically.

The roots of these assumptions go much deeper however, and reach into the foundations
of Western epistemology. For example, in the Laches (190C) Socrates says, ‘that which
we know we must surely be able to tell’. That is, ‘true knowledge’ or ‘scientific knowledge’
(epistémé) must be expressible in verbal formulas; nonverbalizable skill is relegated to ‘mere
experience’ (empeiria; e.g., Gorgias 465A). These notions were developed further by, among
many others, Aristotle, who investigated the principles of formal logic, and Euclid, who
showed how knowledge could be expressed in a formal deductive structure.

Key to this epistemological view is the idea that knowledge can be represented in a
calculus and processed by means of it, an idea which goes back at least as far as the
Pythagorean use of figurate numbers to calculate and demonstrate simple theorems in
number theory. The idea recurs throughout Western philosophy, for example in Hobbes’
assertion that thought is calculation (Leviathan 1.5), and in Leibniz’ attempts to design a
knowledge representation language and to develop a mechanical calculator for automating
reasoning (Parkinson, 1966).

Models are idealizations of what they model; that is what makes them models. What is
included in a model depends on its intended purpose, what it is supposed to talk about.
It is a cliche to say that one should not confuse the map with the territory, but it is an
apt analogy. Different maps give different information about the territory. If you try to get
information from a map that it is not designed to provide, it may give you no answer or an



incorrect answer. So also with models. If we ask them questions that they are not intended
to answer, then they may provide no answer or even an incorrect answer.

The Turing machine (and equivalent models of computation) are good models for their
purpose: studying the capabilities and limits of effectively calculable processes in formal
mathematics. They are also, it turns out, good models of digital computers with very large
(i.e. approximately unlimited) memories. However, before we apply the model to issues
arising in analog computation in natural and artificial intelligence, we must look critically at
the assumptions built into the foundations of the model to determine if they are sufficiently
accurate. That will be our next task.

Many of the assumptions of Turing computability theory can be exposed by considering
the engineering problems of constructing a physical Turing machine or by looking at other
practical engineering problems in signal detection, pattern recognition, control, etc. If we
do so, we will discover that the assumptions are problematic; they are not obviously true.
This phenomenological exercise will be my strategy in the remainder of this section. (For a
more detailed discussion, see MacLennan, 1994b.)

2.2. INFORMATION REPRESENTATION

The traditional theory of computation assumes that information representation is formal,
finite and definite (MacLennan, 1994b). Formality means that information is abstract and
syntactic rather than concrete and semantic. Abstract formality means that only the form
of a representation is significant, not its concrete substance. Therefore there is no limit to
the production of further representations of a given form, since the supply of substance is
assumed to be unlimited. (This infinite producibility is the ultimate source of the potential,
countable infinities of formal mathematics; see Markov, 1961, loc. cit.) Syntactic formality
means that all information is explicit in the form of the representation and independent
of its meaning. Therefore information processing is purely mechanical. Since ancient Greek
philosophy, finiteness has been assumed as a precondition of intelligibility. Therefore, rep-
resentations are assumed to be finite both in their size and in the number of their parts.
Definiteness means that all determinations are simple and positive, and do not require subtle
or complex judgements. Therefore there is no ambiguity in the structure of a representation.

Because representations are finite in their parts, they must have smallest elements, indi-
visible or atomic constituents. Individual physical instances of these atomic constituents are
often called tokens, each of which belongs to one of a finite number of types. For example,
‘A’ and ‘A’ are two different tokens of the letter-A type.

Tokens are assumed to be indivisible and definite with respect to their presence or ab-
sence. However, in the context of practical signal processing it is not always obvious whether
or not a signal is present. For example, if we see ‘¢’ in a badly reproduced document, we
may be unsure of whether we are seeing ‘x dot’, the time-derivative of z, or just z with a
speck of dust above it. Similarly, we may observe the practical problems of detecting very
weak signals or signals embedded in noise (e.g. from distant spacecraft).

Types are assumed to be definite and finite in number. That is, in classifying a token,
there are only a finite number of classes among which to discriminate; there are no contin-
uous gradations. Furthermore, the classification is definite: it can be accomplished simply,
mechanically, and with absolute reliability; there can be no ambiguity or uncertainty.



That such an assumption is problematic can be seen by considering the construction of
a physical Turing machine. It would have to have a camera or similar device to detect the
token on the tape and a mechanism to determine its type (e.g., letter-A, letter-B, etc.).
Certainly any such process would have some probability of error, which is ignored by the
model. Even in everyday life and in the absence of significant noise, it might not be obvious
that ‘1’ and ‘I’ are of different types, as are ‘0’ and ‘O’. We construct digital computers
so that the assumptions about tokens and types are reasonably accurate, but in a broader
context, pattern classification is a complex and difficult problem. In the real world, all
classifications are fuzzy-edged and there is typically a continuum between the classes.

Next we may consider compound representations comprising two or more tokens in some
relation with each other. As examples, we may take the configuration of characters on a
Turing-machine tape or the arrangement of symbols in a formula of symbolic logic. As with
the tokens and types of the atomic constituents, we may distinguish the individual physical
instances, which I'll call tezts, from their formal structures, which I'll call schemata. The
schema to which a text belongs depends only on the types of its constituents and their
formal relations. Typically there is a countable infinity of schemata, but they are built up
from a finite number of types and basic formal relations. For example, we have the countable
infinity of Turing machine tape configurations (sequences of characters on a finite stretch
of tape).

Texts are assumed to be finite and definite in their extent; that is, we can definitely
determine whether they are present and where they begin and end (in space, time, or some
other domain of extension). On the other hand, there is no a priori bound on the size of a
text (e.g., the TM tape can increase without bound). Practically, however, there are always
bounds on the extent of a text; the ‘stuff” which physically embodies texts (whether TM
tape or bits in computer memory) is never unlimited. Indeed, the limits may be quite severe.

Schemata are assumed to be finite in ‘breadth’ (size) and ‘depth’ (number of compo-
nents). That is, as we analyze a schema into its parts, we will eventually reach a ‘bottom’ (the
atomic constituents). This is a reasonable assumption for mathematical or logical formulas,
but is problematic when applied to other forms of information representation. For example,
an image, such as an auditory signal or a visual image, has no natural ‘bottom’ (level of
atomic constituents). Don’t think of digital computer representations of these things (e.g.,
in terms of pixels or samples), but look out your window or listen to the sounds around you.
Phenomenologically, there are no atomic constituents. That is, continua are more accurate
models of these phenomena than are discrete structures.

Similarly to the types of the atomic constituents, the basic formal relations from which
schemata are constructed are assumed to be reliably and definitely determinable. Digital
computers are designed so that this assumption is a good one, but in other contexts it is
problematic. For example, if someone writes ‘2 7', does it mean twice n or the nth power of
27 Many basic relations, such as spatial relations, exist in a continuum, but the traditional
theory of computation assumes that they can be perfectly discriminated into a finite number
of classes.

2.3. INFORMATION PROCESSING

Like information representation, Turing computation assumes that information processing
is formal, finite and definite. Thus a computation is assumed to comprise a finite number



of definite, atomic steps, each of which is a formal operation of finite effort and definite in
its application. However, these assumptions are problematic even in a Turing machine, if
we imagine it physically implemented. For example, there will always be some possibility of
error, either in the detection and classification of the symbol on the tape, or in the internal
mechanism that moves the tape, changes the internal state of the control, and so forth.
Also, the assumption that the steps are discrete is an idealization, since the transition from
state to state must be continuous, even if there is a ‘digital’ clock (itself an idealization of
what can physically exist). A flip-flop does not change state instantaneously.

Again, my goal is not to claim that these idealizations are always bad; certainly, they
are sometimes accurate, as in the case of a modern electronic digital computer. Rather, my
goal is to expose them as idealizations, so that we will not make them mindlessly when they
are inappropriate. For example, information processing in nature is much more continuous.
Certainly, when I write the word ‘the’ there is a sense in which the writing of the ‘t’ precedes
the writing of the ‘h’, but the steps are not discrete, and the writing of each letter (as a
process of motor control) interpenetrates with the writing of the preceding and following
letters (see, e.g., Rumelhart et al., 1986, vol. 1, ch. 1).

Therefore, we will have to consider information processing that cannot be divided into
definite discrete atomic operations, as well as processes that are effectively nonterminating
(as are most control processes in the nervous system).

One of the important characteristics of computation, in the Turing sense, is that it can
always be expressed in terms of a finite number of discrete, finite rules. This is accomplished
by specifying, for each fundamental (schematic) relation that can occur, the fundamental
relations that will hold at the next time step. By the assumptions of Turing information
processing, there can be only a finite number of such fundamental relations, so a finite
number of rules suffices to describe the process. As a consequence, these computations can
be expressed as programs on which universal machines (such as a universal Turing machine)
can operate.

However, underlying the expression of information processing in such rules lies the as-
sumption that a finite number of context-free features suffices to describe the states on which
the computation depends. Practically, however, many features are context-sensitive, that is,
they depend on the whole text or image for their interpretation. For example, the interpreta-
tion of partially obscured letters or sounds depends on their surrounding context (of letters
or sounds, but also of meaning; see for example Rumelhart et al., 1986, vol. 1, ch. 1). When
we try to describe natural information processing (e.g. cognitive processes) with increasing
accuracy, we require an exponentially increasing number of rules, an observation made by
Dreyfus long ago (Dreyfus, 1979).

2.4. INTERPRETATION

Since the theory of Turing computability arose in the context of the formalist school of
the philosophy of mathematics, the texts were often representations of propositions in
mathematics. Therefore the domain of interpretation was assumed to be some well-defined
(e.g. mathematical) domain, with definite objects, predicates, and propositions with de-
terminate truth values. While this is a reasonable assumption in the theory’s historical
context, it is problematic in the context of natural cognitive processes, where propositional
representations may have less definite interpretations. Indeed, as will be discussed later, in



natural intelligence many representations are non-propositional and their pragmatic effect
is more important than their semantic interpretation. In contrast, the traditional theory
ignores the pragmatics of representations (e.g., whether a representation is more easily
processed).

The conventional theory of interpretation assumes a determinate class of syntactically
correct well-formed formulas. This class is important since only the well-formed formulas
are assumed to have interpretations. Typically the well-formed formulas are defined by some
kind of formal generative grammar (essentially a non-deterministic program — a finite set
of discrete, finite rules — for generating well-formed formulas).

In contrast, in practical situations well-formedness and interpretability are matters of
degree. Linguists distinguish competence, the hypothetical grammatical knowledge of a
language user, from performance, the user’s actual ability to interpret an utterance, and
focus their attention on competence, but from the practical perspective of natural cognition,
performance is everything. In the natural context, the interpretation of an utterance may
be a basis for action, and its ability to perform that pragmatic role is the foundation of
interpretability.

The approach to interpretation pioneered by Tarski (1936) constructs the meaning of a
well-formed formula from elementary units of meaning (objects, predicates, functions), cor-
responding to the atomic units of the formula, by means of definite constructors paralleling
the constituent structure of the formula. However, we have seen that in many important
contexts the representations (e.g., visual input, tactile input) have no natural atomic units,
and the meanings of the basic features are generally context-sensitive. To put it differently,
Tarski’s recursive approach assumes a discrete constituent structure with a definite ‘bottom’;
this assumption is a poor model of many important information representations.

2.5. THEORY

Traditionally, the theory of computation looks at a calculus from the outside and addresses
such issues as its consistency and completeness. However, natural and artificial intelligence
often must process information that is non-propositional, and pragmatic effectiveness is
often more relevant than consistency or completeness.

Of course, the fundamental issue in the theory of Turing computability is whether a
computation eventually terminates, which is an important issue in the theory’s historical
context, which was concerned with modeling finite proofs. However, ‘eventual termination’
is of little value in many practical applications, for which information processing must return
useful results in strictly bounded real time. Furthermore, useful information processing need
not be terminating. For example, many robotic applications use non-terminating control
processes, which must deliver their results in real time.

Traditionally the theory of Turing computability has focused on the power of a calculus,
normally defined in terms of the class of mathematical functions it can compute (when
suitably interpreted). However, in many important applications (e.g. control problems), the
goal is not to compute a function at all, and it may distort the goal to put it in these terms.
Rather, we may be more interested in real-time control processes and in the robustness of
their computations in the presence of noise and other sources of error and uncertainty.

Since Turing computation makes use of discrete information representations and pro-
cesses, continuous quantities cannot be manipulated directly. For example, a real number



is considered computable if it can be approximated discretely to any specified accuracy.
However, analog computational processes directly manipulate continuous quantities, and so
the discrete computational model is very far from the reality it is supposed to represent.
Certainly noise and other sources of error limit the precision of analog computation, but
such issues are best addressed in a theory of continuous computation, which better matches
the phenomena (e.g., Maass and Sontag, 1999). Of course, analog processes may compute
approximations to a real number, but then the approximations themselves are real numbers,
and often the process is one of continuous approximation rather than discrete steps. Progress
in the right direction has also been made by Blum and her colleagues, who have extended
(traditional, discrete) computational processes to operate on the reals (e.g., Blum et al.,
1988), but the programs themselves are conventional (finite rules operating in discrete time).

The foregoing illustrates some of the questions that are assumed to be interesting and
relevant in the theory of Turing computation, but we have seen that other issues may
be more important in the analog computational processes found in natural and artificial
intelligence.

2.6. UBIQUITY OF ASSUMPTIONS

Before considering models of computation that transcend Turing computability, it will be
worthwhile to note how difficult it is to escape the network of assumptions that underlie it.
Historically, formal logical and mathematical reasoning were the motivation for the theory of
Turing computation. These activities make use of discrete formulas expressing propositions
with well-defined truth values. This sort of ‘codifiable precision’ is the purpose for which
formal logic and mathematics were developed. Therefore we must use the language of logic
and mathematics whenever we want to talk precisely about analog computation.

However, when we do so we find ourselves caught in the web of assumptions underlying
Turing computation. For example, in point-set topology and set theory we take for granted
the self-identity of a point and its distinguishability from other points. Points are assumed
to be well-defined, definite. That is, two points are either equal or not — there is no ‘middle’
possibility — although of course they may be near or far from each other.

The dubiousness of this assumption is revealed, as before, by considering practical situa-
tions, for we can never determine with absolute accuracy whether or not two points are dis-
tinct. Practically, all points are fuzzy. (But how do we express this fuzziness mathematically?
By associating a probability with each point!)

We can hardly avoid thinking of the real continuum but as made up of idealized points,
which are like idealized tokens. Practically, however, ‘points’ may be far from this ideal.

Discrete knowledge representation and inference is also taken for granted in our formal
axiomatization of theories. As part of the historical mathematical program of reducing the
continuous to the discrete, we use finite, discrete axioms to define uncountable sets, such
as the real continuum. Yet the Lowenheim-Skolem Paradox suggests that any such axiom
system must be inadequate for completely characterizing a continuum. (The paradox, which
dates to 1915, shows that any such axiom system must have a countable model, and therefore
cannot uniquely define an uncountable continuum.)

Arguably, these assumptions underlie all rational discourse, but there are forms of know-
ing (i.e. forms of information representation and processing) that are not accurately approx-
imated by rational discourse. Therefore, I am not arguing for the abandonment of logic and



mathematics, but indicating the fact that their very structure biases our understanding
of other kinds of knowing. These kinds of knowing are very important in natural and
artificial intelligence, and should be understood from their own perspective, not through
the distorting lens of discrete computation. Therefore we need a theory of continuous com-
putation, which can contribute to an expanded epistemology, which addresses nonverbal,
nondiscursive information representation and processing (MacLennan, 1988).

3. Natural Computation

3.1. DEFINITION

Natural computation is computation occurring in nature or inspired by computation in
nature; two familiar examples are neural networks and genetic algorithms (see, e.g., Ballard,
1997). Natural computation is quite similar to biocomputation, which may be defined as
computation occurring in or inspired by living systems.

There are several reasons that it is important to understand the principles of natural
computation. The first is purely scientific: we want to understand the mechanisms of natural
intelligence in humans and other animals, the operation of the brain, information processing
in the immune system, the principles of evolution, and so forth.

Another reason is that many important applications of computer science depend on
the principles of natural computation. For example an autonomous robot, such as a plan-
etary explorer, needs to be able to move competently through a natural environment,
accomplishing its goals, without supervision by a human being.

Natural computation shifts the focus from the abstract deductive processes of the tradi-
tional theory of computation to the computational processes of embodied intelligence (see,
e.g., Lakoff and Johnson, 1999). In the following subsection I will consider some of the key
issues that a theory of natural computation should address.

3.2. SOME KEY ISSUES

One of the principal issues of natural computation is real-time response. If a bird detects
some motion on the periphery of its field of vision, it must decide within a fraction of a
second whether or not it is being stalked by a predator. Such hard real-time constraints
are typical of natural computation, which must deliver usable results either in bounded real
time or continuously (as in motor control). Eventual termination, such as studied in the
traditional theory of computation, is irrelevant to natural computation.

Furthermore, the traditional theory of computational complexity (e.g. NP-completeness)
studies how the termination time of algorithms varies with the size of their inputs. For
example, an algorithm will be considered linear if its running time is proportional to the size
of the input. However, the theory intentionally ignores the constant of proportionality, since
the complexity class is supposed to be independent of specific hardware implementation (i.e.,
it treats disembodied computation). Therefore, an algorithm that, for a size N input, takes
N milliseconds is considered to be of the same complexity as an algorithm that takes IV
hours (or N centuries!). This is a useless map for finding one’s way in the wilderness of
natural computation.



On the other hand, in natural computation the size of the input is usually determined by
the structure of the sense organs or other ‘hardware’, so it is fixed. For example, there are
about a million nerve fibers in our optic nerves, which our visual systems are able to process
in the required fraction of a second. How our visual systems would handle twice, ten times,
or a hundred times that number of inputs, is not a very interesting or relevant question.
Therefore, in natural computation we are mostly concerned with nongeneral algorithms,
that is, algorithms designed to handle inputs of a specific, fixed size. Or, in the terminology
of linguistics, performance is critical; abstract competence is unimportant.

Natural computation must exhibit tolerance to noise, error, faults and damage, both
internal to the system and external, in the environment. The real world is messy and
dangerous, and natural computational systems need to be able to respond robustly.

The real world is also unpredictable, and natural computational systems must expect to
encounter situations that they have not been explicitly designed to handle. Traditional Al
systems, based on discrete, rule-based knowledge representation and processing, are often
brittle in the face of novelty; that is, they behave stupidly. Because novelty is expected in
natural environments, autonomous systems must respond to it in a flexible way, bending
rather than breaking. Therefore most natural computation is continuously adaptive; since
the environment is continually changing, so must an autonomous agent’s response to it. The
adaptation may be gradual or rapid, but representations of algorithms (‘programs’) must
accommodate it.

In natural computation we are generally interested in ‘good enough’ answers rather
than optimal solutions, which are usually a luxury that cannot be afforded in a demanding
real-time environment. Indeed, broad (robust) suboptimal solutions are often preferable to
better, tightly defined optima, since the latter are more brittle in the presence of noise and
other sources of uncertainty. In Herb Simon’s terminology, natural computation is satisficing
rather than optimizing (Simon, 1969, pp. 64-5).

With this overview of some key issues in natural computation, we can look at the sort of
idealizing assumptions that might underlie a theory addressing those issues. Some of them

form the basis of a theory of continuous formal systems (or simulacra; see MacLennan,
1993a, 1994a, 1994b, 1994c, 1995).

4. Directions Towards a Theory of Natural Computation

4.1. INFORMATION REPRESENTATION

We may begin by considering idealizations of information representation that are appropri-
ate to natural computation.

4.1.1. All quantities, qualities, etc. are continuous.

First, all quantities, qualities, etc. are assumed to be continuous (analog), as opposed to
discrete (digital). Certainly this applies to sensory input: think of continuously varying
intensities, frequencies, and so forth. It also applies to motor output, which is necessarily
continuous, even when it is abrupt. Information representations within the nervous system,
between sensation and motion, are also continuous. Although the nerve impulses are ‘all or
nothing’, the information is usually represented by the frequency and phase of the impulses,
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both of which are continuously variable. Further, in the ‘graded’ responses that take place
in the dendrites, the continuous shape of the wave forms of the impulses is significant.
Finally, the synaptic connections between neurons, where memory is believed to reside, have
continuously variable ‘efficacies’, which are complex functions of the number, distribution
and placement of chemical receptors.

4.1.2. Information is represented in continuous images.

Information in natural computation is generally extended continuously in either space or
time (or both); that is, information is represented in continuous images. For examples,
consider a sound (a pressure wave varying continuously over time), or a visual scene (a
pattern of light and color varying continuously over space and time), or the tactile input
over the surface of an animal’s body. Similarly, the motor output from an animal varies
continuously in time over its continuous muscle mass. Within the brain, information is
often represented in cortical maps, across which neural activity varies continuously in space
and time. Position in such maps may represent continuously variable features of sensory
input or motor output, such as frequency, orientation, and intensity (MacLennan, 1997,
1999).

The fact that neurons, sensory receptors, muscle fibers, etc. are discrete does not contra-
dict spatial continuity, since the number of elements is so large that the ideal of a continuum
is a good model (MacLennan, 1987, 1994b, 1999). For example, since there are at least 15
million neurons per square centimeter of cortex, even small cortical maps (several square
millimeters) have enough neurons that a continuum is a good approximation. Mathemat-

ically, information is most directly and accurately described as a time-varying vector or
field.

4.1.3. Images are treated as wholes.

If we think about the preceding examples of sensory input and motor output, we can see
that images are generally processed in parallel as wholes. Any segmentation or ‘parsing’ of
the image is secondary and a continuous function of the image as a whole. For example,
the separation of foreground information from background information in visual or auditory
input depends continuously on the entire image. Furthermore, images cannot be assumed
to have meaningful atomic constituents in any useful sense (e.g., as individually processable
‘atoms’ of information). Mathematically, we may think of a continuum as comprising an
infinite number of infinitely dense infinitesimal points, but they bear their meaning only in
relation to the whole continuum.

Images cannot be assumed to be decomposable in any single unambiguous way (as can
discrete representations, typically), since there is no ‘preferred’ way in which they were
constructed (MacLennan, 1993a, 1994b). That is, we think of discrete representations as
being constructed from atomic constituents, but for continuous representations the whole is
primary, and any decompositions are secondary. (Even if we think of such decompositions
as Fourier or wavelet decompositions, the ‘components’ are continuous quantities that are
functions of the entire image or extended regions of it.)
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4.1.4. Noise and uncertainty are always present.

In nature, nothing is perfect or exact. Even approximate perfection is rare. Therefore,
all images (both external and internal) should be assumed to contain noise, distortion,
and uncertainty, and processing should be robust in their presence. Indeed, as in quantum
mechanics, it is generally misleading to assume that there is one ‘correct’ image; each image
should be treated as a probability distribution (a fuzzy or indeterminate image). (The
mathematics of the Heisenberg uncertainty principle is directly applicable to the nervous
system; for a survey, see MacLennan, 1991; see also MacLennan, 1999.)

4.2. INFORMATION PROCESSING

4.2.1. Information processing is continuous in real time.

In natural computation, information processing is generally required to deliver usable results
or to generate outputs continuously in real time. Because natural computation must deliver
results in real time using comparatively slow components (neurons), the structure of the
computations is typically shallow but wide, that is, there are relatively few (at most about a
hundred) processing stages from input to output, but there is massively parallel processing
at each stage. In contrast, Turing computation is typically deep but narrow, executing few
operations (often only one) at a time, but executing very large numbers of operations before
it produces a result.

Furthermore, processes in nature are continuous, rather than proceeding in discrete steps.
Certainly the nervous system can respond very quickly (as when the bird decides to flee
the predator) and (approximately) discontinuously, and neurons can exhibit similar abrupt
changes in their activity levels, but these changes can be approximated arbitrarily closely
by continuous changes. As in the theory of Turing computation we use discrete processes
to approximate continuous change, so in the theory of natural analog computation we may
use continuous approximations of discrete steps. Thus there is a kind of complementarity
between continuous and discrete models (MacLennan, 1993b, 1993d, 1994c), but natural
computation is more accurately modeled by continuous processes.

4.2.2. Information processing is usually nonterminating.

In natural computation, real-time control processes are more common than the computation
of function values. Therefore, most computations are nonterminating, although they may
pass through temporary equilibria. Rather than ‘eventually’ computing a result, natural
computation must produce a continuous, unending signal in real time.

4.2.3. Noise, error, uncertainty, and nondeterminacy must be assumed.

Since noise, error, damage and other sources of uncertainty must be presumed in both the
external environment and the internal operation of a natural computation system, infor-
mation processing is typically nondeterministic; that is, we have a continuous probability
distribution of states. Therefore, the correctness of an answer is a matter of degree, as is
the agent’s confidence in it, and hence its proclivity to act on it.
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4.2.4. There is a continuous dependence on states, inputs, etc.

Since processes should be insensitive to noise and other sources of error and uncertainty,
they should be continuous in all respects (i.e., continuous functions of input, internal state,
etc.).

4.2.5. Processes need not be describable by rules.

We must consider information processes that are orderly, yet have no finite description (even
approximate) in discrete formulas, such as mathematical equations. It may be surprising
that such processes even exist, but a simple cardinality argument shows that it must be so
(MacLennan, 2001). The set of programs, which could be used to compute or approximate
a real number, is countable, but the set of real numbers in uncountable. Therefore most real
numbers are not Turing-computable. Thus, even if a continuous process can be described
by differential equations, it may not, in general, be expressible in finite formulas, since
the coefficients might be real numbers that are not computable or approximatable by a
Turing machine. On the other hand, such processes may be finitely expressible by the use
of continuous representations, which I have called guiding images (MacLennan, 1995).

4.2.6. Processes may be gradually adaptive.

As previously discussed, natural computation must deal with novelty in its environment.
Therefore typically, information processing must adapt — slowly or quickly — to improve
the system’s performance. This is possible because the guiding images that organize the
process can change continuously in time. Since rule-like behavior is an emergent phe-
nomenon, gradual adaptation can lead to reorganization of an entire system of apparent
rules (MacLennan, 1995).

4.2.7. Processes are matched to specific computational resources and requirements.

We are primarily concerned with processes that can handle prespecified input and out-
put channels and run on prespecified hardware, and that can meet the required real-time
constraints. Asymptotic complexity is largely irrelevant. Or, to put it in linguistic terms,
performance (versus competence) is everything.

4.3. INTERPRETATION

4.3.1. Images need not represent propositions; processes need not represent inference.

In natural computation, images need not represent propositions, and processes need not
represent inference. However, images may have a nonpropositional interpretation and infor-
mation processing may correspond systematically with processes in the domain of interpre-
tation. (This is, indeed, the original meaning of analog computation; see also MacLennan,
1993c, 1994c.)

4.3.2. Interpretability and interpretations are continuous.

When an image is interpretable, the interpretation must be a continuous function of the
image, so there can be no discrete changes of meaning. Furthermore, if some images are
interpretable and others are uninterpretable, there must be continuous variation between
these extremes, and thus degrees of interpretability. In other words, well-formedness (as a
precondition of interpretability) must be a matter of degree. This is one basis for the robust
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response of natural computation to noise, error and uncertainty. However, it does mean we
need a different, continuous way of describing the well-formedness of images. For example,
one can define continuous-time nondeterministic processes for generating images that are
analogous to grammars for discrete languages (MacLennan, 1995).

4.3.3. Pragmatics is primary; there need not be an interpretation.

Finally, we must note that natural computations need not be interpretable. Pragmatics is
primary; the computation is fulfilling some purpose for the agent. Semantics (interpreta-
tion) and syntax (well-formedness) are secondary. The trajectory of natural information
processing may pass through phases in which it is more or less interpretable, while still
accomplishing its pragmatic end.

4.4. THEORY

4.4.1. Unimportant issues:

First, it will be worthwhile to remind the reader of the issues traditionally addressed by the
theory of Turing computation, which are unimportant, or less important, in the theory of
natural computation.

As previously discussed, termination is not an interesting question since (1) many use-
ful information processes do not terminate, and (2) ‘eventual termination’ is irrelevant,
since information processing must satisfy continuous, real-time constraints. Even when we
choose to address traditional decision problems, we must do it in the context of continuous
information representation and processing (e.g., MacLennan, 1994b).

For the same reasons, asymptotic complexity and complexity classes (such as ‘NP-
complete’) are uninteresting. First of all, ‘the constants matter’, when we are operating
in real time; the difference between milliseconds and minutes is criticall Second, we are
not concerned with how the performance of the algorithm scales with larger inputs, since
it will not have to process inputs larger than those actually provided by the hardware. It
doesn’t matter whether an algorithm is O(N), O(N?), O(2"), or something else, so long as
the algorithm meets the real-time constraints for the particular N that it must process.

Universal computation — the ability to have a programmable universal Turing machine
— is important both in the traditional theory of computation and in practice, for it is
the basis for programmable digital computers. Whether there could be a corresponding
notion of a universal analog computer is certainly an interesting question, which has been
addressed in several contexts (e.g., MacLennan, 1987, 1990, 1999; Pour-El, 1974; Rubel,
1981, 1993; Shannon, 1941). However, it is not central to natural computation, for natural
computation systems are typically constructed from the interconnection of large numbers
of special-purpose modules. (Even ‘abstract thought’ is special-purpose compared to other
information processing done by brain modules.)

4.4.2. Important Issues:
Finally, we can enumerate a few of the issues that a theory of natural computation should
address.

One important issue is a natural computation system’s generalization ability and flex-
ibility in response to novelty. Natural computation systems should not behave stupidly,
as many rule-based systems do, when confronted with the unexpected. Therefore, such
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systems must be able to discover pragmatically useful structure that can be a basis for
reliable extrapolation.

As already stated many times, the theory must address the behavior of the system in
response to noise, error, and other sources of uncertainty, and these effects must be assumed
from the beginning, not added onto a fictitious ‘perfect’ system.

We need to know how to optimize performance subject to fixed real- time and resource
constraints. Given the hardware, how do we get the best results for the widest variety of
inputs most quickly? The generality of natural computation algorithms derives from the
procedures for fitting the process to the hardware and real-time constraints.

Another important problem is adapting processes to improve their performance. That
is, the theory must address learning algorithms and means for avoiding the pitfalls of learn-
ing (rote learning, destructive learning, instability, etc.). Related is the issue of designing
processes that adapt when their hardware is degraded (by damage, age, etc.).

Finally, we observe that the ‘power’ of natural computing is not defined in terms of the
class of functions it can compute, nor in terms of numerical ‘capacity’ (number of memories,
associations, etc. that can be stored). Rather, power is defined in terms of such factors as
real-time response, flexibility, adaptability, and robustness. Some of these factors may be
difficult to quantify or define formally (e.g. flexibility), but that is why we need the theory.

5. Conclusions

We can summarize our thesis as follows:
Turing Machine theory is not wrong but irrelevant.

This is, of course, an overstatement. Turing machine theory is relevant to questions of
effective calculability in logic and mathematics, and to the classes of functions computable
by digital computers. However, the assumptions of TM theory are not a good match to
natural analog computation. Therefore, although it is important to engage the traditional
issues (such as computability), it is also imperative to transcend them. New paradigms bring
new questions as well as new answers. Turing computability asked one kind of question, but
natural computation is asking a different kind.
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