
Highly Programmable Matter
& Generalized Computation

Research in Reconfigurable
Analog & Digital Computation

In Bulk Materials

Bruce J. MacLennan
Dept. of Computer Science

University of Tennessee, Knoxville

14 Feb. 2007 Highly Programmable Matter 2

“Radical Reconfiguration”
• Ordinary reconfiguration changes connections

among fixed components
• Radical reconfiguration of transducers

– to create new sensors & actuators
• Radical reconfiguration of processors

– to reallocate matter to different components

• Also for repair & damage recovery
• Requires rearrangement of atoms and molecules

into new components
• Requires “molar parallelism”

14 Feb. 2007 Highly Programmable Matter 3

Our Ongoing Research in
Radical Reconfiguration

• Programmable matter
– Computational control of matter
– Molecular combinatory computing
– Morphogenetic approaches

• Generalized computation
– Flexible general computing medium
– Encompassing both analog & digital
– U-machine

14 Feb. 2007 Highly Programmable Matter 4

Molecular Combinatory Computing
• Comb. comp. based on two graph substitutions

– computationally universal
– can compile programs into these computational graphs

• Can proceed asynchronously & in parallel
• Program computes into structure represented in molecules
• Supported by NSF (Nanoscale Exploratory Research)

14 Feb. 2007 Highly Programmable Matter 5

Morphogenetic Approaches

• Based on models of
embryological
development

• Cells migrate by local
interaction & chemical
signals

• Possible implemen-
tation: “programmable”
micro-organisms

14 Feb. 2007 Highly Programmable Matter 6

Computation in General Sense
• A definition applicable to computation in

nature as well as computers
• Computation is a physical process, the

purpose of which is abstract operation on
abstract objects

• A computation must be implemented by
some physical system, but it may be
implemented by any physical system with
the appropriate abstract structure

14 Feb. 2007 Highly Programmable Matter 7

Abstract Spaces

• Should be general enough to include
continuous & discrete spaces

• Hypothesis: separable metric spaces
• Include continua & countable discrete

spaces
• separable ⇒ approximating sequences

14 Feb. 2007 Highly Programmable Matter 8

The U-Machine
• Goal: a model of computation over abstract

spaces that can be implemented in a variety
of physical media

• In particular, bulk nanostructured materials
in which:
– access to interior is limited
– detailed control of structure is difficult
– structural defects and other imperfections are

unavoidable

14 Feb. 2007 Highly Programmable Matter 9

Urysohn Embedding
• A separable metric space is homeomorphic

to a subset of a Hilbert space
• Let (X, δ) be separable metric space
• Let b1, b2, … ∈ X be a ctbl dense subset
• WLOG suppose δ is bounded in [0, 1]
• Let similarity σ(x, y) = 1 – δ(x, y)
• Define:

!

U x() =
" x,b

1()
1

,
" x,b

2()
2

,
" x,b

3()
3

,K

$
%

&

'
(

14 Feb. 2007 Highly Programmable Matter 10

Urysohn Embedding

14 Feb. 2007 Highly Programmable Matter 11

ε-Nets

14 Feb. 2007 Highly Programmable Matter 12

Field Computation

• Field = continuous
distribution of
continuous quantity
= element of Hilbert
function space

• uk used to scale basis
functions

• Linear superposition
represents element of
abstract space

14 Feb. 2007 Highly Programmable Matter 13

Computation in Hilbert Space

!

X,"
X()

!

Y,"
Y()

!

Z,"
Z()

φ ψ

!

Q
"

!

Q
"

!

Q
"

f g

U V W

!

0,1[]
m

!

0,1[]
l

!

0,1[]
n

!

ˆ f

!

ˆ g

!

p
l()

!

p
m()

!

p
n()

14 Feb. 2007 Highly Programmable Matter 14

An Abstract Cortex
• Finite-dimensional

representations of
abstract spaces can be
allocated disjoint
regions in data space

• Field representations
can be allocated to
separated regions

• Analogous to regions
in neural cortex

14 Feb. 2007 Highly Programmable Matter 15

Decomposition of Computations

• Complex computations may be decomposed
into simpler ones

• Variable regions provide interfaces between
constituent computational processes

• For “radical reconfiguration”: don’t build in
specific primitive processes

• How are primitive processes implemented?

14 Feb. 2007 Highly Programmable Matter 16

Implementation of
Primitive Computations

• There are several “universal approximation
theorems” that make use of approximations
of the form:

• Works for a variety of simple nonlinear
“basis functions” rj

!

v = F u() "
r
j rj u()

j=1

H

$

14 Feb. 2007 Highly Programmable Matter 17

Example Interpolation Method
• Training samples: (x1, y1), …, (xP, yP)
• Hilbert space reprs.: uk = U(xk), vk = V(yk)
• Interpolation conditions:

• Let
• Exact interpolation: V = RA
• Best (least squares) approx.: A ≈ R+V

where R+ = (RTR)–1RT

!

v
k =

r
" j rj u

k()
j

#

!

Vki = vi
k
, Rkj = rj u

k(), A ji =" i

j

14 Feb. 2007 Highly Programmable Matter 18

Typical Basis Functions
• Perceptron-style: rj(u) = r(wj ⋅ u + bj)

• Radial-basis functions:

• Green’s function for stabilizer:
 rj(u) = G (u, uj)

• Key point: lots of choices!

rj u() = r u" c j()

14 Feb. 2007 Highly Programmable Matter 19

Determination of
Interconnection Matrices

• Unknown functions: neural-net training
• Known function — compute offline by:

– Generating sufficient interpolation samples, or:
– Determining matrices analytically

• Typical primitives could include those
found typically on analog or digital
computers

14 Feb. 2007 Highly Programmable Matter 20

Merging Linear Transforms
• General form of approximation:

v = A r(Bu) , where [r(Bu)]j = r([Bu]j)
• Suppose: w = A′ r′(B′v)
• Linear parts can be combined:

w = A′ r′[C r(Bu)], where C = B′A
• Two basic operations:

– Matrix-vector multiplication
– Simple point-wise nonlinear function r

14 Feb. 2007 Highly Programmable Matter 21

Input Transduction
• Input space: (X, δ)
• Suitable ε-net: (b1, b2, …, bn)
• Hilbert-space representation u = U(x):

uk = σ (x, bk),
where σ (x, bk) = 1 – δ (x, bk)

• In effect have fuzzy feature detectors:
 σk(x) = σ (x, bk)

• Thus u = (σ1(x), σ2(x), …, σn(x))T

14 Feb. 2007 Highly Programmable Matter 22

Output Transduction
• Physical output spaces are usually vector

spaces
• Approximate by:

• This summation is a physical superposition
of physical vectors aj

• Compute approximation parameters in any
of the usual ways

!

y =V "1
v() # a

j
rj v()

j=1

H

$

14 Feb. 2007 Highly Programmable Matter 23

Real-time Computation

• Time-varying input & outputs x(t) are
represented by time varying vectors u(t)

• Differential changes are computed like
other functions

• Differential changes are integrated into
variable regions

14 Feb. 2007 Highly Programmable Matter 24

(Re-)Configuration Methods

14 Feb. 2007 Highly Programmable Matter 25

Overall Structure
• Variable (data) space

– Large number of scalar variables for Hilbert
coefficients

– Partitioned into regions representing abstract
spaces

• Function (program) space
– Flexible interconnection (∴ 3D)
– Programmable linear combinations
– Application of basis functions

14 Feb. 2007 Highly Programmable Matter 26

Depiction of UM Interior

• Shell contains variable
areas & computational
elements

• Interior filled with
solid or liquid matrix
(not shown)

• Paths formed through
or from matrix

14 Feb. 2007 Highly Programmable Matter 27

Layers in Data Space

• Connection matrix has
programmable weights

• Linear combinations are
inputs to nonlinear basis
functions

• Exterior access to both
sides for programming

14 Feb. 2007 Highly Programmable Matter 28

Depiction of UM Exterior

14 Feb. 2007 Highly Programmable Matter 29

Diffusion-Based Path Routing

14 Feb. 2007 Highly Programmable Matter 30

Example Path-Routing Process
• Attractant diffuses from destination

– Could be chemical, electrons, molecular state
– Attractant degrades

• Existing paths clamp attractant to 0
– Effectively repel new path

• Path “grows” from source by climbing attractant
gradient
– Attractant injection rate ramped up

• After connection made, attractant allowed to
decay before routing next path

14 Feb. 2007 Highly Programmable Matter 31

Example of Path Routing

• Starts and ends chosen
randomly

• Quiescent interval (for
attractant decay)
omitted from video

• Each path occupies
~0.1% of space

• Total: ~4%

14 Feb. 2007 Highly Programmable Matter 32

Front

14 Feb. 2007 Highly Programmable Matter 33

Right

14 Feb. 2007 Highly Programmable Matter 34

Back

14 Feb. 2007 Highly Programmable Matter 35

Left

14 Feb. 2007 Highly Programmable Matter 36

Top

14 Feb. 2007 Highly Programmable Matter 37

Bottom

14 Feb. 2007 Highly Programmable Matter 38

Remarks
• More realistic procedure:

– Systematic placement of regions
– Order of path growth
– Control of diffusion & growth phases

• General approach is robust (many variations
work about as well)

• Paths could be formed by:
– Migration of molecules etc.
– Change of state of immobile molecules

14 Feb. 2007 Highly Programmable Matter 39

Example Connection-Growth Process
• Goal: approximately full interconnection between

incoming “axons” (A) and “dendrites” (D) of basis
functions
– Doesn’t have to be perfect

• Each A & D periodically initiates fiber growth
– Growth is approximately away from source

• Fibers repel others of same kind
– Diffusible, degradable repellant
– Fibers follow decreasing gradient (in XZ plane)

• Contact formed when A and D fibers meet

14 Feb. 2007 Highly Programmable Matter 40

Example of Connection
Formation

• 10 random “axons”
(red) and “dendrites”
(blue)

• Simulation stopped
after 100 connections
(yellow) formed

14 Feb. 2007 Highly Programmable Matter 41

Resulting Connections

14 Feb. 2007 Highly Programmable Matter 42

Setting Connection Strengths by SVD
• Let m×n connection matrix M = U Σ VT,

where

and Σr = diag (s1, …, sr)
• Let uk and vk be columns of U and V:

U = [u1, …, um], V = [v1, …, vn]
• Then,

• For each k, apply vk to input and uk to output and
program with strength sk

!

M = s
k
u
k
v
k

T

k=1

r

"

!

" =
"
r
0

0 0

$
%

&

'
(

14 Feb. 2007 Highly Programmable Matter 43

Summary of U-Machine
• Permits computation on quite general

abstract spaces (separable metric spaces)
– Includes analog & digital computation

• Computation by linear combinations &
simple nonlinear basis functions

• Simple computational medium can be
reconfigured for different computations

• Potentially implementable in a variety of
materials

14 Feb. 2007 Highly Programmable Matter 44

Highly Programmable Matter

14 Feb. 2007 Highly Programmable Matter 45

Computational Control of Matter
• A material process may be used as a

substrate for formal computation
• Formal computation may be used to control

a material process
• A material process may be a substrate for

universal computation, controlled by a
formal program

• A formal program may be used to govern a
material process

14 Feb. 2007 Highly Programmable Matter 46

The Physical State
as Synthetic Medium

• Computation controls physical state (as
synthesis medium)

• Reconfigured computer is embodied in
physical state

• Computation must be able to distinguish
synthetically relevant physical states

14 Feb. 2007 Highly Programmable Matter 47

Universal Computer

physical
state

U
(equations)

external
input

synthesis
medium

14 Feb. 2007 Highly Programmable Matter 48

Initialization

Uexternal
input

d

δ

 s

14 Feb. 2007 Highly Programmable Matter 49

Computation

Uexternal
input

d′

 s′

waste

energy

14 Feb. 2007 Highly Programmable Matter 50

Completion

Uexternal
input

C

synthesized
computer

14 Feb. 2007 Highly Programmable Matter 51

Equilibrium vs. Stationary
Configurations

• Program terminates for equilibrium config.
• Program continues to run for stationary config.

U
C

U

C′

waste

energy

input input′

d′ d′′

14 Feb. 2007 Highly Programmable Matter 52

Thermodynamics of a
Configuration

• Either, configuration is a stable state
– damage may shift to undesirable equilibrium

• Or, configuration is a stationary state of a
non-equilibrium system
– continuously reconfigures self
– self-repair as return to original stationary state
– adaptation & damage recovery as move to

different stationary state

14 Feb. 2007 Highly Programmable Matter 53

Useful Media for
Computational Synthesis

• For pure computation, move as little matter
& energy as possible

• For synthesis, need to control atoms &
molecules as well as electrons

• Need sufficiently wide variety of
controllable atoms & molecules

• Goal: structures on the order of optical
wavelengths (100s of nm)

14 Feb. 2007 Highly Programmable Matter 54

Models of Computation
for Synthesis

• Need massive parallelism to control detailed
organization of state

• Need tolerance to errors in state
– synthesis program should be tolerant
– configured computer should be tolerant

14 Feb. 2007 Highly Programmable Matter 55

Locus of Control of
Detailed Organization

• Reorganizing atoms & molecules
⇒ vast amount of detailed control

• Heterosynthesis
– external configuration controller determines

fine structure of medium (high bandwidth)
• Autosynthesis

– external configuration controller determines
general boundary conditions (low BW)

– fine structure results from self-organization

14 Feb. 2007 Highly Programmable Matter 56

General Model of
Radical Reconfiguration

• Synthesis controller
– low bandwidth to outside world
– bandwidth to medium:

• high for heterosynthesis
• low for autosynthesis

• Synthetic medium
– molar parallelism of interactions

• simple for heterosynthesis
• complex for autosynthesis

– what are suitable synthetic media?

14 Feb. 2007 Highly Programmable Matter 57

Example:
Activation-Inhibition System

• Let σ be the logistic sigmoid function
• Activator A and inhibitor I may diffuse at

different rates in x and y directions
• Cell is “on” if activator + bias exceeds

inhibitor

!

"A

"t
= dAx

" 2A

"x 2
+ dAy

" 2A

"y 2
+ kA# mA A + B $ I()[]

"I

"t
= dIx

" 2I

"x 2
+ dIy

" 2I

"y 2
+ kI# mI A + B $ I()[]

14 Feb. 2007 Highly Programmable Matter 58

Double Activation-Inhibition
System

• Two independently diffusing activation-inhibition
pairs

• May have different diffusion rates in X and Y
directions
– In this example, I1y >> I1x and I2x >> I2y

• Colors in simulation:
– green = system 1 active
– red = system 2 active
– yellow = both active
– black = neither active

14 Feb. 2007 Highly Programmable Matter 59

Formation of Pattern

• Random initial state
• System stabilizes to

< 1% cell changes
• Modest noise

(annealing noise)
improves regularity

14 Feb. 2007 Highly Programmable Matter 60

Stationary State

• System is being
continually
maintained in a
stationary state

• Continuing change
< 1%

14 Feb. 2007 Highly Programmable Matter 61

Recovery from Damage

• Simulated damage
• Damage destroys

activators & inhibitors
as well as structure

• System repairs self by
returning to stationary
state

• No explicit repair
signal

14 Feb. 2007 Highly Programmable Matter 62

Reconfiguration:
Orthogonal Structure

• Exchange inhibitor
diffusion rates for
systems 1 & 2

• Vertical stripes
become horizontal

• Horizontal stripes
become vertical

• No explicit
reconfiguration signal

14 Feb. 2007 Highly Programmable Matter 63

Conclusions
• Radical reconfiguration can be

accomplished by using computation to
change matter
– external control of macrostructure
– self-organization of microstructure

• A simple, flexible architecture can compute
over a variety of abstract spaces (including
analog & digital)

