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“Radical Reconfiguration”
• Ordinary reconfiguration changes connections

among fixed components
• Radical reconfiguration of transducers

– to create new sensors & actuators
• Radical reconfiguration of processors

– to reallocate matter to different components

• Also for repair & damage recovery
• Requires rearrangement of atoms and molecules

into new components
• Requires “molar parallelism”
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Our Ongoing Research in
Radical Reconfiguration

• Programmable matter
– Computational control of matter
– Molecular combinatory computing
– Morphogenetic approaches

• Generalized computation
– Flexible general computing medium
– Encompassing both analog & digital
– U-machine
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Molecular Combinatory Computing
• Comb. comp. based on two graph substitutions

– computationally universal
– can compile programs into these computational graphs

• Can proceed asynchronously & in parallel
• Program computes into structure represented in molecules
• Supported by NSF (Nanoscale Exploratory Research)
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Morphogenetic Approaches

• Based on models of
embryological
development

• Cells migrate by local
interaction & chemical
signals

• Possible implemen-
tation: “programmable”
micro-organisms
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Computation in  General Sense
• A definition applicable to computation in

nature as well as computers
• Computation is a physical process, the

purpose of which is abstract operation on
abstract objects

• A computation must be implemented by
some physical system, but it may be
implemented by any physical system with
the appropriate abstract structure
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Abstract Spaces

• Should be general enough to include
continuous & discrete spaces

• Hypothesis: separable metric spaces
• Include continua & countable discrete

spaces
• separable ⇒ approximating sequences



14 Feb. 2007 Highly Programmable Matter 8

The U-Machine
• Goal: a model of computation over abstract

spaces that can be implemented in a variety
of physical media

• In particular, bulk nanostructured materials
in which:
– access to interior is limited
– detailed control of structure is difficult
– structural defects and other imperfections are

unavoidable
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Urysohn Embedding
• A separable metric space is homeomorphic

to a subset of a Hilbert space
• Let (X, δ) be separable metric space
• Let b1, b2, … ∈ X be a ctbl dense subset
• WLOG suppose δ is bounded in [0, 1]
• Let similarity σ(x, y) = 1 – δ(x, y)
• Define:
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Urysohn Embedding
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ε-Nets
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Field Computation

• Field = continuous
distribution of
continuous quantity
= element of Hilbert
function space

• uk used to scale basis
functions

• Linear superposition
represents element of
abstract space
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Computation in Hilbert Space
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An Abstract Cortex
• Finite-dimensional

representations of
abstract spaces can be
allocated disjoint
regions in data space

• Field representations
can be allocated to
separated regions

• Analogous to regions
in neural cortex
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Decomposition of Computations

• Complex computations may be decomposed
into simpler ones

• Variable regions provide interfaces between
constituent computational processes

• For “radical reconfiguration”: don’t build in
specific primitive processes

• How are primitive processes implemented?
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Implementation of
Primitive Computations

• There are several “universal approximation
theorems” that make use of approximations
of the form:

• Works for a variety of simple nonlinear
“basis functions” rj
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Example Interpolation Method
• Training samples: (x1, y1), …, (xP, yP)
• Hilbert space reprs.: uk = U(xk), vk = V(yk)
• Interpolation conditions:

• Let
• Exact interpolation: V = RA
• Best (least squares) approx.: A ≈ R+V

where R+ = (RTR)–1RT
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Typical Basis Functions
• Perceptron-style: rj(u) = r(wj ⋅ u + bj)

• Radial-basis functions:

• Green’s function for stabilizer:
                   rj(u) = G (u, uj)

• Key point: lots of choices! 

rj u( ) = r u" c j( )



14 Feb. 2007 Highly Programmable Matter 19

Determination of
Interconnection Matrices

• Unknown functions: neural-net training
• Known function — compute offline by:

– Generating sufficient interpolation samples, or:
– Determining matrices analytically

• Typical primitives could include those
found typically on analog or digital
computers
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Merging Linear Transforms
• General form of approximation:

v = A r(Bu) , where [r(Bu)]j = r([Bu]j)
• Suppose: w = A′ r′(B′v)
• Linear parts can be combined:

w = A′ r′[C r(Bu)], where C = B′A
• Two basic operations:

– Matrix-vector multiplication
– Simple point-wise nonlinear function r
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Input Transduction
• Input space: (X, δ)
• Suitable ε-net: (b1, b2, …, bn)
• Hilbert-space representation u = U(x):

uk = σ (x, bk),
where σ (x, bk) = 1 – δ (x, bk)

• In effect have fuzzy feature detectors:
 σk(x) = σ (x, bk)

• Thus u = (σ1(x), σ2(x), …, σn(x) )T
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Output Transduction
• Physical output spaces are usually vector

spaces
• Approximate by:

• This summation is a physical superposition
of physical vectors aj

• Compute approximation parameters in any
of the usual ways
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Real-time Computation

• Time-varying input & outputs x(t) are
represented by time varying vectors u(t)

• Differential changes are computed like
other functions

• Differential changes are integrated into
variable regions
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(Re-)Configuration Methods
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Overall Structure
• Variable (data) space

– Large number of scalar variables for Hilbert
coefficients

– Partitioned into regions representing abstract
spaces

• Function (program) space
– Flexible interconnection (∴ 3D)
– Programmable linear combinations
– Application of basis functions
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Depiction of UM Interior

• Shell contains variable
areas & computational
elements

• Interior filled with
solid or liquid matrix
(not shown)

• Paths formed through
or from matrix
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Layers in Data Space

• Connection matrix has
programmable weights

• Linear combinations are
inputs to nonlinear basis
functions

• Exterior access to both
sides for programming
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Depiction of UM Exterior
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Diffusion-Based Path Routing
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Example Path-Routing Process
• Attractant diffuses from destination

– Could be chemical, electrons, molecular state
– Attractant degrades

• Existing paths clamp attractant to 0
– Effectively repel new path

• Path “grows” from source by climbing attractant
gradient
– Attractant injection rate ramped up

• After connection made, attractant allowed to
decay before routing next path
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Example of Path Routing

• Starts and ends chosen
randomly

• Quiescent interval (for
attractant decay)
omitted from video

• Each path occupies
~0.1% of space

• Total: ~4%
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Front
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Right
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Back
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Left
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Top
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Bottom
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Remarks
• More realistic procedure:

– Systematic placement of regions
– Order of path growth
– Control of diffusion & growth phases

• General approach is robust (many variations
work about as well)

• Paths could be formed by:
– Migration of molecules etc.
– Change of state of immobile molecules
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Example Connection-Growth Process
• Goal: approximately full interconnection between

incoming “axons” (A) and “dendrites” (D) of basis
functions
– Doesn’t have to be perfect

• Each A & D periodically initiates fiber growth
– Growth is approximately away from source

• Fibers repel others of same kind
– Diffusible, degradable repellant
– Fibers follow decreasing gradient (in XZ plane)

• Contact formed when A and D fibers meet
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Example of Connection
Formation

• 10 random “axons”
(red) and “dendrites”
(blue)

• Simulation stopped
after 100 connections
(yellow) formed
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Resulting Connections
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Setting Connection Strengths by SVD
• Let m×n connection matrix M = U Σ VT,

where

and Σr = diag (s1, …, sr)
• Let uk and vk be columns of U and V:

U = [u1, …, um], V = [v1, …, vn]
• Then,

• For each k, apply vk to input and uk to output and
program with strength sk
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Summary of U-Machine
• Permits computation on quite general

abstract spaces (separable metric spaces)
– Includes analog & digital computation

• Computation by linear combinations &
simple nonlinear basis functions

• Simple computational medium can be
reconfigured for different computations

• Potentially implementable in a variety of
materials
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Highly Programmable Matter
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Computational Control of Matter
• A material process may be used as a

substrate for formal computation
• Formal computation may be used to control

a material process
• A material process may be a substrate for

universal computation, controlled by a
formal program

• A formal program may be used to govern a
material process
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The Physical State
as Synthetic Medium

• Computation controls physical state (as
synthesis medium)

• Reconfigured computer is embodied in
physical state

• Computation must be able to distinguish
synthetically relevant physical states
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Universal Computer

physical
state

U
(equations)

external
input

synthesis
medium
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Initialization
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Computation
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input
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Completion
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computer
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Equilibrium vs. Stationary
Configurations

• Program terminates for equilibrium config.
• Program continues to run for stationary config.
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Thermodynamics of a
Configuration

• Either, configuration is a stable state
– damage may shift to undesirable equilibrium

• Or, configuration is a stationary state of a
non-equilibrium system
– continuously reconfigures self
– self-repair as return to original stationary state
– adaptation & damage recovery as move to

different stationary state
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Useful Media for
Computational Synthesis

• For pure computation, move as little matter
& energy as possible

• For synthesis, need to control atoms &
molecules as well as electrons

• Need sufficiently wide variety of
controllable atoms & molecules

• Goal: structures on the order of optical
wavelengths (100s of nm)
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Models of Computation
for Synthesis

• Need massive parallelism to control detailed
organization of state

• Need tolerance to errors in state
– synthesis program should be tolerant
– configured computer should be tolerant
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Locus of Control of
Detailed Organization

• Reorganizing atoms & molecules
⇒ vast amount of detailed control

• Heterosynthesis
– external configuration controller determines

fine structure of medium (high bandwidth)
• Autosynthesis

– external configuration controller determines
general boundary conditions (low BW)

– fine structure results from self-organization
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General Model of
Radical Reconfiguration

• Synthesis controller
– low bandwidth to outside world
– bandwidth to medium:

• high for heterosynthesis
• low for autosynthesis

• Synthetic medium
– molar parallelism of interactions

• simple for heterosynthesis
• complex for autosynthesis

– what are suitable synthetic media?
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Example:
Activation-Inhibition System

• Let σ be the logistic sigmoid function
• Activator A and inhibitor I may diffuse at

different rates in x and y directions
• Cell is “on” if activator + bias exceeds

inhibitor
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Double Activation-Inhibition
System

• Two independently diffusing activation-inhibition
pairs

• May have different diffusion rates in X and Y
directions
– In this example, I1y >> I1x and I2x >> I2y

• Colors in simulation:
– green = system 1 active
– red = system 2 active
– yellow = both active
– black = neither active
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Formation of Pattern

• Random initial state
• System stabilizes to

< 1% cell changes
• Modest noise

(annealing noise)
improves regularity
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Stationary State

• System is being
continually
maintained in a
stationary state

• Continuing change
< 1%
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Recovery from Damage

• Simulated damage
• Damage destroys

activators & inhibitors
as well as structure

• System repairs self by
returning to stationary
state

• No explicit repair
signal
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Reconfiguration:
Orthogonal Structure

• Exchange inhibitor
diffusion rates for
systems 1 & 2

• Vertical stripes
become horizontal

• Horizontal stripes
become vertical

• No explicit
reconfiguration signal
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Conclusions
• Radical reconfiguration can be

accomplished by using computation to
change matter
– external control of macrostructure
– self-organization of microstructure

• A simple, flexible architecture can compute
over a variety of abstract spaces (including
analog & digital)


