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a b s t r a c t

The creation of physical objects with a complex hierarchical structure from the nanoscale
up to the macroscale presents many challenges that must be met in order to reap the
full benefits of nanotechnology. To accomplish this we can learn from a natural process
that already accomplishes it: embryological morphogenesis, which teaches us means by
which microscopic agents can communicate and coordinate their activity by means of
molecular signals in order to create complex physical structures. We call the application
of these ideas artificial morphogenesis; it is a kind of embodied computation, which refers
to the intimate interaction of physical and information processes. We outline the basis
for artificial morphogenesis and present several simple examples in which biologically
inspired models can be used to describe the assembly of useful nanostructures.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

An important problem for the future development
of nanotechnology is how to assemble physical systems
with a complex hierarchical structure from the nanoscale
up through the macroscale. Current nanotechnology has
developedmany processes for creating bulkmaterialswith
a desired nanostructure, but thesematerials are assembled
into larger structures by the same kinds of procedures
that have been used for centuries: cutting, machining,
molding, gluing, welding, fastening, deposition, etc. Yet
these techniques are inadequate for many important
applications, such as the assembly of complex, inexpensive
microrobots and the manufacture of artificial organs
and other body parts. For example, we would like to
be able to make artificial eyes with the retinal density
and interconnectivity of human eyes, tiny artificial limbs
with artificial muscles, and neuromorphic computers
with component and interconnect densities comparable
to human neural cortex. To accomplish this we need
assembly processes operating on many length scales:
nanometers, microns, millimeters, and meters.

This goal might seem unachievable, but we know it
can be accomplished, for it takes place in embryological
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development, in which a single cell, 100–200 microns
in diameter, divides to produce a cell mass that grows
and self-organizes into an adult that may be several
meters in size. And most importantly, this adult is an
organized system of interrelated subsystems at all length
scales down to the nanoscale. Therefore, in embryological
morphogenesis (creation of three-dimensional form) we
have a good example of how microscopic self-organizing
processes can assemble complex, hierarchically structured
macroscopic systems, even as complex as mammals.

Communication, control, and computation at the
nanoscale presents different problems than at the macro
and micro scales, where most of our engineering technol-
ogy is focused.We need to think of these processes in news
ways in order to make best use of nanotechnology. By in-
vestigating embryological morphogenesis – a supremely
successful example of what we want to accomplish – we
can learn many lessons about how communication, con-
trol, and computation can be donewell at very small scales.

2. Embodied computation

2.1. Definition

In embryological morphogenesis the agents are indi-
vidual cells, which raises the issue of how such relatively
unintelligent agents can cooperate to create something
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as complex as an adult organism. Part of the answer is
being provided by embodied robotics and embodied artifi-
cial intelligence, new approaches that exploit the fact that
natural intelligence is embodied, that is, resident in a phys-
ical body that is in continuous interaction with a phys-
ical environment [7,9,18,33]. All organisms exploit their
physical embodiment to behave competently in their en-
vironments of evolutionary adaptiveness. This reduces the
neural resources that need to be devoted to this behavior
or, more significantly, allows them to behave more intelli-
gentlywith the resources that they have. Therefore it is our
contention that the application of morphogenetic ideas in
nanotechnologywill depend on the exploitation of embod-
iment.

Embodied computation extends the insights of embod-
ied robotics and embodied AI to computation in gen-
eral [23,27]. Pfeifer et al. define embodiment as ‘‘the
interplay of information and physical processes’’ [34, p.
1088]. Therefore embodied computation is information
processing that depends in some essential way on its par-
ticular physical realization, on the physical environment
in which it is embedded, or in which some physical effect
is the principal purpose of the computation. In morpho-
genesis in particular the purpose of the communication,
control, and computational processes operating in the cell
mass (which is the computationalmedium) is to reform the
cell mass toward its final form.

2.2. Benefits

One impetus for developing embodied computing
technology is the inevitable end of Moore’s Law. There
is debate about how long Moore’s Law will continue
to hold, but it is obvious that sooner or later it will
come to an end: there are lower limits on the size
of devices and upper limits on density. Even if the
end is still a few decades off, we should start thinking
about post-Moore’s Law computing [23,27,24,25]. We
have had the luxury of multiple levels between our
computational abstractions and the physical processes
that realize them. For example, multiple semiconductor
devices (each controlling numbers of electrons and holes)
are combined to represent a single bit, and multiple bits
are used to represent a single floating-point number.
Likewise, computational operations, such as addition and
multiplication, are implemented by sequential circuits
that control complex combinations of elementary physical
processes. Post-Moore’s Law computing will require a
closer relationship between computational and physical
processes. Although we may discover some physical
processes that conveniently implement binary digital
logic, fundamentally the physics is fixed, and so an
accommodation between computational and physical
processes will require us to reconceptualize computation
in a way that is more like physics. Embodied computing,
whichmakesmore direct use of its physical realization and
environment, is one way to do this.

Another benefit of embodied computation is that many
useful computational processes can be performed ‘‘for
free,’’ that is, by physical processes that will take place
anyway, sometimes even as a consequence of energy
dissipation. I will mention briefly a few examples.

The microscale – and even more so the nanoscale – is
characterized by stochastic processes and effects. Thermal
agitation is significant and unavoidable; nonuniformity
and irregularity in media is common; randomly variable
factors affect the results of processes; and so forth. Stochas-
tic effects of this kind are commonly characterized as noise,
uncertainty, imprecision, faults, defects, imperfection, unpre-
dictability, chaos, etc. These are all negative terms and re-
flect an underlying assumption that there is some ideal,
perfect process to which the physical realization is an im-
perfect approximation.

Embodied computation takes a different approach to
these unavoidable stochastic phenomena, viewing them as
sources of free variability [22]. That is, many algorithms,
such as simulated annealing andother stochastic optimiza-
tion algorithms [3,20], make use of randomness for escap-
ing from local optima. Ordinary computers accomplish this
by use of a pseudo-randomnumber algorithm,which takes
resources to execute. Embodied computation makes use
of the free variability available in its physical realization
to accomplish the same purpose. That is, embodied com-
putation seeks to exploit physical phenomena, rather than
attempting to avoid them, fitting the computation to the
physics rather than attempting to manipulate the physics
to fit the computation.

For a concrete example, consider diffusion. Diffusion is
a natural process that takes place when we have many
particles subject to Brownian motion in an appropriate
medium. Significant Brownianmotion is virtually unavoid-
able at very small scales, and so diffusion is a pervasive
physical effect in nanoscale systems. Rather than treating
diffusion as a source of noise, embodied computing ex-
ploits it as a resource, effectively a highly parallel tool for
broadcasting information, establishing connections, and
parallel search. Diffusion of a variety of molecular species
and agents lead to random encounters that establish
‘‘virtual connections’’ among subsystems in cells and em-
bryos [6], and cell-to-cell facilitated diffusion is an impor-
tantmechanism inmorphogenesis [21]. Further, computer
scientists have identified diffusion as a useful tool in al-
gorithm design [19,31,35,39,43], but it may be too ineffi-
cient when it is implemented on an ordinary sequential
computer or on one with a modest parallelism. But nature
does molar-scale (or Avogadro-scale) parallel processing as
a matter of course.

Indeed, physics is naturally parallel; that is, typically
all the atoms or other components of a physical system
respond simultaneously to the forces on them. If we want
processes to take place sequentially, then we have to
design the system to enable only one process at a time,
and to have the completion of one phase enable the next.
Therefore, if we use computational processes that are
closer to physical processes, we will have systems that
are naturally parallel (and often with very high degrees of
parallelism).

Ant foraging is a well-known example that illustrates
how simple agents can exploit embodied computation
to solve important problems [8]. When ants discover
food sources they lay down pheromone trails when they
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return to their nests; since other ants preferentially follow
these trails, they are led to the food. This mechanism
exploits physical processes in a number of ways. First, the
pheromone evaporates, and so if a path is not regularly
reinforced, it will cease to exist. This means that the
trail network is adaptive; it will reorganize itself as food
sources are discovered or exhausted, which ensures that
the nest’s foraging resources are well allocated. However,
pheromone evaporation is a natural process; it will happen
anyway and the foraging system uses it as a computational
resource. Second, ants do not follow the trails perfectly –
sometimes they wander off – and naturally they are more
likely to wander off of weakly marked trails. The ants’
imperfect trail following could be considered a flaw, but its
effect is that ants explore other locations andmay discover
a new food source or a better trail. The consequence is
that weak trails bias the ants toward exploratory behavior,
whereas strong trails bias them towards exploitation of
already discovered resources. Thus this simplemechanism
continuously and adaptively adjusts the nest’s behavior
between exploration (the discovery of new information)
and exploitation (the use of information already acquired),
and thus solves an important resource allocation problem.

Sorting by differential adhesion is another example of
embodied computation, which has an important role in
morphogenesis [14, ch. 4]. If we have a population of cells
or other elements in Brownian motion that adhere to each
other to different degrees, then they will sort themselves
out into regions of similar mutual adhesion, subject to
boundary conditions or other constraints. This is a mech-
anism that operates during morphogenesis to create sepa-
rate tissues or bodies. A related process is lumen formation,
in which polarized cells with nonuniform distributions of
adhesion molecules form tissues with lumens (cavities)
[14, pp. 78–80]. These self-organizing processes arise ‘‘for
free’’ from differential adhesion and Brownian motion
(which, of course, must be fueled in some way).

A final example will illustrate how physical processes
can realize many useful computations ‘‘for free’’. As is
well known, many universal approximation theorems are
built around linear combinations and simple nonlinear
functions such as sigmoids; this is the basis for many
artificial neural network architectures [17, pp. 208–94]. On
a conventional computer these nonlinear functions must
be computed in some way, either by using a polynomial
approximation to the function or by using table lookup,
either of which consumes computational resources (time,
memory, or devices). On the other hand, many physical
process exhibit exactly the required behavior. For example,
a linear dependence that gradually saturates creates a
hyperbolic dependence; an exponential dependence that
gradually saturates creates a sigmoidal dependence. Now
all physical processes saturate, typically by depletion of
some resource (e.g., signaling molecules, receptor sites,
fuel), so inmany cases the required nonlinearity arises ‘‘for
free’’ from the material limitations of the realization.

The preceding examples illustrate how in embodied
computation physical processes are directly involved in
computation; to some extent this can be considered an
extension of what we have always done in computation:
seeking new and better physical realizations for computa-
tion. Less familiar is the involvement of physical processes
in the goals of embodied computation, for just as we can
use physical processes for the sake of the computational
processes they realize, so we can use computational pro-
cesses as a way of governing physical processes. That is,
the physical changes are the end rather than themeans. Of
course, robots and other systems have effectors and actu-
ators that are intended to have some physical effect, but
embodied computation has a greater physical involvement
with both its physical environment and its physical realiza-
tion (whichmight not be entirely distinct from each other).
For example, an embodied computation systemmay be ca-
pable of physically adapting itself, or of physically recon-
figuring itself in fundamental ways. These may seem to be
unlikely and perhaps not very useful capabilities, and so it
is worth remembering that in embryological morphogene-
sis computational processes radically reorganize the phys-
ical substrate that is realizing the computations. Another
example is biological metamorphosis, in which an organ-
ism radically reorganizes its own structure (e.g., a tadpole,
with a completely herbivorous digestive systems, recon-
figures itself into a frog, with a completely carnivorous di-
gestive system). Artificial morphogenesis applies insights
frombiology to showhow embodied computation can lead
to large-scale organization and reorganization of systems
with very large numbers of microscopic components.

Self-repair is a less radical form of reorganization, but
onewhich ismanifestly useful, and embodied computation
is one way of accomplishing it. For example, instead
of having an active process of damage detection and
repair, often we can arrange the embodied computational
processes so that the intact state is an attractor or
dynamic equilibrium in the physical dynamics, so that
the system automatically repairs itself without explicit
decision making and action.

A less obvious use of embodied computation, but
especially relevant to nanotechnology, is self-destruction.
There is a danger that microscopic systems, or microscopic
parts of larger systems, will find their way into the
environment and pose a risk to human health and the
ecosystem. Therefore we should design systems that
will passivate themselves when directed to do so or
when they find their way outside of their intended
physical environment. Partly this can be accomplished
by appropriate choice of materials. However, in other
cases we will design embodied computation systems to
detect circumstances under which they should destroy
themselves (or the absence of conditions under which
they should not destroy themselves) and as a consequence
disassemble themselves or reconfigure themselves into an
innocuous form. There is a precedent for this in biology,
of course: incorrectly functioning cells destroy themselves
or are destroyed by other cells. Apoptosis (programmed
cell death) also has a role in sculpting tissues during
development, and we can expect the same in artificial
morphogenesis.

2.3. Issues

We have seen that embodied computation has a
number of benefits, both in its greater exploitation of
physical processes for computation and in its greater
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control over physical effects. However, there are issues
that must be addressed before we can fully reap these
benefits. One is that embodied computation is much less
idealized than conventional computation, which is largely
independent of its physical realization. For example,
we can use the same basic algorithms regardless of
whether the underlying computer technology is silicon
VLSI or vacuum tubes; indeed some algorithms, such
as Newton’s algorithm and Euclid’s algorithm, predate
automatic digital computers. Embodied computation, by
its nature, is more dependent on physical phenomena
than is traditional computation, and these phenomena
can be very complicated, especially at the nanoscale. For
example, as discussed above, we have to consider the
stochastic nature of many of these processes. Compared
to idealized mathematical descriptions, there will always
be defects, faults, irregularities, noise, imperfection, and so
forth.

One especially important issue for embodied compu-
tation, which is largely absent from conventional com-
putation, is energy. All computational processes must be
fueled, either by a fixed quantity of free energy if it is an
equilibrium-seeking processes, or by an open-ended sup-
ply of free energy if it is an open-ended (potentially non-
terminating) process. Therefore embodied computations
must include some provision for acquisition of energy or
fuel (e.g., chemical raw materials) and also for disposition
of waste materials and energy. These issues are especially
relevant tomicroscopic systems,which cannot be powered
in conventional ways and which may be disrupted by ex-
cess heat or waste products. On the other hand, such sys-
tems may operate on very low power, which means they
may use power sources that are not useful for conventional
computing.

One of the biggest issues that embodied computation
faces is the lack of a commonly accepted model of
computation [23]. Conventional computing technology has
benefitted from binary digital logic, which dates from
Claude Shannon’s use of Boolean algebra to analyze relay
and switching circuits in his 1940 Masters thesis from
MIT [38]. Because this model is a high enough level to be
independent of particular implementation technologies,
but a low enough level to be readily implementable, it
has remained a common vehicle for designing digital
computers from the age of relays, through vacuum tubes,
to discrete transistors and VLSI, and beyond. This has
allowed a preservation of computer design techniques
and tools across many generations of device technology
and has permitted the accumulation of a large body of
expertise. We do not yet have a comparable model, that
is at a high enough level, but not too high, for designing
embodied computation systems. The following sections of
this article will describe our own efforts in this direction in
the particular application area of artificial morphogenesis.

In addition to a generally applicablemodel of embodied
computation, we also need appropriate formal tools,
analogous to Boolean algebra. We have begun developing
tools that are applicable to the artificial morphogenesis
of systems comprising very large numbers of microscopic
components [27,26,28].
3. Artificial morphogenesis

3.1. Characteristics of morphogenesis

In order to understand our approach to artificial
morphogenesis as a means of assembling complex hier-
archically structured systems and as a model for molecu-
lar communication, it will be useful to mention a few of
the characteristics of biological morphogenesis that dis-
tinguish it from other computational processes. Artificial
morphogenesis is a species of amorphous computing [1]
that is oriented toward the creation of three-dimensional
physical structures, and as such it shares many character-
istics with other models of amorphous computing.

One characteristic of morphogenesis is that, unlike
models such as cellular automata, it has no fixed reference
frame in which it takes place. The developing embryo’s
spatial relation to the surrounding environment is not
especially important and can vary considerably (e.g., when
eggs are moved or a mother moves). The natural reference
frame is the embryo itself, but it is constantly changing
as the embryo develops. Even such basic reference
markers as the axes (anterior/posterior, ventral/dorsal,
left/right) are not given, but are established as part
of the developmental process. More relevant are the
local relations in the tissues, and so tensors, which
are coordinate-independent, are a convenient tool for
programming artificial morphogenesis [41].

Another characteristic of morphogenesis, and one that
makes rigid reference frames unsuitable for it, is that it
takes place in the realm of ‘‘soft matter’’, that is, visco-
elastic materials. Sometimes cells move like fluids (e.g., in
cell sorting by differential adhesion) [14, pp. 92–4, 4, 40],
other times they are more like solids, but often they are
on the border of viscous materials, which flow slowly,
and elastic materials, which stretch [14, pp. 21–2,133].
Furthermore, viscoelastic properties are often critical in
the creation of form during morphogenesis [14, p. 2, 11].
Cell shape and changes in cell shape also have a role in
morphogenesis [14, pp. 113–16, 32], so simple billiard-
ball-like models of cells are inadequate.

Morphogenesis might seem to be hopelessly compli-
cated, and artificial morphogenesis to be a poor prospect
for assembling complex systems. But, aside from the fact
it is the only means we know of assembling systems of
such complexity, there is an underlying simplicity. Biolo-
gists have identified about twenty fundamental processes
they are used in morphogenesis [14, pp. 158–9, 36]. Even
if this list is not complete, it does suggest that there is a
limited set of operations that need to be implemented in
order to realize artificial morphogenesis.

In the strict sense, morphogenesis refers to the cre-
ation of three dimensional forms with modification of cell
state. The fundamental processes include directed mitosis
(division of cells with a consistent orientation), differen-
tial growth (leading to deformation of tissues), apoptosis
(programmed cell death altering forms), differential adhe-
sion (leading to cell sorting and compartment formation),
condensation (e.g., of cells embedded in mesenchyme),
contraction (with consequent stress-induced deformation),
matrix modification (through swelling, degradation, and
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other physical processes), and migration of various kinds,
including diffusion (undirected movement), chemokinesis
(migration speed subject to an ambient chemical cue),
chemotaxis (migration governed by a gradient in a chemical
morphogen or substrate), and haptotaxis (motion through
differential adhesion to a substrate).

Another important mechanism of pattern formation is
modification of cell states, which leads to differentiation
of cell behaviors and properties. On one hand, cell au-
tonomous mechanisms do not depend on interactions with
other cells; they depend on both spatial nonuniformities
(i.e., asymmetric mitosis, in which the two daughter cells
have different properties) and temporal nonuniformities
(i.e., mitosis with temporal dynamics, in which oscillation
asynchronized with the cell cycle leads to development
of spatial patterns). On the other hand, inductive mech-
anisms depend on cell–cell signalling, which may be hi-
erarchic (involving unidirectional signalling) or emergent
(involving feedback through mutual induction). There are
also morphodynamic mechanisms, which combine induc-
tion and morphogenesis, but are poorly understood [36].

Lastly, morphogenesis proceeds through phases, which
may be overlapping to a certain degree. During each
phase many cells self-organize, and as an organization
is created, it triggers the initiation of the next phase.
Thus morphogenesis seems to have the characteristics of
a coordinated algorithm [42].

3.2. The medium

Just like conventional computing, artificial morpho-
genesis is based around a number of general computing
concepts, which aremore or less like those in ordinary pro-
gramming. One of these, which we call a substance, refers
to a class of similarly behaving materials, and so it is simi-
lar to a class in object-oriented programming. A substance
is defined by a set of variables that characterize its state
and by a behavior that characterizes how its state variables
change in time, possibly subject to the state variables of
other substances, and possibly affecting the state variables
of other substances (see Section 4 for examples). The idea
is that a computational or abstract substance can be real-
ized by a physical substance that has behavior consistent
with the computational abstraction.

For artificial morphogenesis, substances are treated
as continua, usually two- or three-dimensional. This is
because we are seeking a high-level description of the
behavior of large numbers of elements, from hundreds
of thousands to many millions, and because biologists
have found spatial continua to be useful in describing
morphogenetic processes. For example, tissues (such
as muscle, skin, and neural cortex), fluids (such as
blood), and solid structures (such as cartilage and bone)
can all be treated mathematically as continua when
the number of cells, molecules, or other elements is
sufficiently large; they are phenomenological continua. In
other cases substances will be physical continua, such as
electromagnetic or gravitational fields. We have found it
useful in describing morphogenetic processes to maintain
complementary viewpoints of substances: we may treat
them either as continua, and so, for example, apply
partial differential equations, or as very large ensembles
of discrete elements (cells, molecules, etc.). In this way we
ensure that our algorithms can scale up to large numbers
of elements.

To maintain complementarity we take a body or tissue
to comprise a large number of elements; whether it is a
continuum or a discrete ensemble is left unspecified. In a
physical continuum the elements correspond to infinites-
imal patches or volume elements. In a phenomenological
continuum the elements are small ensembles of its atomic
units (e.g., cells, molecules, nanobots). We take the ele-
ments to be ensembles rather than single units in order to
maintain independence of the actual number of units; as
explained later, it is better to treat the density of units in
terms of their number density (units per volume element).

As in object-oriented programming, where classes have
instances called objects, so in artificial morphogenesis,
substances have instances, which we call bodies or tissues.
A body or tissue is a region of space occupied by a particular
substance. Bodies can change shape over time (required
for morphogenesis), and several bodies may occupy the
same space (as when a chemical diffuses through a cellular
matrix).

To date we have found continuum mechanics to be the
most convenient mathematical framework for describing
and analyzing artificial morphogenesis [14]. Therefore we
define a body B to be a continuum of material points or
particles. At any given time t a particle P ∈ B has a position
in Euclidean space, Ct(P) ∈ E . The diffeomorphism Ct(·)
is called the configuration or deformation of the body B at
time t . At this time, the body occupies a region of space
R = Ct [B] ⊂ E . Since Ct is invertible, for any location
occupied the body,p ∈ R, we can determine the particle of
the body occupying that location at that time, P = C−1

t (p).
To define a specific embodied computing system for

artificial morphogenesis we have to define all the bodies
that it comprises. In effect this means that wemust specify
the substance to which the body belongs and define the
region of space that it occupies. For each particle of the
body we must specify the initial values of all of the
variables characteristic of that substance. Naturally we
should restrict our definitions to initial states for which a
physical preparation is feasible, which will depend on the
details of the application and many other factors.

There are two ways to look at the physical quantities
(e.g., density, concentration, velocity) of the particles
constituting a body. We can consider a property q as
a spatial variable, that is, as a function of location in
space and time q(p, t). Then we might describe how this
quantity changes as particles stream through that location.
Alternately, we may consider it as a material variable Q ,
that is, as a property of a particular particle at a particular
time, Q (P, t), as that particle moves through space. The
former is called the Lagrangian or reference description
and the latter the Eulerian or material description. The
two are simply related: Q (P, t) = q[Ct(P), t], q(p, t) =

Q [C−1
t (p), t].
As is generally the case in continuum mechanics, time

derivatives are taken to be relative to a fixed particle rather
than a fixed location in space. That is, time derivatives are
interpreted as material or substantial derivatives: DtQ =
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∂Q (P, t)/∂t|P fixed. The effect is that we attach properties
to particles and look at how they change as the particles
move. In contrast, the spatial derivative ∂q(p, t)/∂t|p fixed
looks at how the quantity at a particular location
changes as particles stream through it.Material derivatives
provide a more agent-oriented approach to describing
behavior.

Bonabeau argues that classical continuum models of
pattern formation should be supplemented by discrete
agent-based models, which are easier to relate to the
behavior of actual agents (e.g., insects) [5]. Our use of
the material frame has many of the advantages of agent-
oriented description, but continuum mechanics is more
suitable for morphogenesis. Due to the larger density of
agents (cells vs. insects), they are more likely to be in
direct contact, which leads to effects that are directly
relevant to morphogenesis, including adhesion, pressure,
viscous flow, tissue stretching, flexibility, and stiffness,
and so forth. This is the realm of continuum mechanics
and especially of soft matter. Also, as already mentioned,
a continuum approach helps to assure that our models
scale up to very large numbers of elements (molecules and
cells).

Since, by the complementarity principle, we apply
continuous mathematics even if the substances are
composed of discrete elements, such as molecules or cells,
it is necessary to treat some quantities specially. For
example, a certain volume might be occupied by a specific
number of molecules each with a specific mass; these
are extensive quantities that depend on the volume of the
units (molecules, cells, etc.). However, to apply continuum
mechanics we consider differential volume elements, so it
is better to use intensive quantities that do not depend on
volume. So instead of the mass we use (mass) density, and
instead of number we use number density.

Since a particle represents an indeterminate number of
units (cells, molecules, etc.) we cannot assume that they
all have the same value for a variable. For example, they
might not all have the same concentration of a chemical
or the same orientation or velocity. On the other hand, we
also assume that a sufficiently large number of units are
represented by a particle so that they may be treated en
masse (and small-sample effects avoided). Therefore, we
treat these quantities as random variables. In some cases
we need to use the entire distribution; in others some
aggregate measure, such as themean, is sufficient. In some
cases we have to resort to statistical mechanics.

Some physical processes are more naturally described
in continuous time, others in discrete time. In many cases
it does not make much difference to a morphogenetic
process; that is, the dynamics is fundamentally the same.
For this reason, and in the interests of complementarity,we
have adopted a neutral notation that can be interpreted as
either a differential equation or a difference equation. For
example, the notation -DX = F(X, Y , . . .), which we call a
change equation, can be interpreted either as a differential
equation, DtX = F(X, Y , . . .), or as a difference equation,
1tX = F(X, Y , . . .), where 1tX = [X(t +1t)−X(t)]/1t ,
and the time increment 1t is implicit in the 1t operator.
The formal rules ofmanipulation for the -D operator respect
its complementary interpretations.
As previously discussed, stochastic phenomena are un-
avoidable at the nanoscale. Therefore consider a stochas-
tic change equation, -DXt = Ht-DWt , where Wt is a Wiener
process (Brownian motion). Interpreted as a difference
equation, 1tXt = Ht1tWt , it makes perfect sense, but
the differential interpretation, DtXt = HtDtWt , is prob-
lematic, since a Wiener process is nowhere differentiable.
However, it can be interpreted formally as follows.1Wt =

Wt+1t − Wt is normally distributed with zero mean and
variance 1t , and so 1tWt = 1Wt/1t is normally dis-
tributed with zero mean and unit variance. Therefore we
can interpret -DWt as a random variable with this distribu-
tion.1

As mentioned previously, biological morphogenesis
makes use of programmed cell death (apoptosis) to create
form, but it makes even greater use of cell birth, that is, cell
proliferation, since form is created as the embryo grows.
This presents a problem for artificial morphogenesis, since
self-reproducing physical agents are beyond our capability
at this time, and may remain so for some time. Therefore,
in adapting biological morphogenesis to nanotechnology,
we have to consider alternative ways of accomplishing
the effect of cell proliferation. Certainly, in lieu of self-
reproduction we can have an external supply of agents,
but this does not solve all the issues. When cells divide,
the daughter cells are in the same place as the parent,
so tissues can grow from the inside. If new agents are
supplied externally, then they will have to find their
way to the growth site from outside. Therefore artificial
morphogenesis must deal with growth differently from
biological morphogenesis.

4. Examples

4.1. Reaction–diffusion systems

Turing pioneered the study of reaction–diffusion sys-
tems asmodels of biological pattern formation nearly sixty
years ago [44]. Since then they have proved useful as mod-
els of many aspects of morphogenesis [29]. In the sim-
plest case we have a two-component system, an activator
A and an inhibitor I , in which the inhibitor diffuses more
rapidly than the activator. Anywhere where the concen-
tration of the activator is greater than that of the inhibitor,
some autocatalytic reaction takes place, which causes an
increase of both A and I in that region. The system reaches
an equilibrium state with the concentrations of the two
substances forming characteristic Turing patterns: spots,
slug-shaped blobs, stripes etc., with characteristic dimen-
sions determined by the diffusion rates and other parame-
ters. An activator–inhibitor system can be expressed in our
notation for artificial morphogenesis as follows:

substance activator–inhibitor:
scalar fields:
A ‖ activator concentration
I ‖ inhibitor concentration

1 For the stochastic change equation to be consistent with the
stochastic differential equation in the limit, we have to interpret the latter
in accord with the Itō calculus.
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order-2 fields:
DA ‖ activator diffusion tensor
DI ‖ inhibitor diffusion tensor
behavior:
-DA = f (A) − I + △(DAA)

-DI = A − I + △(DI I)

(△ = ∇ · ∇ is the Laplacian for tensor fields.) We have
expressed the diffusion rates as order-2 tensor fields to
allow for the possibility that the diffusion rate is not the
same in all directions or at all points in space. Anisotropic
or nonuniform diffusion – a property of the medium –
can affect the resulting patterns. The activation function
f is unspecified here, and could depend on the physical
realization, but the constraints on it are quite loose. [A
well-known example comes from the FitzHugh–Nagumo
neuron model: f (A) = k1A − A3

− k2.]

4.2. Vasculogenesis

Vasculogenesis is the process by which developing em-
bryos generate very fine capillary networks; it may be use-
ful for similar purposes in artificial morphogenesis. Here
we use a slight generalization of a model developed by
Frederico Bussolino and his colleagues [2,15,37] (cf. [30]).
There are two substances, morphogen, the diffusing chem-
ical that mediates the process, and cell-mass, the cells (or
other agents) that aggregate into the network by following
the morphogen gradient.

Themorphogen concentration at a location increases at
a rate S that is determined by the concentration of agents
at that location. Thereafter the morphogen simply diffuses
as permitted by a diffusion tensor field D and decays with
a time constant τ .

substance morphogen:
scalar fields:
C ‖ concentration
S ‖ source
order-2 field D ‖ diffusion tensor
scalar τ ‖ degradation time constant
behavior:
-DC = △(DC) + S − C/τ ‖ diffusion + release

‖ − degradation.

Weallow the diffusion to be governed by an order-2 tensor
field D to permit anisotropic diffusion that varies through
the tissue.

The agents have two primary activities, to secrete
morphogen at a rate α and to move with a velocity
determined the morphogen gradient ∇C . This movement
is retarded by dissipative interactions with the medium,
which are described by an order-2 tensor field, which
measures the mobility in various directions at various
locations in the medium. Movement is also limited by
the incompressibility of the agents, which defines a
maximum number density n0. To express this we use an
unspecified function φ that is zero for negative arguments
and increases very rapidly for positive arguments.
substance cell-mass ismorphogen with:

scalar field n ‖ number density of cell mass
vector field v ‖ cell velocity
scalars:
n0 ‖ maximum cell density
α ‖ rate of morphogen release
β ‖ strength of morphogen attraction
order-2field γ ‖ dissipative interaction
behavior:
S = αn ‖ production of morphogen
‖ Follow morphogen gradient, subject

‖ to drag and compression:
-Dv = β∇C − γ · v − n−1

∇φ(n − n0)

-Dn = −∇ · (nv) + v · ∇n ‖ change of density in
‖ material frame.

The last equation simply expresses the change in cell mass
concentration as the divergence of the flux nv, expressed
in the material frame.

4.3. Pillar construction

Deneubourg [12] developed a model of pillar construc-
tion in termite nests that is relevant to artificial mor-
phogenesis and indicates how embodied computation can
often be transported from one physical realization to an-
other. The active agents in this model are termites, but all
that is really relevant is that: (1) they can follow a chemical
gradient, (2) that they can wander randomly, and (3) that
they can transport another substance. The agents move in
two dimensions. Most of the complexity of termites is ir-
relevant to this morphogenetic process.

Thismorphogenetic program involves three substances:
marked-cement, the deposited structuralmaterial, which is
bound to a morphogen or signaling molecule; morphogen,
the evaporated morphogen in the surrounding medium;
and transport-mass, the agents bound to cement. I will dis-
cuss each in turn.

The agents (with concentration A) deposit morphogen-
marked cement at a rate k1 and the morphogen is released
from it into the medium at a rate k2. The process is
described in this substance definition:
substance marked-cement:
scalar field C ‖ marked cement concentration
scalars:
k1 ‖ deposition rate
k2 ‖ morphogen evaporation rate
behavior:
-DC = k1A − k2C ‖ deposition − evaporation.

An additional equation, which we have omitted for
simplicity, describes the transformation of marked cement
into unmarked cement, which stays where it is deposited,
the goal of the morphogenetic process.

The morphogen is simply a substance that is released
by the marked cement at rate k2, that diffuses at rate
Dφ , and that dissipates at rate k3. This dissipation could
be a result of degradation, absorption, or diffusion out of
the system; the exact mechanism would depend on the
physical realization, but there are many possibilities.
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substance morphogen ismarked-cementwith:
scalar field φ ‖ concentration in medium
scalar k3 ‖ degradation rate
order-2field Dφ ‖ diffusion tensor field
behavior:
-Dφ = k2C − k3φ

+ △(Dφφ) ‖ evap. from cement − degr. + diff.

While we tend to think of diffusion as a passive process,
resulting for example from thermal agitation, it can be
active, either if themorphogen particles are active, or if the
medium actively facilitates the diffusion.

The last substance is a subclass of morphogen and
describes the behavior of the cement-laden transport
agents. They are entering the system everywhere at a
rate rA; this is a simplification. We could in fact be
injecting agent-cement complexes uniformly across the
two-dimensional space, which would require an external
supply. What takes place in the termite nest is different,
for a fixed population of termites wander (diffusion) and
pick up bits of dirt, which they turn into cement and mark
with a pheromone (the morphogen). This process would
be easy to describe, but for simplicity we omit it. The
agents combine a certain amount of wandering, described
by the diffusion tensor DA, but also follow the morphogen
gradient ∇φ at a rate k4. The response of the agents is
described by a velocity vector field v. The concentration
of agents bearing cement decreases in accord with the
deposition rate k1 and the divergence of the agent flux Av.

substance transport-mass ismorphogen with:
scalar field A ‖ number density of laden agents
vector field v ‖ velocity field
scalar rA ‖ input rate of cement-laden agents
order-2 field DA ‖ diffusion (wandering) tensor field
scalar k4 ‖ strength of gradient following
behavior:
v = k4∇φ − A−1

∇ · DAA
‖ gradient following − diffusion

-Dp = v ‖ change in position
-DA = rA − k1A − ∇ · (Av) + v · ∇T

‖ change in material frame.

The last term in the equation for -DA expresses the change
in concentration in the material frame. The convention we
have adopted in this programming-language-like notation
is that when a particle P in one body refers to a variable
Q characteristic of another body, the variable is evaluated
at the same spatial location as P:q(p, t), where p is the
position of P in the configuration of its body at time t .
In this case, the equations for transport-mass refer to φ,
which is a property of the substance morphogen. As a
consequence, gradients such as ∇φ are evaluated relative
to the spatial (Eulerian) frame, which reflects the current
configuration of the body.

4.4. Clock-and-wavefront process

Humans have 33 vertebrae, chickens have 55,mice have
65, and the corn snake has 315. In artificial morphogenesis
too we would like to be able to generate precise numbers
of structures. The best contemporary explanation of this
morphogenetic process is the ‘‘clock andwavefrontmodel’’
of embryological segmentation [10,13,16]. The vertebrae
(and muscles and organs associated with them) develop
from a series of somites that develop in order from
the anterior of the embryo to its posterior. In this
process previously uncommitted cells differentiate into
somite cells with definite boundaries between distinct
somites. The process is controlled by the concentrations
of three different morphogens (see Fig. 1). The anterior
or A morphogen (probably retinoic acid in embryos) is
produced by the cells that have already committed to be
in somites, and it diffuses toward the tail of the embryo,
forming a decreasing gradient from the somites to the tail.
The posterior or P morphogen (e.g., FGF, Wnt) is produced
by the embryo’s tail bud, and it diffuses toward the head
of the embryo, forming a decreasing gradient from the tail
toward the head. The location where the P concentration
falls below a certain threshold is called the determination
front, since somites form in front of it.

Since the determination front is at a fixed distance in
front of the tail bud, it moves rearward as the embryo
grows. As a consequence there is an increasing gap
between the determination front and the region of high
A concentration near the most recently formed somites.
Since this region of low A and P concentrations is where
the new somite will form, its size determines the size of
the resulting somite, and therefore the embryo’s growth
rate also has an effect on somite size (see Fig. 2).

The tail bud contains a biochemical ‘‘segmentation
clock’’ that periodically produces a pulse of chemical that
is a segmentation signal (Notch and HES proteins, called
the S morphogen here); biologists are still elucidating the
exact nature of this clock [13]. The uncommitted cells form
an excitablemedium, whichmeans that if the concentration
of S around a cell is sufficiently high, the cell is stimulated
to produce its own pulse of S. As a consequence, when
the clock cells produces a pulse of S, it causes a cascade
of S production, which propagates in a wave from the tail
bud toward the front of the embryo. Since a cell enters an
insensitive refractory period after it emits a pulse, the wave
cannot go backward, but propagates in a single direction
(another characteristic of excitable media).

When the S signal reaches cells in the region between
the determination front and the previously formed somites
(i.e., the region of low A and P concentrations), it triggers
the cells in this region to commit to being somite cells.
Thus the amount of space that has opened between the A
and P gradients (as determined by growth) between clock
pulses defines the size of the new somite. As the cells
commit to becoming somite cells they use local chemical
signals to decide whether they are at the anterior or
posterior boundary of the somite (so, for example, they
know whether to form the anterior or posterior end of a
vertebra, thus establishing their polarity).

5. Conclusions

The creation of physical objects with a complex
structure from the nanoscale up to the macroscale
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Fig. 1. Simulation of clock-and-wavefront process for segmentation. The structure is growing to the right, and the large sphere on the right end is the
clock region. The nearest bar represents the concentration of the anterior morphogen, which has a high concentration on the left, where the particles have
already differentiated into segments. The farther bar represents concentration of the posterior morphogen, with the highest concentration to the right
where it is diffusing from the clock region. Three segments have already formed on the left end, although their evenly-spaces boundaries are difficult
to see in this figure. (A few particles among them did not differentiate.) The segment of particles to the right of the differentiated region have not yet
differentiated. The distinctive particles near the right end by the clock region represent particles that are activated and propagating a wave of activity
toward the left (anterior); when activity reaches the undifferentiated cells, they will propagate it further. Also, if the morphogen concentrations are low
enough (represented by overlapping low-concentration areas of the bars), the particles will differentiate.
Fig. 2. Effect of growth rate on segmentation. From top to bottom illustrates growth rates of 5, 10, 20, 40, 50 (arbitrary units) with the same clock rate.
A faster growth rate leads to a greater distance between segments, which are generated by each clock cycle. The number of segments is approximately
inversely proportional to the growth rate.
presents many challenges, but they must be met in
order to reap the full benefits of nanotechnology. To
accomplish this we can learn from a natural process that
already accomplishes it: embryological morphogenesis.
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In particular, embryological morphogenesis teaches us
means by which microscopic systems can communicate
and coordinate their activity bymeans ofmolecular signals
in order to create complex physical structures. We call
the application of these ideas artificial morphogenesis; it
is a kind of embodied computation, which refers to the
intimate interaction of physical and information processes.
We have presented several simple examples in which
biologically inspired models can be used to describe
the assembly of useful nanostructures. However, this is
only a beginning. As biologists continue to unravel the
processes of embryological development, we can extract
the computational essence of them and apply them to
nanotechnology.
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