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Abstract

In this paper, we present a technique, based on
checksum and reverse computation, that enables high-
performance matrix operations to be fault-tolerant
with low overhead. We have implemented this tech-
nique on five matriz operations: matriz multiplica-
tion, Cholesky factorization, LU factorization, QR
factorization and Hessenberg reduction. The over-
head of checkpointing and recovery is analyzed both
theoretically and experimentally. These analyses con-
firm that our technique can provide fault tolerance
for these high-performance matrix operations with low
overhead.

1 Introduction

The price and performance of uniprocessor worksta-
tions and off-the-shelf networking have made networks
of workstations (NOWs) a cost-effective parallel pro-
cessing platform that is competitive with supercom-
puters. The popularity of NOW programming envi-
ronments like PVM [14] and MPI [17, 30] and the
availability of high-performance numerical libraries
like ScaLAPACK (Scalable Linear Algebra PACK-
age) [7] for scientific computing on NOWSs show that
networks of workstations are already in heavy use for
scientific programming.

The major problem with programming on a NOW
is the fact that it is prone to change. Idle workstations
may be available for computation at one moment, but
gone the next due to failure, load, or availability. We
term any such event a failure. Thus, on the wish list
of scientific programmers is a way to perform com-
putation efficiently on a NOW whose components are
prone to failure.

Recently, the papers [23, 24] have developed such
a fault-tolerant computing paradigm. The paradigm
is based on checkpointing and rollback recovery using
processor and memory redundancy. It is called disk-
less checkpointing as it provides fault tolerance with-
out any reliance on disk. For this paradigm, a parity-
based checkpointing technique is used to incorporate
fault tolerance into high-performance matrix opera-
tions. Thus, the paradigm is an algorithm-based ap-
proach in which fault tolerance is especially tailored
to the applications.

As discussed in paper [24], however, when the

parity-based technique is mixed with the right-looking
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variants of the general factorizations, extra memory is
required to store the entire matrix every iteration. If
only a small amount of extra memory is available in
each processor, we need to devise an alternative that
recovers the state of the last checkpoint, rather than
saving it.

One solution is to reverse the computations per-
formed since the last checkpoint. A drawback of this
solution is that it may introduce floating-point round-
off errors due to reverse computation. This roundoff
error may change any bit in binary representation of
a floating-point number. Thus, incorrect data would
be generated when the bitwise exclusive-or operation
is performed. Such data is totally unpredictable and
may be neither recovered nor corrected.

Therefore, with the reverse computation technique,
we propose to use a checksum, rather than parity, to
encode the data. Since the checksum is a floating-
point addition, roundoff errors are minimized, rather
than magnified as they are by parity. Admittedly, the
possibility exists for overflow, underflow, and roundoff
errors due to cancellation when the checksum is com-
puted [16, 32]. The effect of such problems is consid-
ered to be negligible, however, because the checksum
involves the addition of only as many floating-point
numbers as the total number of the application pro-
Cessors.

We use our new technique to checkpoint the right-
looking factorizations and other matrix operations
and to restore the bulk of processor state upon fail-
ure. The target matrix operations include matrix
multiplication, the right-looking variants of Cholesky,
LU, and QR factorizations, and Hessenberg reduc-
tion [1, 7, 8, 11], which are at the heart of scientific
computations. Our technique results in checkpointing
at somewhat larger intervals, but with lower overhead
than the algorithms described in [24]. The importance
of this work is that it demonstrates a novel technique
of executing high-performance scientific computations
on a changing pool of resources.

2 Checkpointing and Rollback Recov-
ery
2.1 Basic Scheme

Checkpointing and rollback recovery enables a sys-
tem with fail-stop failures [33] to tolerate failures by



periodically saving the entire state and rolling back to
the saved state if a failure occurs. Our technique for
checkpointing and rollback recovery adopts the idea of
algorithm-based diskless checkpointing [23]. If the pro-
gram is executing on N processors, there is a N + 1-st
processor called the checkpointing processor. At all
points in time, a consistent checkpoint is held in the
N processors in memory. A checksum (floating-point
addition) of the N checkpoints is held in the check-
pointing processor. This is called the global check-
point. If any processor fails, all live processors, includ-
ing the checkpointing processor, cooperate in reversing
the computations performed since the last checkpoint.
Thus, the data is restored at the last checkpoint for
rollback, and the failed processor’s state can be recon-
structed on the checkpointing processor as the check-
sum of the global checkpoint and the remaining N —1
processors’ local checkpoints.

2.2 Analysis of Basic Checkpointing

In this section, the time complexity of checkpoint-
ing matrices is analyzed. This analysis will provide
a basic formula for computing the overhead of check-
pointing and recovery in each fault-tolerant matrix op-
eration.

Throughout this paper, a matrix A is partitioned
into square “blocks” of a user-specified block size b.
Then A is distributed among the processors Fy
through Py_1, logically reconfigured as a P x () mesh,
as in Figure 1. A row of blocks is called a “row block”
and a column of blocks a “column block.” If there are
N processors and A is an n X n matrix, each processor

holds & row blocks and &7 column blocks, where it

is assumed that b, P, and @ divide n.
e e
i

Figure 1: Data distribution and checkpointing of a ma-
trix with 6 x 6 blocks over a 2 x 2 mesh of 4 processors
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The basic checkpointing operation works on a panel
of blocks, where each block consists of X = b2 floating-
point numbers, and the processors are logically config-
ured in a P x @) mesh (see Figure 1). The processors
take the checkpoint with a global addition. This works
in a spanning-tree fashion in three parts. The check-
point is first taken rowwise, then taken columnwise,
and then sent to the checkpointing processor Pc. The
first part therefore takes [log P] steps, and the second
part takes [log @] steps. Each step consists of send-
ing and then performing addition on X floating-point
numbers. The third part consists of sending the X
numbers to Pc. We define the following terms: « is
the time for performing a floating-point addition, «
is the startup time for sending a floating-point num-
ber, and g is the time for transferring a floating-point

number.

The first part takes [log P](a + X(8 + 7)), the
second part takes [logQ](a + X (8 + 7)), and the
third takes o + X . Thus, the total time to check-
point a panel is the following: T,aneickpt(X, P, Q) =
(log P] + [log @])(a + X (3 + 7)) + (a + Xp). 1If
we assume that X is large, the a terms disappear,
and Tpaneickpr can be approximated by the follow-

ing equation: Tpaneickpt(X, P, Q) =~ X (6 + ([log P +
[log @1)(8 + 7).

To simplify our equations in the subsequent chap-
ters, we define the function

B+ ([log P + [log Q1) (B +

o) - At(llosPLE g Q)5 +)
PQ

Note that Tpanelckpt(X; P; Q) ~ PQXTckpt(Pa Q) For

constant values of P and Q, Terpi(P, Q) is a constant.

Thus, Tpanetckpt(X, P, Q) is directly proportional to

X

.Sometimes, an entire m X n matrix needs to be
checkpointed. If we assume that m and n are large,
the time complexity of this operation is

Tmatckpt(m: n, P: Q) = mnTCth (P’ Q) (2)

We define the checkpointing rate R to be the rate
of sending a message and performing addition on the
message, measured in bytes per second. We approx-
imate the relationship between R and Tokp:(P, Q) as

follows:
[log P] + [log @] 8

Tckpt(P; Q) ~ PQ R (3)

3 Fault-Tolerant Matrix Operations

We focus on three classes of matrix operations: ma-
trix multiplication, direct, dense factorizations, and
Hessenberg reduction. In this paper, due to the similar
nature of such algorithms, we cover only matrix multi-
plication, right-looking LU factorization and Hessen-
berg reduction. The right-looking Cholesky and QR
factorizations can be explained as special cases of the
right-looking LU factorization and Hessenberg reduc-
tion, respectively. In the sections that follow, we pro-
vide an overview of how each operation works and
how we make it fault-tolerant. Further details on the
ScaLAPACK implementations may be found in the
literature by Dongarra [11] and Choi [7, 8].

3.1 Matrix Multiplication

Let an m x k matrix A be multiplied by a k x n
matrix B to produce the m x n matrix C. Matrix-
matrix multiplication can be formulated as a sequence
of rank-one updates by

k
C = C+> A;B],
j:O

where A; is the jth column vector of A and BjT is the

jth row vector of B. Let us assume that the matrices
are partitioned into blocks of size b. Its corresponding
block algorithm is depicted in Figure 2. The block
algorithm performs the rank-b updates of a column



block A; and a row block BjT. A rank-b update is an

operation that multiplies an m x b matrix by a b x n
matrix and then updates an m x n matrix by adding
the result matrix to it.

b

B
AN + C | s

Ajx Bl +C1 — Cit!

Figure 2: Iteration j of the matrix multiplication al-
gorithm. C7%1 is the result matrix after iteration j

A parallel algorithm can be obtained by paralleliz-
ing the rank-b update at each iteration [1]. Each it-
eration j in the parallel algorithm must broadcast a
column block A; of A within the column, broadcast a

row block BJ»T of B within the row, and then do the
rank-b update.

3.1.1 Checkpointing

It is straightforward to incorporate fault tolerance into
the algorithm. Since the result matrix C' is modified
by one rank b update at each iteration, a fault-tolerant
algorithm needs to checkpoint only the matrix C' peri-
odically at the end of an iteration. In our implementa-
tion, the matrix C' is checkpointed at the end of every
K of iterations (we call it a sweep), where K is cho-
sen by the programmer. Specifically, the fault-tolerant
algorithm works as follows:

1. Checkpoint the matrices A, B, and C initially.

2. Perform K rank-b updates.

3. Checkpoint the matrix C, where this checkpoint is

done with addition.

4. Synchronize, and go to Step 2.

No extra memory is required for checkpoint-
ing. The time overhead of checkpointing consists
of the total time for performing Steps 1 and 3,
which are equivalent to 3Tmatcrpt(n,n, P,Q) and
75 Imatckpt (0, n, P, Q), respectively. Thus, the total
time overhead of checkpointing, T¢, is

n
TC = 3Tmatckpt(n: n, P; Q) + ﬁTmatckpt (77,, n, P: Q)
n
~ (34 E)n2TcW(P, Q). (4)

3.1.2 Recovery

Throughout the following sections, for the description
of recovery we assume that each checkpoint is taken
every K of iterations (from j; to jx) and that a failure
occurs at iteration j; in the [th sweep. Then, the fol-
lowing operations are performed by all live processors
including the checkpointing processor.
1. Reconfigure the processor grid by replacing the failed
processor with an extra processor or the checkpoint-
Mg processor.
2. Recover the failed processor’s data of A and B by
using the checksum and the live processors’ data.

3. Reverse the computations of the live processors from
the current iteration j; to the first iteration j; of the
current sweep ! by performing the following compu-

tations: C'~" = C' — ji:]f A;B], where C'~! and

C' are the matrix C at the end of the (I — 1)st sweep
and lth sweep, respectively.

4. Recover the failed processor’s data of C by using the

checksum of Pc.

5. Resume the computation from the beginning of iter-

ation ji.

As stated above, recovery involves both reversing
the computation and recovering three matrices by
using the checksum. The time overhead of recov-
ery consists of the time of performing Steps 3 and
4. The time of performing Step 3 is equivalent to
KTrank(n,n, P,Q), where Trqnk(n,n, P, Q) is defined
as the time of performing one rank-b update and is

2n%b

given by Vo) [1]. Thus, Tg is approximated by
Tr = Trank (bna n, P, Q) + 3Tmatrecv(n, n, P, Q)
2K
~ n2ﬁ7 + 3n2Tckpt(P, Q) (5)

3.2 Right-looking LU Factorization

In the right-looking LU algorithm, at the begin-
ning of iteration j the leftmost j — 1 column blocks
and uppermost 7 — 1 row blocks have been factored.
At iteration j, the current column block is factored
first, and then the remaining matrix is updated by one
rank-b update using the current column block and row
block. Pivoting is also done before the rank-b update.
A typical iteration is given in Figure 3.
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Figure 3: Iteration j of the right-looking LU algorithm

3.2.1 Checkpointing

First, extra memory for We, Wgr, Wp, and W, is
allocated for checkpointing the right-looking LU afgo—
rithm. The [%] row and column blocks to be factored
during the current sweep are saved in Wrand We, re-
spectively. The pivoting rows and indices to be gen-
erated during the current sweep are saved in Wp and
W,, respectively.

At iteration j, the factored L; and U; are to be
checkpointed as well as the pivoting rows and indices.



At the end of every sweep, the newly modified remain-
ing matrix is checkpointed. The entire algorithm of
checkpoint is described as follows.

1. All the processors checkpoint the matrix A initially.
2. For every K of iterations,
(a) For each iteration j (j1,..., jx),
i. The processors owning the jth column
save their corresponding column blocks into
We.

ii. The processors owning the jth row save
their corresponding row blocks into Wg.

iii. All the processors save the jth block of the
pivoting indices into W.

iv. Pc saves the jth row and column blocks
corresponding to the jth row and column
into Wgr and W, respectively, and save the
jth block of pivoting indices into W,.

v. All P4’s perform factorization on the jth
column block.

vi. The processors owning any pivoting row
save the pivoting row into Wp.

vii. Pc saves the rows corresponding to the
pivot rows into Wp.

viii. Update the remaining matrix by the rank-b
update: A' = A'™! — L;U;.

ix. Checkpoint the jth row and column blocks
and the pivoting rows and indices. At this
point, Pc maintains the checksums of all
L;’s, U;’s, the pivoting rows, and indices
for the current sweep.

(b) Checkpoint the remaining matrix at the last it-
eration of the current sweep.

Memory requirement for W¢, Wg, Wp, and
W,: Extra memory Mc¢ is required for storing the
jth column blocks for j = ji,...,jx, which are dis-
tributed over ) columns of processors. Therefore,
Me = [£] (%+2%+ %) b.

Time complexity for checkpointing, T¢: In addi-
tion to the initial checkpointing, the jth row and col-
umn blocks are to be saved, and all L;’s, U;’s, and the
jth pivoting rows and indices are to be checkpointed
for j = j1,...,jk. Finally, at the end of a sweep of K
iterations, the remaining matrix is to be checkpointed.
Similarly, for large n the time of performing Step (b)
dominates the time overhead of checkpointing. Then,
Te is approximated by

Kb
TC ~ Z Tmatckpt(n - jI{b: n— jI{ba P; Q)

= Y (n—jKb) Toppe(P,Q)
j=1

1
nSmTckpt(P,Q). (6)

X

3.2.2 Recovery

Similarly, the following operations are performed for
recovery. Let L; and U; represent the jth column and
row blocks at iteration j after being updated during
the current sweep, respectively.

—

Reconfigure the processor grid.
2. Recover L;’s and U;’s for 3 = 31, ...
corresponding checksum.
3. Recover their pivoting rows and indices for iteration
J=17J1,-...,7f from their corresponding checksum.
4. Reverse the computation for the remaining matrix
from iteration j; to j1 as follows:
For 3 =y to 51
(a) A« A+L;U;
(b) Restore the jth pivoting rows and indices from
their corresponding Wp and W,.

,J¢ from their

5. l;\Vestore their column and row blocks from W¢ and
R-
6. Recover the failed processor’s portion of the matrix
from the checksum.
7. Resume the computation from the beginning of iter-
ation ji.
Time complexity for recovery Tg: The time over-
head of recovery varies depending on the iteration at
which a failure occurs. In addition to the time for re-
covering the column and row blocks and the pivoting
rows and indices modified since the last checkpoint,
time is required for recovering the failed processor’s
L; and U; and for performing up to K rank-b updates
by reverse computation. Since the time overhead of re-
covery is dominated by the time for performing Steps
4 and 6, Tg is approximated as follows.

QAb

TR ~ PQ =yt +n Tckpt(P Q) (7)
3.3 Hessenberg Reduction

Hessenberg reduction reduces an m x n matrix A
to an upper-Hessenberg matrix H by using similarity
transformation based on Householder reflectors. The
algorithm can be formulated by A = QT H(Q, where
@ is an m X m orthogonal matrix and H an m x n

upper-Hessenberg matrix.

ik | rohord
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reduction

I. Reduce the j column block. II. Update the trailing matrix.

Ago =Q Hoo A13 Ajg
Asp ) — Y2\ 0 ) A23 “ Q7 [ A2 | Q2.
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where Q3 = I — VoTaVy

Figure 4: Iteration j of the Hessenberg reduction al-
gorithm

The block algorithm proceeds by reducing each col-
umn block in each iteration. At each iteration j, the
current column of processors reduces the jth column
block to upper-Hessenberg form by using Householder
reflectors. Then, a sequence of the Householder reflec-
tors is applied to the remaining matrix by both pre-
and post-multiplication (Figure 4). In Step II, we may



write the update to A performed at an iteration of the
block algorithm as A « (I-VTVI)TA(I-VTVT) =
(I —VITVT)A - YVT), where Y = AVT. Let
A« A—YV?T. Then, it may be written by A «
(I-VIVHYTA=A—-VWT where WT = TTVT A.
Based on this representation, Step II proceeds in the
following five phases.

compute T

compute Y = AVT.

do the rank-b update, A «+ A—YVT,

compute WT =TTV T A,

do the rank-b update, A « A —VWT,

Ot W=

3.3.1 Checkpointing

Updating the remaining matrix by pre- and post-
multiplication requires the intermediate computa-
tions Y = AVT and W7 = TTVTA as described
in the precedmg section. Thus for recovery, those
intermediate results Y and WT must be saved and
checkpointed at each iteration.
1. All the processors checkpoint the matrix A.
2. For each sweep ! of K iterations,
(a) For each step j (j1, ... ,jh)
i. The processors owning the jth column
save their corresponding column blocks into
We.
ii. Perform factorization for the jth column-
block.
iii. Update the remaining matrix by perform-

ing A' = A'™! )’]\/jT—‘/]PV]T.
iv. Checkpoint Y; and W/]T.

(b) Checkpoint the remaining matrix at the last it-
eration of the current sweep.

Memory requirement for We, Wy, and Wy : Ex-
tra memory is required for storing the column blocks
to be factored within a sweep and for Y; and WjT.

Thus, Mc = [£] (2% + %) b.

Time complexity for checkpointing, T¢:

5
TC ~ Z Tmatckpt(n; n— ][{ba P; Q)
j=1
5
~ n(n— jEKb) Tk (P, Q)
j=1
1
~ QI\b ckpt(P Q) (8)

3.3.2 Recovery
1. Reconfigure the processor grid.
2. Recover the failed processor’s Vj, Y;, and VV]T from
their checksum, if necessary. At this point, all V}’s,
Y;’s, and W]T’s for y = j1,..., 77 have been recovered.

3. Perform A'™' = A'4 31 (V,W] +Y;V/T) . for the
updated part of the matrix.
4. Restore the jth column blocks from W¢ for j =

Iy JK-

5. Recover the failed processor’s data from the checksum
matrix.

6. Resume the computation from the beginning of iter-
ation ji.

Time complexity for recovery, Tg:
4Ix b
PQ

4 Implementation Results

We implemented and executed these programs on
a network of Sparc-5 workstations running PVM [14].
This network consists of 24 workstations, each with 96
Mbytes of RAM, connected by a switched 100 megabit
Ethernet. The peak measured bandwidth in this con-
figuration is 40 megabits per second between two ran-
dom workstations. These workstations are generally
allocated for undergraduate classwork, and thus are
usually idle during the evening and busy executing
I/O-bound and short CPU-bound jobs during the day.
We ran our experiments on these machines when we
could allocate them exclusively for our own use.

Each implementation was run on 17 processors,
with 16 application processors logically configured into
a 4 x 4 processor grid and one checkpointing processor.
The block size for all implementations was set at 50,
and all implementations were developed for double-
precision floating-point arithmetic.

We ran three sets of tests for each instance of each
problem. In the first, there is no checkpointing. In
the second, the program checkpoints, but there are no
failures. In the third, a processor failure is injected
randomly to one of the processors, and the program
completes with 16 processors. In the results that fol-
low, we present only the time to perform the recovery,
since there is no checkpointing after recovery. Note
that the failures were forced to occur at the last iter-
ation of the first checkpointing interval.

Experimental results of the implementations are
given in Figures 5 through 7. Each figure includes a
table of experimental results and graphs of running
times, percentage checkpoint overhead, and check-
pointing rate experimentally determined. Note that
T includes the initial checkpointing overhead T,
Ty represents the total running time of the algorithm
without checkpointing, and M is the total memory size
of each problem in bytes. K represents the checkpoint-
ing interval in iterations and is chosen differently for
each implementation to keep the checkpointing over-
head small.

TR%

Y+ n*Terpe (P, Q). (9)

5 Discussion

Based on the performance results and analyses of
time complexity presented in the preceding section, we
make the following observations.

1. The total time overhead of checkpointing can be
kept small by expanding the checkpointing inter-
val K or block size b. As either K or b increases,
more memory is required, and hence the total
time overhead of recovery increases.

2. The total time overhead of recovery depends par-
tially upon the location of the failure.



With Checkpointing
n M Ta Ng T Tc Tinit Tr
(MB) | (sec) +3 | (eo) | (se0) % (sec) | (sec)
1000 8 20 | 243 43 14 48.3 8 33
2000 32 197 | 343 261 64 325 32 109
3000 72 644 | 443 816 172 26.7 73 244
4000 128 1547 | 643 1941 394 255 131 451
5000 200 2051 | 743 3682 731 24.8 205 638
6000 288 5036 | 843 6170 1134 225 295 938
7000 392 7920 | 943 9546 1626 20.5 406 1297
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Figure 5: Matrix Multiplication: Timing Results
With Checkpointing
n M Ta Neg T Tc Tinit Tr
(MB) | (sec) +1 (sec) | (sec) % (sec) | (sec)
1000 8 45 2 52 7 156 3 47
2000 32 153 3 180 27 17.6 11 86
3000 72 364 4 436 72 19.8 25 144
4000 128 745 6 884 139 18.7 43 190
5000 200 1293 7 1525 232 17.9 69 279
6000 288 | 2144 8 2525 381 17.8 98 399
7000 392 | 3211 9 3760 549 17.1 134 528
8000 512 | 4774 11 5590 816  17.1 178 646
9000 648 | 6268 12 7555 1287 205 229 811
10000 800 | 8651 13 | 10447 1796 20.8 282 982
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Figure 6: Right-looking LU: Timing results

3. Good performance can be achieved with a moder-
ate amount of extra memory for the right-looking
QR algorithm and Hessenberg reduction.

4. For Hessenberg reduction (and small values of n),
the extra memory that we use for checkpoint-
ing significantly improves the performance of the
failure-free algorithm by saving some communica-
tion and computation. The values of checkpoint-
ing overhead and checkpointing rate reflect this
fact.

5. Matrix multiplication is the simplest algorithm
into which we incorporate the technique, and we
obtain good performance without any memory
overhead.

6. The checkpointing rate R for all the implementa-
tions is very close (less than 1 Mbyte per second),
with the exception of Hessenberg reduction. Since
the measured peak bandwidth of the network is
40 Mbits per second, we expect that the check-
pointing rate should be somewhat lower than 5
Mbytes per second considering synchronization,
copying, performing matrix addition, message la-
tency, and network contention.

With Checkpointing
n M T4 Ng s Tc Tinit Tr
(MB) (sec) +1 (sec) (sec) % (sec) (sec)
1000 8 154 6 133 -21 -13.6 3 32
2000 32 601 11 569 -32 -5.3 11 74
3000 72 1524 16 1607 83 5.4 24 135
4000 128 3158 21 3491 333 10.5 44 211
5000 200 5744 26 6423 679 11.8 68 308
6000 288 9323 31 10653 1330 14.3 98 415
7000 392 14258 36 16478 2220 15.6 135 552
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Figure 7: Hessenberg reduction: Timing results

With Checkpointing
n M Ta Neg T Tc Tinit Tr
(MB) (sec) +1 (sec) (sec) Yo (sec) (sec)
1000 8 10 2 14 4 40.0 2 11
2000 32 52 3 70 18 34.6 6 32
3000 72 147 4 178 31 21.1 12 61
4000 128 332 6 391 59 17.8 23 88
5000 200 574 7 697 123 21.4 34 131
6000 288 942 8 1140 198 21.0 50 184
7000 392 1466 9 1754 288 19.6 68 261
8000 512 21458 11 2551 406 18.9 88 304
9000 648 3004 12 3581 577 19.2 114 387
10000 800 4068 13 4833 765 18.8 141 478
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Figure 8: Right-looking Cholesky: Timing results

5.1 Checkpointing Overhead and Interval

As shown in the analytic models of various matrix
operations, while the failure-free algorithms of matrix
operations require O(n?®) floating-point operations for
a matrix of size n, the checkpointing steps require

O(I"{—ab) operations if checkpoints are taken every K of

iterations. Thus, the technique provides the flexibility
of selecting the checkpointing interval K to tune the
overhead. The complexity analyses also show that a
tradeoff exists between the extra memory requirement
M¢ and the checkpointing overhead 7. In order to
reduce the overhead, the checkpointing interval must
get larger, and hence more memory is required to store
the data (i.e., column blocks or row blocks) updated
during each sweep.

5.2 Roundoff Errors

It is well known that in the realm of floating-
point computations no computation is exact [36].
While the parity-based technique does not involve any
floating-point computations for providing fault toler-
ance for numerical algorithms, the technique based
on the checksum and reverse computation involves
both floating-point additions and matrix computa-
tions. Thus, there is a possibility of numerical prob-
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Figure 9: Right-looking QR: Timing results

lems in floating-point arithmetic subject to the check-
sum as well as reverse computation.

In our fault-tolerant algorithms, reverse computa-
tion usually requires rank-b updates. The rank-b up-
dates could cause roundoff error. However, since the
matrix operations we target are known to be backward
stable [36], roundoff errors due to reverse computation
are of little concern.

Some numerical problems are possible because of
the checksum encoding. First, overflow and underflow
can occur if the checksum is too large or small. How-
ever, since each checksum element is composed of just
one floating-point number per processor, the possibil-
ity that overflow and underflow occur in computing
the checksum is very low and is considered negligi-
ble unless an element of the matrix is too big or too
small. The overflow and underflow in floating-point
arithmetic can be avoided by organizing the computa-
tions differently, for example, normalizing each num-
ber by dividing it by the maximum among the num-
bers [13, 36]. Second, roundoff errors due to cancella-
tion can be a serious numerical problem. Cancellation
usually occurs when two numbers of approximately
the same size are subtracted. The cancellation sub-
ject to the checksum can be avoided by performing
the summation of the floating-point numbers in dif-
ferent order.

6 Related Work

Considerable research has been carried out on
algorithm-based fault tolerance for matrix operations
on parallel platforms where (unlike the above plat-
form) the computing nodes are not responsible for
storage of the input and output elements [18, 22, 28].
These methods concentrate mainly on fault-detection
and, in some cases, correction. One open question
is whether these techniques can be used to further
improve our checksum and reverse computation-based
technique.

Checkpointing on parallel and distributed systems
has been studied and implemented by many people [5,
9, 10, 12, 19, 20, 21, 26, 29, 33, 34, 35]. All of this
work, however, focuses on either checkpointing to disk
or on process replication. The technique of using a

collection of extra processors to provide fault tolerance
with no reliance on disk comes from Plank and Li [25]
and is unique to this work.

Some efforts are underway to provide program-
ming platforms for heterogeneous computing that can
adapt to changing load. These efforts can be divided
into two groups: those presenting new paradigms
for parallel programming that facilitate fault toler-
ance/migration [2, 3, 10, 15], and migration tools
based on consistent checkpointing [6, 27, 31]. In
the former group, the programmer must make a pro-
gram conform to the programming model of the plat-
form. None are garden-variety message-passing en-
vironments such as PVM or MPI. Those in the latter
group achieve transparency, but cannot migrate a pro-
cess without that process’s participation. Thus, they
cannot handle processor failures or revocation due to
availability, without checkpointing to a central disk.

7 Conclusions and Future Work

We have presented a new technique for executing
certain scientific computations on a changing or faulty
network of workstations (NOWSs). This technique em-
ploys checksum and reverse computation to adapt the
algorithm-based diskless checkpointing to the matrix
operations. It also enables a computation designed
to execute on N processors to run on a NOW plat-
form where individual processors may leave and enter
the NOW because of failures or load. As long as the
number of processors in the NOW is greater than N,
and as long as processors leave the NOW singly, the
computation can proceed efficiently.

We have implemented this technique on the core
matrix operations and shown performance results on a
fast network of Sparc-5 workstations. The results indi-
cate that our technique can obtain low overhead with
reasonable amount of extra memory while checkpoint-
ing at a reasonably small interval (it may vary depend-
ing on the algorithms). The possibility of numerical
problems such as overflow, underflow, and roundoff er-
ror due to cancellation exists, but is of little practical
concern. To reduce the effect of roundoff errors, if any,
we suggest an iterative refinement scheme [4, 37] for
the solution if it does not meet the desired error bound
of the algorithms [13, 36].

Our continuing progress with this work has been in
the following directions. First, we are adding the abil-
ity for processors to join the NOW in the middle of a
calculation and participate in the fault-tolerant opera-
tion of the program. Currently, once a processor quits,
the system merely completes with exactly N proces-
sors and no checkpointing. Second, we have added
the capacity for multiple checkpointing processors as
outlined in paper [24]. Preliminary results have shown
that this improves both the reliability of the computa-
tion and the performance of checkpointing. In partic-
ular, our technique reaps significant benefits from such
multiple checkpointing with relatively less memory by
checkpointing at a finer-grain interval.

For the future, our scheme can be integrated with
general load-balancing. In other words, if a few pro-
cessors are added to or deleted from the NOW, the
system would continue running, using the mechanisms



outlined in this paper. However, if the size of the pro-
cessor pool changes by an order of magnitude, it makes
sense to reconfigure the system with a different value
of N. Such an integration would represent a truly
adaptive, high-performance methodology for scientific
computations on NOWs.
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