Questions

- Color interpretation
 - Color spectrum vs. electromagnetic spectrum
 - Why does CIE standard specify R, G, B as the primary colors? Are there actually single bands R, G, or B?
 - Why does the Bayer color filter array have 75% green but 25% red and blue?
 - What is additive color system? What is subtractive color system?
 - What is hue and saturation? What is chromaticity?
 - What is chromaticity diagram? Intermediate? Why are the three primary colors not all the colors on the spectrum in the diagram? Where is white? Is L*a*b* color model? What is tristimulus value?
 - What is "safe color"?

- Color processing
 - What is the difference between tonal and color correction?
 - What is the difference between post-processing using RGB model vs. HSI model?
When passing through a prism, a beam of sunlight is decomposed into a spectrum of colors: violet, blue, green, yellow, orange, red. 1666, Sir Isaac Newton.

Electromagnetic energy spectrum
- Ultraviolet \leftrightarrow visible light \leftrightarrow infrared
- The longer the wavelength (meter), the lower the frequency (Hz), and the lower the energy (electron volts)
- The discovery of infrared (1800, Sir Frederick William Herschel)
- What is infrared? http://coolcosmos.ipac.caltech.edu/cosmic_classroom/ir_tutorial/

Hyperspectral imaging
- AVIRIS (Airborne Visible-Infrared Imaging Spectrometer)
 - Number of bands: 224
 - Wavelength range (nm): 0.4-2.5
 - Image size: 512 x 614
- Spectral range
 - visible light (0.4 ~ 0.77µm)
 - near infrared (0.77 ~ 1.5µm)
 - medium infrared (1.5 ~ 6µm)
 - far infrared (6 ~ 40µm)
A typical spectral reflectance pattern of green vegetation

Some questions

- What does it mean when we say an object is in a certain color?
- Why are the primary colors of human vision red, green, and blue?
- Is it true that different portions of red, green, and blue can produce all the visible color?
- What kind of color model is the most suitable one to describe human vision?

Primary colors of human vision

- Cones are divided into three sensible categories:
 - 65% of cones are sensitive to red light
 - 33% are sensitive to green light
 - 2% are sensitive to blue light
- For this reason, red, green, and blue are referred to as the primary colors of human vision. CIE standard designated three specific wavelength to these three colors in 1931:
 - Red (R) = 700 nm
 - Green (G) = 546.1 nm
 - Blue (B) = 435.8 nm

Detailed experimental curve available in 1965
Some clarifications

* No single color may be called red, green, or blue.
* R, G, B are only specified by standard.

Secondary colors

* Magenta (R + B)
* Cyan (G + B)
* Yellow (R + G)

Primary colors of pigment

* A primary color of pigment refers to one that absorbs the primary color of the light, but reflects the other two.
* Primary color of pigments are magenta, cyan, and yellow
* Secondary color of pigments are then red, green, and blue
Additive vs. Subtractive color system

- Involves light emitted directly from a source
- Mixes various amounts of red, green, and blue light to produce other colors.
- Combining one of these additive primary colors with another produces the additive secondary colors cyan, magenta, yellow.
- Combining all three primary colors produces white.

- Subtractive color starts with an object that reflects light and uses colorants to subtract portions of the white light illuminating an object to produce other colors.
- If an object reflects all the white light back to the viewer, it appears white.
- If an object absorbs (subtracts) all the light illuminating it, it appears black.

Color characterization

- **Brightness**: chromatic notion of intensity
- **Hue**: dominant color perceived by an observer
- **Saturation**: relative purity or the amount of white mixed with a hue

Some clarifications

- So when we call an object red, orange, etc., we refer to its hue
Chromaticity

- Chromaticity: hue + saturation
- Tristimulus: the amount of R, G, B needed to form any color (X, Y, Z)
- Trichromatic coefficients: x, y, z

\[
x = \frac{X}{X+Y+Z} \\
y = \frac{Y}{X+Y+Z} \\
z = \frac{Z}{X+Y+Z} \\
x + y + z = 1
\]

Chromaticity diagram

- CIE standard (1931)
- Shows all the visible colors
- Some questions:
 - Can different portions of R, G, B create all the visible colors?
 - Where is brown in the diagram?

Answers

- Chromaticity diagram only shows dominant wavelength (hue) and the saturation, and is independent of the amount of luminous energy (brightness)
- A triangle can never cover the whole horse-shoe shape diagram
Color models

* RGB model
 - Color monitor, color video cameras
* CMY model
 - Color printers
* HSI model
 - Color image manipulation

RGB model

* Color monitor, color video cameras (additive color system)
* Pixel depth – nr of bits used to represent each pixel
 - Full color image (24 bits)

CMY model

* Color printers and copiers (subtractive color system)
 - CMYK color model
 - Four color printing
* Deposit colored pigment on paper
HSI model

- The intensity component (I) is decoupled from the color components (H and S)
 - Ideal for developing image processing algorithms
- H and S are closely related to the way human visual system perceives colors

Hue and Saturation

Hue, Saturation, Intensity
RGB-to-HSI conversion (*)

\[I = \frac{1}{3}(R + G + B) \]
\[S = \frac{1}{2}\min(R, G, B) \]
\[\theta = \cos^{-1}\left(\frac{\frac{1}{2}(R - G) + (R - B)}{\sqrt{(R - G) + (R - B)(G - B)}}\right) \]
\[H = \begin{cases} 0 & \text{if } G \geq B \\ \frac{2\pi}{3} & \text{if } G < B \end{cases} \]

HSI-to-RGB conversion (*)

* For \(0^\circ \leq H < 120^\circ\)
 \[R = I(1 + \frac{S \cos(H)}{\cos(\theta - H)}), \quad B = I(6 - S)G = I - R - B \]
 \[G = I(1 + \frac{S \cos(120^\circ - H)}{\cos(120^\circ - H)}), \quad B = I(6 - S)B = I - R - G \]

* For \(120^\circ \leq H < 240^\circ\)
 \[R = I(1 + \frac{S \cos(H - 120^\circ)}{\cos(120^\circ - H)}), \quad B = I(6 - S)B = I - R - G \]
 \[G = I(1 + \frac{S \cos(H - 240^\circ)}{\cos(240^\circ - H)}), \quad B = I(6 - S)B = I - G - B \]

RGB vs. HSI

![RGB vs. HSI Image](image-url)
Summary

- Color spectrum vs. EM spectrum
 - Wavelength vs. frequency
 - Middle IR, near IR, far IR, visible
- Primary color vs. secondary color for human vision
 - Primary color of pigment
- Additive vs. subtractive color system
- Color characterization
 - Chromaticity
 - hue + saturation
 - Chromaticity diagram
 - Brightness
- Color models
 - RGB vs. CMYK vs. HSI

Color image processing

- Pseudo-color image processing
 - Assign color to monochrome images
 - Intensity slicing
 - Gray level to color transformation
 - Spatial domain approach – three different transformation functions
 - Frequency domain approach – three different filters
- Full-color image processing
 - Color image enhancement and restoration
 - Color compensation

Intensity slicing

- Similar to thresholding
Gray level to color transformation – spatial domain

* Perform three independent transformations on the gray level of any input pixel.
* The three results can then serve as the red, green, and blue components of a color image.

![Diagram showing three transformations for color conversion](image)

Examples

![Examples of color conversion](image)

Example 2

![Example 2 showing multiple transformations](image)
Gray level to color transformation – frequency domain

- Color code regions of an image based on frequency content
- The Fourier transform of an image is modified independently by three filters to produce three images used as Fourier transform of the R, G, B components of a color image
- Additional processing can be any image enhancement algorithm like histogram equalization

Example

- Red from highpass
- Green from bandpass
- Blue from lowpass

Full-color image processing

- Color transformations
 - Processing in RGB, HSI, or CMY(K) space
- Tone and color corrections
 - Calibrate images using the CIELAB model (L*a*b* model)
- Point-based processing
- Mask-based processing
Adjusting intensity in different color spaces

Color gamut of color monitor and color printing

CIELAB (L*a*b* color model)

* Maintain a high degree of color consistency between the monitors used and the eventual output devices
* Device-independent color model that relates the color gamuts of the monitors and output devices

The CIELAB gamut encompasses the entire visible spectrum and can represent accurately the colors of any display, print, or input device
Tonal correction example

Color is not changed (RGB or I)

Color correction example

Histogram processing
Mask-based processing

* Per-image basis vs. direct operation on color vector space

\[f(x, y) = s \]

\[f(x, y) = \begin{bmatrix} r \\ g \\ b \end{bmatrix} \]

Color image smoothing

Color image sharpening