DESIGN USING FPGAS

ECE 551 Overview

Prof. Don Bouldin, Ph.D.

Electrical & Computer Engineering

University of Tennessee

TEL: (865)-974-5444
FAX: (865)-974-5483
dbouldin@tennessee.edu

REAL-TIME EMBEDDED SYSTEMS

• An electronic system containing a CPU without an operating system visible to the end-user.
• It interacts with peripheral devices within fixed time constraints.
• A minimum of resources are employed to perform the required tasks.
• In addition to functionality and cost, other constraints include power management, fault tolerance, quality of service, security, etc.

APPLICATIONS MAY USE STANDARD ICs or FPGAs/ASICs

SYSTEM FUNCTIONS ARE OFTEN SPLIT BETWEEN THE CPU AND AN ASIC

• The most economical means of implementing logic functions is to use a microprocessor.
• When the microprocessor is too slow or too busy to handle some fast inputs and outputs, an ASIC can be used to implement high-speed concurrent operations.

FPGAS PROVIDE PRECISE CONTROL OF THE HARDWARE

• CPUs have a single arithmetic unit with a fixed bit size.
• FPGAs can have multiple units with flexible bit sizes.

MICROELECTRONIC SYSTEM DESIGN CONSISTS OF ITERATIVE REFINEMENTS OF SYNTHESIS AND VERIFICATION

TRENDS
ECE 551 & ECE 651

- **ECE 551** (logic level; b/w):
 - Pairs create project using VHDL
 - Simulate pre-synthesis and post-layout
 - Demonstrate using 200K-gate Xilinx FPGA on Spartan3 Board with I/O
 - Implement on screen only using Altera FPGA

- **ECE 651** (physical level; color):
 - Perform custom IC design (but not submit for fab)
 - Compare manual design vs. automated tools
 - Study nanometer design issues (cross-talk, power)

CUSTOM IC DESIGN FLOW

1—SCHEMATIC

2—PRE-LAYOUT LOGIC SIMULATION

3—MANUAL LAYOUT

4—POST-LAYOUT TRANS. SIMULATION

SEMI-CUSTOM DESIGN FLOW OF DIGITAL FPGAS/ASICS

1—HDL

2—PRE-SYNTHESIS SIMULATION

3—SYNTHESIS/AUTO LAYOUT

4—POST-LAYOUT SIMULATION

HIGH VOLUME APPLICATIONS OF FPGAS

TELECOMMUNICATIONS IS THE LARGEST MARKET FOR FPGAS

- Xilinx (XLNX) and Cisco (CSCO) stock prices have tracked together for two decades.

PROGRAMMABLE LOGIC ARRAY

- Any 8-row truth table can be implemented using eight 3-input AND gates followed by a single OR gate with 8 inputs.
- An array of AND-OR tiles can be programmed to implement logic.
- In this example, only two outputs are required for row 4 and row 7: \[\text{OUT} = ABC + ABC \]
PLD AND CPLD

- Initially, programmable logic devices (PLDs) consisted of an array of 8 AND-OR tiles (called Logic Array Blocks or LABs by Altera) plus some additional interconnecting wires and storage elements.
- Larger components with 128 tiles (or more) became known as CPLDs or Complex PLDs. The tiles can be interconnected via a wiring matrix.

RECONFIGURABLE COMPONENTS ARE ADAPTABLE

The internal logic and interconnect of a reconfigurable component (FPGA) may be specified by the user and changed at any time.

HDL DESIGNS CAN BE TARGETED TO MULTIPLE LAYOUTS

This project-oriented course involves:
1. design of field-programmable gate arrays (FPGAs)
2. using synthesis and automatic placement and routing software
3. to implement the design using multiple technologies (Altera and Xilinx)
4. with local/remote access to LINUX workstations
5. free use of Xilinx prototyping boards
6. grade depending on homework, project and final exam
7. all presentation slides will be posted on the web:
 http://web.eecs.utk.edu/~bouldin/courses/551/overview.html