Lecture 10: Isolated Converters II & DCM Introduction

ECE 481: Power Electronics
Prof. Daniel Costinett
Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

Announcements

• Midterm exam due Thursday, start of class
• Hw #3 returned today
• Missing HW assignments
3. [30 pts] Design of a Boost Converter

The boost converter in Fig. 3 connects a lead-acid battery to a 48 V DC bus. The converter input is the battery voltage, which has characteristics:
- Maximum \(V_{in} \): 15 V
- Minimum \(V_{in} \): 10 V

The maximum output power is 100 W, and the switching frequency is 100 kHz. The inductance \(L \) is chosen to be 10 \(\mu \)H, and the capacitance may be assumed to be very large for parts (a)-(c).

![Booster Converter Diagram]

Figure 3: Booster Converter

a) [10 pts] A number of parts are available for both the MOSFET and diode. Important characteristics of each device are shown in Tables 1 and II. The rated maximum currents and voltages are the maximum instantaneous values which the devices can handle.

Table I: MOSFET Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Rated max (I_{D})</th>
<th>Rated max (V_{G})</th>
<th>(R_{D})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>40 V</td>
<td>30 A</td>
<td>5 m(\Omega)</td>
</tr>
<tr>
<td>II</td>
<td>100 V</td>
<td>15 A</td>
<td>15 m(\Omega)</td>
</tr>
<tr>
<td>III</td>
<td>100 V</td>
<td>20 A</td>
<td>50 m(\Omega)</td>
</tr>
<tr>
<td>IV</td>
<td>150 V</td>
<td>15 A</td>
<td>30 m(\Omega)</td>
</tr>
<tr>
<td>V</td>
<td>150 V</td>
<td>20 A</td>
<td>75 m(\Omega)</td>
</tr>
</tbody>
</table>

Table II: Diode Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Rated max (V_{D})</th>
<th>Rated max (I_{D})</th>
<th>(V_{F})</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>40 V</td>
<td>20 A</td>
<td>0.5 V</td>
</tr>
<tr>
<td>VII</td>
<td>100 V</td>
<td>15 A</td>
<td>1.0 V</td>
</tr>
<tr>
<td>VIII</td>
<td>150 V</td>
<td>5 A</td>
<td>0.7 V</td>
</tr>
<tr>
<td>IX</td>
<td>200 V</td>
<td>20 A</td>
<td>1.5 V</td>
</tr>
</tbody>
</table>

Select one MOSFET and one diode which will work best in this converter. Explain why you.

6.3.1. Full-bridge and half-bridge isolated buck converters

Full-bridge isolated buck converter

![Full-bridge isolated buck converter diagram]
Full Bridge Switch Structure

- During first switching period: transistors \(Q_1 \) and \(Q_2 \) conduct for time \(DT_t \), applying volt-seconds \(V \times DT_t \) to primary winding
- During next switching period: transistors \(Q_3 \) and \(Q_4 \) conduct for time \(DT_t \), applying volt-seconds \(-V \times DT_t \) to primary winding
- Transformer volt-second balance is obtained over two switching periods
- Effect of nonidealities?
Effect of nonidealities on transformer volt-second balance

Volt-seconds applied to primary winding during first switching period:

\[(V_{f1} - (O_1 + O_2 \text{ forward voltage drops})) \times O_1 \text{ conduction time} \]

Volt-seconds applied to primary winding during next switching period:

\[-(V_{f2} - (O_2 + O_3 \text{ forward voltage drops})) \times O_2 \text{ conduction time} \]

These volt-seconds never add to exactly zero.

Net volt-seconds are applied to primary winding

Magnetizing current slowly increases in magnitude

Saturation can be prevented by placing a capacitor in series with primary, or by use of current programmed mode (Chapter 12)

Operation of secondary-side diodes

- During second \((T/2)\) subinterval, both secondary-side diodes conduct
- Output filter inductor current divides approximately equally between diodes
- Secondary amp-turns add to approximately zero
- Essentially no net magnetization of transformer core by secondary winding currents
Volt-second balance on output filter inductor

\[V = \{v_i\} \quad \Rightarrow \quad \langle v_i \rangle = \forall \text{ conducting devices:} \]

\[V = nDV_{g} \]

\[M(D) \leq nD \quad \text{buck converter with turns ratio} \]

Half-bridge isolated buck converter

- Replace transistors \(Q_3 \) and \(Q_4 \) with large capacitors
- Voltage at capacitor centerpoint is \(0.5V_g \)
- \(v_i(t) \) is reduced by a factor of two
- \(M = 0.5nD \)

\[\langle v_i \rangle = \frac{D(V_g - V_{b})}{2} + \frac{D(D - V_{b})}{2} \]
6.3.3. Push-pull isolated buck converter

\[V = nDV \]

0 ≤ D ≤ 1

Waveforms: push-pull

- Used with low-voltage inputs
- Secondary-side circuit identical to full bridge
- As in full bridge, transformer volt-second balance is obtained over two switching periods
- Effect of nonidealities on transformer volt-second balance?
- Current programmed control can be used to mitigate transformer saturation problems. Duty cycle control not recommended.
6.3.2. Forward converter

- Buck-derived transformer-isolated converter
- Single-transistor and two-transistor versions
- Maximum duty cycle is limited
- Transformer is reset while transistor is off

Forward converter
with transformer equivalent circuit
Forward converter: waveforms

- Magnetizing current, in conjunction with diode D_1, operates in discontinuous conduction mode.
- Output filter inductor, in conjunction with diode D_2, may operate in either CCM or DCM.

Subinterval 1: transistor conducts

- D_{on}
- D_{off}
- $i_1 = \frac{v_{in}}{R}$
- $i_2 = \frac{v_{out}}{R}$
- $i_3 = \frac{v_{out}}{R}$
- $i_4 = \frac{v_{out}}{R}$

- $D < 0.5$ for transformer reset.
Subinterval 2: transformer reset

\[V_g \]

\[n_1 : n_2 : n_3 \]

\[i_M \]

\[v_{R1} = v_2 \]

\[L \]

\[D_1 \text{ off} \]

\[D_2 \text{ off} \]

\[i_L = \frac{i_M}{i_1} \]

\[v_3 = v_2 - v_g \]

\[n_1 = n_2 \]

\[D_3 \text{ on} \]

\[v_{R3} \]

\[C \]

\[R \]

\[V \]

Subinterval 3

\[V_g \]

\[L \]

\[Q_1 \text{ off} \]

\[D_1 \text{ off} \]

\[n_1 : n_2 : n_3 \]
Magnetizing inductance volt-second balance

\[\langle v_t \rangle = D\{V_s\} + D_3(-V_n/n_2) + D_4(0) = 0 \]

Transformer reset

From magnetizing current volt-second balance:

\[\langle i_M \rangle = D\{V_s\} + D_3(-V_n/n_2) + D_4(0) = 0 \]

Solve for \(D_3 \):

\[D_3 = \frac{n_2}{n_1} \cdot D \]

\(D_3 \) cannot be negative. But \(D_3 = 1 - D - D_2 \). Hence

\[D_3 = 1 - D - D_2 \geq 0 \]

\[D_3 = 1 - D \left(1 + \frac{n_2}{n_1}\right) \geq 0 \]

Solve for \(D \):

\[D \leq \frac{1 - \frac{n_2}{n_1}}{1 + \frac{n_2}{n_1}} \quad \text{for} \quad n_1 = n_2; \quad D \leq \frac{1}{2} \]
What happens when $D > 0.5$

magnetizing current waveforms, for $n_1 = n_2$

Conversion ratio $M(D)$

$\langle v_{D3} \rangle = V = \frac{n_3}{n_1} DV_s$
Maximum duty cycle vs. transistor voltage stress

Maximum duty cycle limited to

\[D \leq \frac{1}{1 + \frac{n_2}{n_1}} \]

which can be increased by increasing the turns ratio \(n_1 \) / \(n_2 \). But this increases the peak transistor voltage:

\[\max(v_{qi}) = V_s \left(1 + \frac{n_1}{n_2} \right) \]

For \(n_1 = n_2 \):

\[D \leq \frac{1}{2} \quad \text{and} \quad \max(v_{qi}) = 2V_s \]

The two-transistor forward converter

\[V = nDV_s \quad D \leq \frac{1}{2} \quad \max(v_{qi}) = \max(v_{q2}) = V_s \]
Chapter 5. The Discontinuous Conduction Mode

5.1. Origin of the discontinuous conduction mode, and mode boundary
5.2. Analysis of the conversion ratio $M(D, K)$
5.3. Boost converter example
5.4. Summary of results and key points

Introduction to Discontinuous Conduction Mode (DCM)

- Occurs because switching ripple in inductor current or capacitor voltage causes polarity of applied switch current or voltage to reverse, such that the current- or voltage-unidirectional assumptions made in realizing the switch are violated.
- Commonly occurs in dc-dc converters and rectifiers, having single-quadrant switches. May also occur in converters having two-quadrant switches.
- Typical example: dc-dc converter operating at light load (small load current). Sometimes, dc-dc converters and rectifiers are purposely designed to operate in DCM at all loads.
- Properties of converters change radically when DCM is entered:
 - M becomes load-dependent
 - Output impedance is increased
 - Dynamics are altered
 - Control of output voltage may be lost when load is removed
5.1. Origin of the discontinuous conduction mode, and mode boundary

Buck converter example, with single-quadrant switches

Minimum diode current is \((I - \Delta I_d) \)
Dc component \(I = V/R \)
Current ripple is \(\Delta I_d = \frac{(V_s - V)}{2L} DT = \frac{V_s DDT}{2L} \)
Note that \(I \) depends on load, but \(\Delta I_d \) does not.

Reduction of load current

Increase \(R \), until \(I = \Delta I_d \)
Minimum diode current is \((I - \Delta I_d) \)
Dc component \(I = V/R \)
Current ripple is \(\Delta I_d = \frac{(V_s - V)}{2L} DT = \frac{V_s DDT}{2L} \)
Note that \(I \) depends on load, but \(\Delta I_d \) does not.
Further reduce load current

Increase R some more, such that $I < \Delta I_i$.

Dc component $I = \frac{V}{R}$

Current ripple is $\Delta I_i = \frac{(V_i - V)}{2L} D T_i = \frac{V_i D T_i}{2L}$

Note that I depends on load, but ΔI_i does not.

The load current continues to be positive and non-zero.

Mode boundary

Boundary

@ $I = 0$

- $I > \Delta I_i$ for CCM
- $I < \Delta I_i$ for DCM

Insert buck converter expressions for I and ΔI_i:

\[\frac{DV_i}{R} \leq \frac{DDT_i V_i}{2L} \leq \Delta I_i \]

Simplify:

\[\frac{2L}{R} \leq D \]

This expression is of the form

\[
\begin{cases}
 K < K_{op}(D) & \text{for DCM} \\
 K = \frac{2L}{R} \quad \text{and} \quad K_{op}(D) = D'
\end{cases}
\]

where K is unallowed parameter

as $L \downarrow \frac{1}{R}$

D closer to DCM

as $\frac{1}{L} \downarrow \frac{R}{D}$

D further from DCM

as $R \downarrow \frac{1}{R}$
Critical load resistance \(R_{\text{crit}} \)

Solve \(K_{\text{crit}} \) equation for load resistance \(R \):

\[
R \begin{cases} < R_{\text{crit}}(D) & \text{for CCM} \\ > R_{\text{crit}}(D) & \text{for DCM} \end{cases}
\]

where

\[
R_{\text{crit}}(D) = \frac{2L}{DT_e}
\]
Summary: mode boundary

\[K > K_{m1}(D) \quad \text{or} \quad R < R_{m1}(D) \quad \text{for CCM} \]
\[K < K_{m2}(D) \quad \text{or} \quad R > R_{m2}(D) \quad \text{for DCM} \]

<table>
<thead>
<tr>
<th>Converter</th>
<th>(K_{m1}(D))</th>
<th>(\max_{D \in [0,1]} (K_{m1}))</th>
<th>(R_{m1}(D))</th>
<th>(\min_{R \in \mathbb{R}^+} (R_{m1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck</td>
<td>((1 - D))</td>
<td>(1)</td>
<td>((1 - D)T)</td>
<td>(\frac{2L}{I})</td>
</tr>
<tr>
<td>Boost</td>
<td>(D(1 - D)^2)</td>
<td>(\frac{4}{27})</td>
<td>(D(1 - D)^2T)</td>
<td>(\frac{22}{7} \frac{L}{I})</td>
</tr>
<tr>
<td>Back-boost</td>
<td>((1 - D)^2)</td>
<td>(1)</td>
<td>(\frac{2L}{(1 - D)^2T})</td>
<td>(\frac{2L}{I})</td>
</tr>
</tbody>
</table>

5.2. Analysis of the conversion ratio \(M(D,K)\)

Analysis techniques for the discontinuous conduction mode:

- Inductor volt-second balance:
 \[\langle v_i \rangle = \frac{1}{T} \int_0^T v_i(t) \, dt = 0 \]

- Capacitor charge balance:
 \[\langle i_C \rangle = \frac{1}{C} \int_0^C i_C(t) \, dt = 0 \]

Small ripple approximation sometimes applies:

- \(v(t) = V\) because \(\Delta v \ll V\)
- \(i(t) = I\) is a poor approximation when \(\Delta i > I\)

Converter steady-state equations obtained via charge balance on each capacitor and volt-second balance on each inductor. Use care in applying small ripple approximation.
Example: Analysis of DCM buck converter $M(D,K)$