Lecture 13: Midterm, Dynamics and Control (cont.)

ECE 481: Power Electronics
Prof. Daniel Costinett
Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013
Chapter 7. AC Equivalent Circuit Modeling

7.1 Introduction

7.2 The basic AC modeling approach

7.3 State-space averaging

7.4 Circuit averaging and averaged switch modeling

7.5 The canonical circuit model

7.6 Modeling the pulse-width modulator

7.7 Summary of key points
Neglecting the switching ripple

Suppose the duty cycle is modulated sinusoidally:
\[d(t) = D + D_p \cos \omega_m t \]
where \(D \) and \(D_p \) are constants, \(|D_p| \ll D \) and the modulation frequency \(\omega_m \) is much smaller than the converter switching frequency \(\omega_s = 2\pi f_s \).

The resulting variations in transistor gate drive signal and converter output voltage:

The actual waveform \(v(t) \) including ripple, versus the averaged waveform \(\bar{v}(t) \) with ripple neglected.
Output voltage spectrum
with sinusoidal modulation of duty cycle

Contains frequency components at:
- Modulation frequency and its harmonics
- Switching frequency and its harmonics
- Sidebands of switching frequency

With small switching ripple, high-frequency components (switching harmonics and sidebands) are small.
If ripple is neglected, then only low-frequency components (modulation frequency and harmonics) remain.

Chapter 7: AC equivalent circuit modeling
Averaging to remove switching ripple

Average over one switching period to remove switching ripple:

\[
\begin{align*}
L \frac{d\langle i(t) \rangle_{rs}}{dt} &= \langle v_s(t) \rangle_{rs} \\
C \frac{d\langle v_c(t) \rangle_{rs}}{dt} &= \langle i_s(t) \rangle_{rs}
\end{align*}
\]

where

\[
\langle x(t) \rangle_{rs} = \frac{1}{T_s} \int_{0}^{T_s} x(t) \, dt
\]

Note that, in steady-state,

\[
\langle v_s(t) \rangle_{rs} = 0, \quad \langle i_s(t) \rangle_{rs} = 0
\]

by inductor volt-second balance and capacitor charge balance.

\[
\langle v_s \rangle \cdot v_s = v_{gs} \cdot D^* v
\]

Small-signal modeling of the diode

- \(\bar{I} \) is a small-signal value, \(\bar{I} = \bar{I}_0 + \Delta \theta \bar{I}_0 \)
- \(\bar{I} \ll \bar{I} \)

Nonlinear diode, driven by current source having a DC and small AC component

\[
i = I_s \bar{I}
\]

Small-signal AC model

\[
\bar{I} = \frac{1}{2} \left(\bar{v} \right)
\]

Linearization of the diode \(i \cdot v \) characteristic about a quiescent operating point

Actual nonlinear characteristic

Quiescent operating point

Linearized characteristic

\(\bar{I} \ll \bar{I} \)
Buck-boost converter: nonlinear static control-to-output characteristic

\[V = V_s D(1 - D) \]

Quiescent operating point

\[\dot{V} = C_{mol} \omega \dot{\omega} \]

Linearized function

Actual nonlinear characteristic

Example: linearization at the quiescent operating point

\[D = 0.5 \]

Result of averaged small-signal ac modeling

Small-signal ac equivalent circuit model

\[G_m(s) = \frac{V(s)}{\dot{\omega}(s)} \]

buck-boost example
7.2. The basic AC modeling approach

Buck-boost converter example

\[\dot{V}(t) = V_0, \quad \dot{I}(t) = -\frac{V(t)}{R}, \quad \dot{Q}(t) = i(t) \]

\[\langle V(t) \rangle = L \frac{d\dot{Q}(t)}{dt} = \frac{1}{T} \int_0^T v(t) dt + \frac{1}{T} \int_0^T v(t) dt \]

\[\langle V(t) \rangle \approx d(t) v(t) + d'(t) v(t) \]

Large signal averaged over \(T > \) nonlinear