Lecture 17: Converter Bode Plots

ECE 481: Power Electronics
Prof. Daniel Costinett
Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

Summary: Bode plot of real pole

\[G(s) = \frac{1}{1 + \frac{s}{\omega_p}} \]
Summary: Bode plot, real zero

\[G(s) = \left[1 + \frac{s}{\omega_n} \right] \]

Summary: Bode plot, RHP zero

\[G(s) = \left[1 - \frac{s}{\omega_n} \right] \]
Example 1: \(G(s) = \frac{G_0}{(1 + \frac{s}{\omega_1})(1 + \frac{s}{\omega_2})} \)

with \(G_0 = 40 \rightarrow 32 \text{ dB}, f_1 = \omega_1/2\pi = 100 \text{ Hz}, f_2 = \omega_2/2\pi = 2 \text{ kHz} \)

Example 2

Determine the transfer function \(A(s) \) corresponding to the following asymptotes:

\[
\begin{align*}
\| A \| &= f_1 \\
\| A_0 \|_{\text{db}} &= f_2 \\
\| A_\infty \|_{\text{db}} &= +20 \text{ dB/dec} \\
\angle A &= 0' \text{ for } f_1/10 \text{ and } 10f_2 \\
\end{align*}
\]
Example 2, continued

One solution:

\[A(s) = A_0 \left(\frac{1 + \frac{s}{\omega_1}}{1 + \frac{s}{\omega_2}} \right) \]

Analytical expressions for asymptotes:

For \(f < f_1 \)

\[A_s \left(\frac{1 + \frac{s}{\omega_1}}{1 + \frac{s}{\omega_2}} \right) \bigg|_{s = j\omega_1} = A_0 \frac{1}{j\omega_1} = A_0 \frac{1}{f_1} \]

For \(f_1 < f < f_2 \)

\[A_0 \left(\frac{1 + \frac{s}{\omega_1}}{1 + \frac{s}{\omega_2}} \right) \bigg|_{s = j\omega_1} = A_0 \frac{\omega_2}{\omega_1} = A_0 \frac{f_2}{f_1} \]

Example 2, continued

For \(f > f_2 \)

\[A_0 \left(\frac{1 + \frac{s}{\omega_1}}{1 + \frac{s}{\omega_2}} \right) \bigg|_{s = j\omega_1} = A_0 \frac{\omega_2}{\omega_1} = A_0 \frac{f_2}{f_1} \]

So the high-frequency asymptote is

\[A_s = A_0 \frac{f_2}{f_1} \]

Another way to express \(A(s) \): use inverted poles and zeroes, and express \(A(s) \) directly in terms of \(A_s \)

\[A(s) = A_0 \left(\frac{1 + \frac{\omega_1}{s}}{1 + \frac{\omega_2}{s}} \right) \]
8.1.6 Quadratic pole response: resonance

Example

\[G(s) = \frac{v_o(s)}{v_i(s)} = \frac{1}{1 + s\frac{L}{R} + s^2LC} \]

Second-order denominator, of the form

\[G(s) = \frac{1}{1 + a_1s + a_2s^2} \]

with \(a_1 = L/R \) and \(a_2 = LC \)

How should we construct the Bode diagram?

Approach 1: factor denominator

\[G(s) = \frac{1}{1 + a_1s + a_2s^2} \]

We might factor the denominator using the quadratic formula, then construct Bode diagram as the combination of two real poles:

\[G(s) = \frac{1}{(1 - s/s_1)(1 - s/s_2)} \]

with

\[s_1 = -\frac{a_1}{2a_2} \left[1 - \sqrt{1 - \frac{4a_2}{a_1^2}} \right] \]

\[s_2 = -\frac{a_1}{2a_2} \left[1 + \sqrt{1 - \frac{4a_2}{a_1^2}} \right] \]

- If \(4a_2 \leq a_1^2 \), then the roots \(s_1 \) and \(s_2 \) are real. We can construct Bode diagram as the combination of two real poles.
- If \(4a_2 > a_1^2 \), then the roots are complex. In Section 8.1.1, the assumption was made that \(u_0 \) is real; hence, the results of that section cannot be applied and we need to do some additional work.
Approach 2: Define a standard normalized form for the quadratic case

\[G(s) = \frac{1}{1 + 2\zeta \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2} \quad \text{or} \quad G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2} \]

- When the coefficients of \(s \) are real and positive, then the parameters \(\zeta, \omega_0, \) and \(Q \) are also real and positive
- The parameters \(\zeta, \omega_0, \) and \(Q \) are found by equating the coefficients of \(s \)
- The parameter \(\omega_0 \) is the angular corner frequency, and we can define \(f_0 = \frac{\omega_0}{2\pi} \)
- The parameter \(\zeta \) is called the damping factor. \(\zeta \) controls the shape of the exact curve in the vicinity of \(f = f_0 \). The roots are complex when \(\zeta < 1 \).
- In the alternative form, the parameter \(Q \) is called the quality factor. \(Q \) also controls the shape of the exact curve in the vicinity of \(f = f_0 \). The roots are complex when \(Q > 0.5 \).

The Q-factor

In a second-order system, \(\zeta \) and \(Q \) are related according to

\[Q = \frac{1}{2\zeta} \]

\(Q \) is a measure of the dissipation in the system. A more general definition of \(Q \), for sinusoidal excitation of a passive element or system is

\[Q = 2\pi \frac{\text{peak stored energy}}{\text{energy dissipated per cycle}} \]

For a second-order passive system, the two equations above are equivalent. We will see that \(Q \) has a simple interpretation in the Bode diagrams of second-order transfer functions.
Analytical expressions for f_0 and Q

Two-pole low-pass filter example: we found that

$$G(s) = \frac{v_v(s)}{v_i(s)} = \frac{1}{1 + \frac{L}{R}s + s^2LC}$$

Equate coefficients of like powers of s with the standard form

$$G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

Result:

$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi\sqrt{LC}}$$

$$Q = R\sqrt{\frac{C}{L}}$$

Magnitude asymptotes, quadratic form

In the form

$$G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

let $s = j\omega$ and find magnitude:

$$|G(j\omega)| = \frac{1}{\sqrt{1 - \left(\frac{\omega}{\omega_0}\right)^2 + \frac{1}{Q^2}\left(\frac{\omega}{\omega_0}\right)^2}}$$

Asymptotes are

- $|G| \to 1$ for $\omega << \omega_0$
- $|G| \to \left(\frac{f}{f_0}\right)^{-2}$ for $\omega >> \omega_0$
Deviation of exact curve from magnitude asymptotes

\[|G(j\omega)| = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_c}\right)^2\right)^2 + \left(\frac{\omega}{\omega_c}\right)^2}} \]

At \(\omega = \omega_c \), the exact magnitude is

\[|G(j\omega_c)| = Q \quad \text{or, in dB:} \quad |G(j\omega_c)|_{dB} = |Q|_{dB} \]

The exact curve has magnitude \(Q \) at \(f = f_0 \). The deviation of the exact curve from the asymptotes is \(|Q|_{dB} \).

Two-pole response: exact curves
8.1.7. The low-Q approximation

Given a second-order denominator polynomial, of the form

$$G(s) = \frac{1}{1 + a_1 s + a_2 s^2} \quad \text{or} \quad G(s) = \frac{1}{1 + \frac{s}{Q_0} + \left(\frac{s}{\omega_b}\right)^2}$$

When the roots are real, i.e., when $Q < 0.5$, then we can factor the denominator, and construct the Bode diagram using the asymptotes for real poles. We would then use the following normalized form:

$$G(s) = \frac{1}{\left(1 + \frac{s}{\omega_1}\right)\left(1 + \frac{s}{\omega_2}\right)}$$

This is a particularly desirable approach when $Q < 0.5$, i.e., when the corner frequencies ω_1 and ω_2 are well separated.

An example

A problem with this procedure is the complexity of the quadratic formula used to find the corner frequencies.

R-L-C network example:

$$G(s) = \frac{v_o(s)}{v_i(s)} = \frac{1}{1 + \frac{sL}{R} + s^2LC}$$

Use quadratic formula to factor denominator. Corner frequencies are:

$$\omega_1, \omega_2 = \frac{L}{R} \pm \sqrt{\left(\frac{L}{R}\right)^2 - 4LC}$$
Factoring the denominator

\[\omega_1, \omega_2 = \frac{L/R \pm \sqrt{(L/R)^2 - 4LC}}{2LC} \]

This complicated expression yields little insight into how the corner frequencies \(\omega_1 \) and \(\omega_2 \) depend on \(R \), \(L \), and \(C \).

When the corner frequencies are well separated in value, it can be shown that they are given by the much simpler (approximate) expressions

\[\omega_1 = \frac{R}{L}, \quad \omega_2 = \frac{1}{RC} \]

\(\omega_j \) is then independent of \(C \), and \(\omega_2 \) is independent of \(L \).

These simpler expressions can be derived via the Low-\(Q \) Approximation.

Derivation of the Low-\(Q \) Approximation

Given

\[G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2} \]

Use quadratic formula to express corner frequencies \(\omega_1 \) and \(\omega_2 \) in terms of \(Q \) and \(\omega_0 \) as:

\[\omega_1 = \frac{\omega_0}{Q} \left(1 - \sqrt{1 - 4Q^2} \right) \]

\[\omega_2 = \frac{\omega_0}{Q} \left(1 + \sqrt{1 - 4Q^2} \right) \]
Corner frequency ω_2

$$\omega_2 = \frac{\omega_0}{Q} \frac{1 + \sqrt{1 - 4Q^2}}{2}$$

can be written in the form

$$\omega_2 = \frac{\omega_0}{Q} F(Q)$$

where

$$F(Q) = \frac{1}{2} \left(1 + \sqrt{1 - 4Q^2} \right)$$

For small Q, $F(Q)$ tends to 1. We then obtain

$$\omega_2 = \frac{\omega_0}{Q} \quad \text{for} \quad Q \ll \frac{1}{2}$$

For $Q < 0.3$, the approximation $F(Q) = 1$ is within 10% of the exact value.

Corner frequency ω_1

$$\omega_1 = \frac{\omega_0}{Q} \frac{1 - \sqrt{1 - 4Q^2}}{2}$$

can be written in the form

$$\omega_1 = \frac{Q \omega_0}{F(Q)}$$

where

$$F(Q) = \frac{1}{2} \left(1 + \sqrt{1 - 4Q^2} \right)$$

For small Q, $F(Q)$ tends to 1. We then obtain

$$\omega_1 \sim Q \omega_0 \quad \text{for} \quad Q \ll \frac{1}{2}$$

For $Q < 0.3$, the approximation $F(Q) = 1$ is within 10% of the exact value.
The Low-Q Approximation

\[f_1 = \frac{Q f_0}{F(Q)} \]
\[f_2 = \frac{f_0 F(Q)}{Q} \]
\[f_0 \]

-20dB/decade

-40dB/decade

R-L-C Example

For the previous example:

\[G(s) = \frac{v_o(s)}{v_i(s)} = \frac{1}{1 + \frac{1}{R} + s^2 \frac{L}{C}} \]

\[f_c = \frac{\omega_c}{2\pi} = \frac{1}{2\pi \sqrt{LC}} \]

\[Q = R \sqrt{\frac{C}{L}} \]

Use of the Low-Q Approximation leads to

\[\omega_c = Q \omega_c = R \sqrt{\frac{C}{L}} \frac{1}{\sqrt{LC}} = \frac{R}{L} \]
\[\omega_c = \frac{\omega_c}{Q} = \frac{1}{\sqrt{LC}} \frac{1}{\sqrt{\frac{C}{L}}} = \frac{1}{R} \]
8.1.8. Approximate Roots of an Arbitrary-Degree Polynomial

Generalize the low-Q approximation to obtain approximate factorization of the nth-order polynomial

$$P(s) = 1 + a_1 s + a_2 s^2 + \cdots + a_n s^n$$

It is desired to factor this polynomial in the form

$$P(s) = \left[1 + \tau_1 s\right] \left[1 + \tau_2 s\right] \cdots \left[1 + \tau_n s\right]$$

When the roots are real and well separated in value, then approximate analytical expressions for the time constants $\tau_1, \tau_2, \ldots, \tau_n$ can be found, that typically are simple functions of the circuit element values.

Objective: find a general method for deriving such expressions. Include the case of complex root pairs.

Result
when roots are real and well separated

If the following inequalities are satisfied

$$|a_1| >> \frac{|a_2|}{|a_1|} >> \frac{|a_3|}{|a_2|} >> \cdots >> \frac{|a_n|}{|a_{n-1}|}$$

Then the polynomial $P(s)$ has the following approximate factorization

$$P(s) = \left(1 + a_1 s\right) \left(1 + \frac{a_2}{a_1} s\right) \left(1 + \frac{a_3}{a_2} s\right) \cdots \left(1 + \frac{a_n}{a_{n-1}} s\right)$$

- If the a_n coefficients are simple analytical functions of the element values $L, C, \text{etc.}$, then the roots are similar simple analytical functions of $L, C, \text{etc.}$
- Numerical values are used to justify the approximation, but analytical expressions for the roots are obtained
When two roots are not well separated
then leave their terms in quadratic form

Suppose inequality k is not satisfied:

$$
\begin{bmatrix}
|a_1| & \gg & \frac{a_2}{a_1} & \gg & \cdots & \gg & \frac{a_k}{a_{k-1}} & \gg & \cdots & \gg & \frac{a_n}{a_{n-1}} \\
\end{bmatrix}
$$

Then leave the terms corresponding to roots k and $(k+1)$ in quadratic form, as follows:

$$
P(s) \approx \left(1 + a_1 s \right) \left(1 + \frac{a_2}{a_1} s \right) \cdots \left(1 + \frac{a_k}{a_{k-1}} s + \frac{a_{k+1}}{a_k} s^2 \right) \cdots \left(1 + \frac{a_n}{a_{n-1}} s \right)
$$

This approximation is accurate provided

$$
\begin{bmatrix}
|a_1| & \gg & \frac{a_2}{a_1} & \gg & \cdots & \gg & \frac{a_k}{a_{k-1}} & \gg & \cdots & \gg & \frac{a_n}{a_{n-1}} \\
\end{bmatrix}
$$

When the first inequality is violated
A special case for quadratic roots

When inequality 1 is not satisfied:

$$
\begin{bmatrix}
|a_1| & \gg & \frac{a_2}{a_1} & \gg & \frac{a_3}{a_2} & \gg & \cdots & \gg & \frac{a_n}{a_{n-1}} \\
\end{bmatrix}
$$

Then leave the first two roots in quadratic form, as follows:

$$
P(s) = \left(1 + a_1 s + a_2 s^2 \right) \left(1 + \frac{a_3}{a_1} s \right) \cdots \left(1 + \frac{a_n}{a_{n-1}} s \right)
$$

This approximation is justified provided

$$
\begin{bmatrix}
|a_2| & \gg & |a_1| & \gg & \frac{a_3}{a_2} & \gg & \frac{a_4}{a_3} & \gg & \cdots & \gg & \frac{a_n}{a_{n-1}} \\
\end{bmatrix}
$$
8.2.1. Example: transfer functions of the buck-boost converter

Small-signal ac model of the buck-boost converter, derived in Chapter 7:

\[G_{\text{ac}}(s) = \frac{\bar{V}(s)}{\bar{I}(s)} = \frac{-sL}{1 + s \frac{L}{D} + \frac{1}{s^2 D^2} + \frac{1}{s^3 D^3}} \]

which is of the following standard form:

\[G_{\text{ac}}(s) = G_0 \frac{1}{1 + \frac{s}{Qb_0} + \left(\frac{s}{\omega_0}\right)^2} \]
Salient features of the line-to-output transfer function

Equate standard form to derived transfer function, to determine expressions for the salient features:

\[G_{\omega} = -\frac{D}{D^2} \]

\[\omega_0 = \frac{LC}{D^2} \]

\[\omega_b = \frac{D}{\sqrt{LC}} \]

\[\frac{1}{Q_{\omega_b}} = \frac{L}{D^2R} \]

\[Q = D^2R \sqrt{\frac{C}{L}} \]

Control-to-output transfer function

Express in normalized form:

\[G_{\omega}(s) = \frac{\tilde{v}(s)}{\tilde{d}(s)\big|_{t_{rho}=0}} = \left(-\frac{V_L - V}{D^2} \right) \left(\frac{1 - s \frac{L}{D^2} \frac{V_L}{V_L s - V}}{1 + s \frac{L}{D^2 R} + \frac{s^2 LC}{D^2}} \right) \]

This is of the following standard form:

\[G_{\omega}(s) = G_{\omega_0} \frac{1 - \frac{s}{\omega_b}}{1 + \frac{s}{Q_{\omega_b}} + \left(\frac{s}{\omega_b} \right)} \]
Salient features of control-to-output transfer function

\[G_{ss} = -\frac{V_s - V}{D} = -\frac{V_s}{D^2} = \frac{V}{DD'} \]

\[\omega_c = \frac{V_s - V}{L} = \frac{D'}{D_L} \quad \text{(RHP)} \]

\[\omega_0 = \frac{D'}{\sqrt{L_c}} \]

\[Q = DR \sqrt{\frac{C}{L}} \]

Simplified using the dc relations:

\[V = -\frac{D}{D'} V_s \]
\[I = -\frac{V}{D' R} \]

Plug in numerical values

Suppose we are given the following numerical values:

- \(D = 0.6 \)
- \(R = 100 \Omega \)
- \(V_s = 30V \)
- \(L = 160\mu H \)
- \(C = 160\mu F \)

Then the salient features have the following numerical values:

\[|G_{ss}| = \frac{D}{D'} = 1.5 \Rightarrow 3.5 \text{ dB} \]
\[|G_{ss}| = \frac{V}{DD'} = 187.5 \text{ V} \Rightarrow 45.5 \text{ dBV} \]
\[f_0 = \frac{\omega_0}{2\pi} = \frac{D'}{2\pi \sqrt{L_c}} = 400 \text{ Hz} \]
\[Q = DR \sqrt{\frac{C}{L}} \Rightarrow 4 \Rightarrow 12 \text{ dB} \]
\[f_c = \frac{\omega_0}{2\pi} = \frac{D'^2 R}{2\pi \Omega L} = 2.65 \text{ kHz} \]
Bode plot: control-to-output transfer function

Bode plot: line-to-output transfer function
8.2.3. Physical origins of the right half-plane zero

\[G(s) = \left(1 - \frac{s}{\omega_h}\right) \]

- phase reversal at high frequency
- transient response: output initially tends in wrong direction

Two converters whose CCM control-to-output transfer functions exhibit RHP zeroes

\[\langle i_d \rangle_{1n} = d \langle i_L \rangle_{1n} \]

Boost

Buck-boost
Waveforms, step increase in duty cycle

\[
\langle i_d \rangle = \alpha \langle i_i \rangle,
\]

- Increasing \(\alpha(t) \) causes the average diode current to initially decrease.
- As inductor current increases to its new equilibrium value, average diode current eventually increases.

Impedance graph paper

Fundamentals of Power Electronics
Transfer functions predicted by canonical model

Output impedance Z_{out}: set sources to zero

$$Z_{out} = Z_1 \parallel Z_2$$
Graphical construction of output impedance

\[
\frac{1}{\omega C} \parallel Z_1 \parallel = \omega L_e \\
R, Q = R/R_0, R_0 \\
f_0 \parallel Z_{out} \parallel
\]

Chapter 8: Converter Transfer Functions

Graphical construction of filter effective transfer function

\[
\frac{\omega L_e}{\omega L_e} = 1 \\
Q = R/R_0 \\
f_0 \parallel Z_{out} \parallel \frac{1}{\omega L_e} = \frac{1}{\omega^2 L_e C} \\
|H_e| = \frac{|Z_{out}|}{|Z_1|}
\]

Chapter 8: Converter Transfer Functions
Boost and buck-boost converters: $L_c = L / D^2$