Lecture 4: Steady-State Averaged Modeling

ECE 481: Power Electronics
Prof. Daniel Costinett
Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

Ideal Transformer Model
3.1. The dc transformer model

Basic equations of an ideal dc-dc converter:

\[P_{in} = P_{out} \]
\[V_s I_s = VI \] \((\eta = 100\%)\)

\[V = M(D) V_s \]
\[I_s = M(D) I \] \((\text{ideal conversion ratio})\)

These equations are valid in steady-state. During transients, energy storage within filter elements may cause \(P_{in} \neq P_{out}\).
Equivalent circuits corresponding to ideal dc-dc converter equations

\[P_{in} = P_{out} \quad V_s I_s = V I \quad V = M(D) V_s \quad I_s = M(D) I \]

Dependent sources

DC transformer

The DC transformer model

- Models basic properties of ideal dc-dc converter:
 - conversion of dc voltages and currents, ideally with 100% efficiency
 - conversion ratio \(M \) controllable via duty cycle

- Solid line denotes ideal transformer model, capable of passing dc voltages and currents
- Time-invariant model (no switching) which can be solved to find dc components of converter waveforms
Example: use of the DC transformer model

1. Original system
 ![Original system diagram]

2. Insert dc transformer model
 ![Insert dc transformer model diagram]

3. Push source through transformer
 ![Push source through transformer diagram]

4. Solve circuit
 \[V = M(D) V_1 \left(\frac{R}{R + M^2(D) R_1} \right) \]

3.2. Inclusion of inductor copper loss

Dc transformer model can be extended, to include converter nonidealities.

Example: inductor copper loss (resistance of winding):

Insert this inductor model into boost converter circuit:

![Boost converter circuit diagram]
Analysis of nonideal boost converter

Nonideal Boost Converter
Circuit equations, switch in position 1

Inductor current and capacitor voltage:
\[v_L(t) = V_s - i(t) R_L \]
\[i_L(t) = -v(t) / R \]

Small ripple approximation:
\[v_L(t) = V_s - I R_L \]
\[i_L(t) = -V / R \]

Circuit equations, switch in position 2

\[v_L(t) = V_s - i(t) R_L - v(t) = V_s - I R_L - V \]
\[i_L(t) = -v(t) / R = I - V / R \]
Inductor voltage and capacitor current waveforms

Average inductor voltage:
\[\langle v_i(t) \rangle = \frac{1}{T} \int_0^T v_i(t) \, dt \]
\[= D(V_s - I R_L) + D' (V_s - I R_L - V) \]

Inductor volt-second balance:
\[0 = V_s - I R_L - D' V \]

Average capacitor current:
\[\langle i_c(t) \rangle = D \left(-V / R \right) + D' \left(I - V / R \right) \]

Capacitor charge balance:
\[0 = D' I - V / R \]

Solution for output voltage

We now have two equations and two unknowns:
\[0 = V_s - I R_L - D' V \]
\[0 = D' I - V / R \]

Eliminate \(I \) and solve for \(V \):
\[V = \frac{1}{V_s} \frac{1}{D'} \left(1 + \frac{R_s}{D' R} \right) \]
3.3. Construction of equivalent circuit model

Results of previous section (derived via inductor volt-sec balance and capacitor charge balance):

\[
\langle v_i \rangle = 0 = V_i - I R_i - DI
\]
\[
\langle i_c \rangle = 0 = DI' - V / R
\]

View these as loop and node equations of the equivalent circuit. Reconstruct an equivalent circuit satisfying these equations.

Inductor voltage equation

\[
\langle v_i \rangle = 0 = V_i - I R_i - DI
\]

- Derived via Kirchhoff's voltage law, to find the inductor voltage during each subinterval
- Average inductor voltage then set to zero
- This is a loop equation: the dc components of voltage around a loop containing the inductor sum to zero

- \(IR_i \) term: voltage across resistor of value \(R_i \) having current \(I \)
- \(DI' \) term: for now, leave as dependent source
Capacitor current equation

\[\langle i_c \rangle = 0 = D'V - \frac{V}{R} \]

- Derived via Kirchoff's current law, to find the capacitor current during each subinterval
- Average capacitor current then set to zero
- This is a node equation: the dc components of current flowing into a node connected to the capacitor sum to zero

\[\langle i_c \rangle = 0 \]

- \(V/R \) term: current through load resistor of value \(R \) having voltage \(V \)
- \(D' \) term: for now, leave as dependent source

Complete equivalent circuit

The two circuits, drawn together:

The dependent sources are equivalent to a \(D' : 1 \) transformer:

- sources have same coefficient
- reciprocal voltage/current dependence
Solution of equivalent circuit

Converter equivalent circuit

Refer all elements to transformer secondary:

Solution for output voltage using voltage divider formula:

\[V = \frac{V_S}{D} \left(\frac{R}{R + \frac{R_i}{D \alpha}} \right) = \frac{V_S}{D} \left(\frac{1}{1 + \frac{R_i}{D \alpha R}} \right) \]

Fundamentals of Power Electronics 16 Chapter 3: Steady-state equivalent circuit modeling, ...

Solution for input (inductor) current

\[I = \frac{V_S}{D^2 R + R_i} = \frac{V_S}{D^2} \left(\frac{1}{1 + \frac{R_i}{D^2 R}} \right) \]

Fundamentals of Power Electronics 17 Chapter 3: Steady-state equivalent circuit modeling, ...
Solution for converter efficiency

\[P_{in} = (V_s) (I) \]
\[P_{out} = (V) (ID) \]

\[\eta = \frac{P_{out}}{P_{in}} = \frac{(V) (ID)}{(V_s) (I)} = \frac{V}{V_s} D' \]

\[\eta = \frac{1}{1 + \frac{R_L}{D'^2 R}} \]

Efficiency, for various values of \(R_L \)

\[\eta = \frac{1}{1 + \frac{R_L}{D'^2 R}} \]
3.4. How to obtain the input port of the model

Buck converter example — use procedure of previous section to derive equivalent circuit

Average inductor voltage and capacitor current:

\[\langle v_i \rangle = 0 = DV_s - I_L R_L - V_C \quad \quad \langle i_C \rangle = 0 = I_L - V_C / R \]

Construct equivalent circuit as usual

\[\langle v_i \rangle = 0 = DV_s - I_L R_L - V_C \quad \quad \langle i_C \rangle = 0 = I_L - V_C / R \]

What happened to the transformer?
* Need another equation
Modeling the converter input port

Input current waveform $i_x(t)$:

Dc component (average value) of $i_x(t)$ is

$$I_x = \frac{1}{T_s} \int_{0}^{T_s} i_x(t) \, dt = DI_L$$

Input port equivalent circuit

$$I_x = \frac{1}{T_s} \int_{0}^{T_s} i_x(t) \, dt = DI_L$$

V_x I_x \rightarrow DI_L
Complete equivalent circuit, buck converter

Input and output port equivalent circuits, drawn together:

Replace dependent sources with equivalent dc transformer:

3.5. Example: inclusion of semiconductor conduction losses in the boost converter model

Boost converter example

Models of on-state semiconductor devices:

MOSFET: on-resistance R_{on}

Diode: constant forward voltage V_f plus on-resistance R_D

Insert these models into subinterval circuits
Modeling of component conduction losses

Boost converter example: circuits during subintervals 1 and 2

Fundamentals of Power Electronics
Average inductor voltage and capacitor current

\[V_l(t) = V - IR_l - IR_m \]
\[i(t) = i(t) = \frac{i - VR}{-VR} \]

\[\langle v_i \rangle = D(V - IR_l - IR_m) + D(V - IR_l - V_R - IR_m - V) = 0 \]
\[\langle i \rangle = D(-VR) + D(I - VR) = 0 \]

Construction of equivalent circuits

\[V_l - IR_l - IDR_m - D\gamma V_R - D\gamma R_m - DV = 0 \]

\[DT1 - V/R = 0 \]
Complete equivalent circuit

\[V = \left(\frac{1}{D'} \right) \left(V_e - D' V_o \right) \left(\frac{D'^2 R}{D'^2 R + R_L + D R_m + D R_o} \right) \]

\[\frac{V}{V_o} = \left(\frac{1}{D'} \right) \left(1 - \frac{D V_o}{V_o} \right) \left(\frac{1}{1 + R_L + \frac{1}{D'^2 R}} \right) \]

Solution for output voltage
Solution for converter efficiency

\[P_m = (V_s) (I) \]
\[P_{out} = (V) (D/T) \]
\[\eta = D \frac{V_s}{V} = \frac{1}{1 + \frac{R_t + DR_{sw} + DR_{f}}{D^2 R}} \]

Conditions for high efficiency:
\[V/D \gg V_D \]
\[D^2 R \gg R_t + DR_{sw} + DR_{f} \]

Accuracy of the averaged equivalent circuit in prediction of losses

- Model uses average currents and voltages
- To correctly predict power loss in a resistor, use rms values
- Result is the same, provided ripple is small

MOSFET current waveforms, for various ripple magnitudes:

<table>
<thead>
<tr>
<th>Inductor current ripple</th>
<th>MOSFET rms current</th>
<th>Average power loss in (R_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (\Delta I = 0)</td>
<td>(I \sqrt{3})</td>
<td>(D F R_m)</td>
</tr>
<tr>
<td>(b) (\Delta I = 0.1 I)</td>
<td>(1.00167)I (\sqrt{3})</td>
<td>(1.0033) D F R_m</td>
</tr>
<tr>
<td>(c) (\Delta I = I)</td>
<td>(1.125)I (\sqrt{3})</td>
<td>(1.3333) D F R_m</td>
</tr>
</tbody>
</table>
Summary of chapter 3

1. The dc transformer model represents the primary functions of any dc-dc converter: transformation of dc voltage and current levels, ideally with 100% efficiency, and control of the conversion ratio M via the duty cycle D. This model can be easily manipulated and solved using familiar techniques of conventional circuit analysis.

2. The model can be refined to account for loss elements such as inductor winding resistance and semiconductor on-resistances and forward voltage drops. The refined model predicts the voltages, currents, and efficiency of practical nonideal converters.

3. In general, the dc equivalent circuit for a converter can be derived from the inductor volt-second balance and capacitor charge balance equations. Equivalent circuits are constructed whose loop and node equations coincide with the volt-second and charge balance equations. In converters having a pulsating input current, an additional equation is needed to model the converter input port; this equation may be obtained by averaging the converter input current.