Midterm Exam

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture/Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Sep 15</td>
<td>Lab 3</td>
<td>Detailed Lecture</td>
</tr>
<tr>
<td></td>
<td>Lecture 1</td>
<td></td>
</tr>
<tr>
<td>15 Sep 15</td>
<td>Lab 4</td>
<td>Detailed Lecture</td>
</tr>
<tr>
<td></td>
<td>Lecture 2</td>
<td></td>
</tr>
<tr>
<td>19 Sep 15</td>
<td>Lab 5</td>
<td>Detailed Lecture</td>
</tr>
<tr>
<td></td>
<td>Lecture 3</td>
<td></td>
</tr>
<tr>
<td>23 Sep 15</td>
<td>Lab 6</td>
<td>Detailed Lecture</td>
</tr>
<tr>
<td></td>
<td>Lecture 4</td>
<td></td>
</tr>
<tr>
<td>27 Sep 15</td>
<td>Lab 7</td>
<td>Detailed Lecture</td>
</tr>
<tr>
<td></td>
<td>Lecture 5</td>
<td></td>
</tr>
<tr>
<td>30 Sep 15</td>
<td>Lab 8</td>
<td>Detailed Lecture</td>
</tr>
<tr>
<td></td>
<td>Lecture 6</td>
<td></td>
</tr>
</tbody>
</table>

Hands-‐on; spend majority of course time on lab work

Design-‐oriented introduction to the analysis, modeling, and testing of power electronics

Fabrication of the multiple switched-‐mode power converters

Analog and digital control systems

Realize a functioning, sub-‐kW electric vehicle

Compete to achieve best performance of EV drive train

For more information, contact:
Prof. Daniel Costinett, daniel.costinett@utk.edu
Realize a fully functional electric vehicle drivetrain
Flyback Converter:
Buck-Boost Derived

Flyback Transformer

- A two-winding inductor
- Symbol is same as transformer, but function differs significantly from ideal transformer
 - Energy is stored in magnetizing inductance
 - Magnetizing inductance is relatively small

- Current does not simultaneously flow in primary and secondary windings
- Instantaneous winding voltages follow turns ratio
- Instantaneous (and rms) winding currents do not follow turns ratio
- Model as (small) magnetizing inductance in parallel with ideal transformer
Flyback Waveforms

$\langle v_m \rangle = \frac{V_0}{V_m} \left(1 - \frac{V_0}{V_m} \right)$

$\langle i_c \rangle = -\frac{V_0}{R} + \frac{V_m}{R}$

$\langle i_a \rangle = 0$

$\langle i_{la} \rangle = \frac{V_m}{R}$

Flyback Equivalent Circuit Model
Flyback Reverse Recovery

\[V_{\text{loss}} = \left(V_g + \frac{V}{n} \right) \left(I_{\text{intra}} + nQ_r \right) \]

Flyback Equivalent Circuit Model

\[
\begin{align*}
\langle i_d \rangle &= D\bar{i}_{\text{in}} + \frac{t_c I_{\text{in}}}{T_s} + \frac{nQ_r}{T_s} \\
\langle V_m \rangle &= \left(\text{the same} \right) \\
\langle i_e \rangle &= i - \frac{V}{n} + \frac{t_c I_{\text{in}}}{n} - \frac{Q_r}{T_s} - \frac{\text{tunction}}{n T_s} \\
\langle P_1 \rangle &= V_g \left(\frac{I_{\text{intra}}}{T_s} + \frac{nQ_r}{T_s} \right) \\
\langle P_2 \rangle &= V \left(\frac{Q_r}{T_s} + \frac{I_{\text{intra}}}{T_s} \right) \\
\langle P_1 + P_2 \rangle &= \frac{1}{T_s} \left(V_g + \frac{V}{n} \right) \left(nQ_r + I_{\text{intra}} \right)
\end{align*}
\]
High Step-Up Conversion Ratios

Boost Converter

Flyback, \(n=100 \)

Switch Ratings

\[V_{\text{on}} = 100 \text{V} \]
\[I_{\text{on}} = 100 \text{A} \]

\[S = \text{“Switch Stress”} = V_{\text{on}} I_{\text{on}} \]
\[S = 10 \text{kVA} \]
\[P > 100 \text{W} \]