Complete Compensator

\[G_c = G_{cm} \left(\frac{1 + \frac{2\pi(50\text{Hz})}{s}}{1 + \frac{2\pi(1.2\text{kHz})}{s}} \right)^2 \left(\frac{1 + \frac{s}{2\pi(81\text{kHz})}}{s} \right) \]

Compensator Realization

\[\left| \frac{G_{cm}}{s} \right| = 35 \text{dB} \]

\[R_1 = 1 \text{k}\Omega \]

\[R_2 = 3 \times 1 \text{k}\Omega = 3 \text{k}\Omega \]

\[C_1 = \frac{1}{6(1.2\text{kHz})} = 163\mu\text{F} \]

\[C_2 = \frac{1}{1(3\text{kHz})} = 333\mu\text{F} \]
Reactance Paper

50 Hz \rightarrow 340 mΩ
Compensator TF

Op-amp GBW

Additional HF pole due to op-amp GBW product
Another Example

Point-of-Load Synchronous Buck Regulator

Power stage parameters
- Switching frequency: \(f_s = 1 \text{ MHz} \)
- \(V_{\text{ref}} = 1.8 \text{ V} \)
- \(I_{\text{out}} = 0 \text{ to } 5 \text{ A} \)
- \(V_g = 5 \text{ V} \)
- \(L = 1 \mu\text{H} \)
- \(R_t = 30 \text{ m\Omega} \)
- \(C = 200 \mu\text{F} \)
- \(R_{\text{ext}} = 0.8 \text{ m\Omega} \)
- \(V_M = 1 \text{ V} \)
- \(H = 1 \)

POL Converters

Figure 2-5. Power Distribution Impedance versus Frequency

Table 2-1. Ice Guidelines

<table>
<thead>
<tr>
<th>Processor (Years)</th>
<th>VM (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Core i7 950</td>
<td>1.2</td>
</tr>
<tr>
<td>Intel Core i7 955</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 2-2. Vcc Load Step Size vs. Step Rate

<table>
<thead>
<tr>
<th>Step Rate (kHz)</th>
<th>Step Rate (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kHz</td>
<td>100 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>200 kHz</td>
</tr>
</tbody>
</table>

The 100% Load Step Size corresponds to the

Intel, "VRM and EVRD Design Guidelines,"
Design Goals

- Set $f_c = 100 \text{ kHz}$
- Set $\phi_m > 52^\circ (Q=1)$
- Obtain $|T_0| \to \infty$

AC Modeling

Pair of poles:

$$f_s = \frac{1}{2\pi \sqrt{CL}} = 11 \text{ kHz}$$

$$Q_{\text{loss}} = \frac{\sqrt{L/C}}{R_{\text{sw}} + R_L} = 2.3 \to 7.2 \text{ dB}$$

$$Q_{\text{load}} = \frac{R}{\sqrt{L/C}} > 5$$

$$Q = Q_{\text{loss}} \parallel Q_{\text{load}} = \frac{Q_{\text{loss}} Q_{\text{load}}}{Q_{\text{loss}} + Q_{\text{load}}} < 2.3 \to 7.2 \text{ dB}$$

Low-frequency gain (including PWM gain):

$$G_{\omega}(s) = V_g = \frac{V_g}{\omega_{esr}} \left(1 + \frac{s}{Q \omega_{esr}} + \frac{s^2}{\omega_s^2}
ight)$$

ESR zero:

$$f_{esr} = \frac{1}{2\pi \sqrt{C \cdot R_{\text{sw}}}} = 1 \text{ MHz}$$
Loop Gain

Plot magnitude and phase responses of $T_u(s)$ to plan how to design $G_c(s)$

Uncompensated Loop Gain

$T_u(s) = H_{sense}(1/V_M)G_{vd}(s)$

$T_u(s) = G_{vd}(1/V_M)H_{sense} = 5 \rightarrow 14\text{dB}$
Exact Bode Plot of T_u

Uncompensated loop gain, $T_u = (o\omega + \text{Heaviside}(1/\tau))$ (MATLAB)

- Target cross-over frequency: $f_c = f_p/10 = 100$ kHz
- No phase margin; a lead (PD) compensator is required

Lead Compensator Design

1. Choose: $f_c = 100$ kHz
 $\theta = \phi_m = 53^\circ$

2. Compute:

 $f_s = f_c \sqrt{\frac{1 - \sin(\theta)}{1 + \sin(\theta)}} = 33$ kHz
 $f_r = f_c \sqrt{\frac{1 + \sin(\theta)}{1 - \sin(\theta)}} = 300$ kHz

3. Find G_{co} to position the crossover frequency:

 $T_{no} \left(\frac{f_p}{f_c} \right)^2 G_{co} \sqrt{\frac{f_p}{f_c}} = 1$

 $$G_{co} = \frac{1}{T_{no} \left(\frac{f_p}{f_c} \right)^2 \sqrt{\frac{f_p}{f_c}}} = 5.45 \rightarrow 15 \text{ dB}$$
Lead Compensator Summary

\[G_c(s) = G_{co} \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_{p1}}} \frac{1}{1 + \frac{s}{\omega_{p2}}} \]

- Added to attenuate for \(f_z \) above
- \(G_{co} = 5.45 \rightarrow 15 \text{ dB} \)
- \(f_z = 33 \text{ kHz} \)
- \(f_{p1} = 300 \text{ kHz} \)
- \(f_c = 100 \text{ kHz} \) (\(\approx 1/10 \text{ of } f_b \))

High-frequency gain of the lead compensator: \(G_{co} f_{p1}/f_z = 49 \) (34 dB)

Added high-frequency pole: \(f_{p2} = 1 \text{ MHz} \) \((=f_{err}=f_z \text{ in this example}) \)

Practical implementation would require an op-amp with a gain bandwidth product of at least \(49 \times f_{p2} = 49 \text{ MHz} \)

Single LHP zero

- \(\text{OK to try to cancel single pole/zero} \)
- \(\text{Resonant pole - Don't Do it!} \)
Loop Gain With Lead Compensator

\[G(s) = G_m \left(\frac{1 + \frac{s}{\omega_h}}{1 + \frac{s}{\omega_L}} \right) \]

\[f_c = 100 \text{ kHz} \]

Lag Compensator Design

\[G(s) = G_m \left(1 + \frac{\omega_h}{s} \right) \]

Improves low-frequency loop gain and regulation

Choose \(10f_L < f_c \) so that phase margin stays approximately the same; \(f_L = 8 \text{ kHz} \)

Keep the same cross-over frequency: \(G_{co} = G_{co} = G_{cm} = 5.45 \rightarrow 15 \text{ dB} \)
Loop Gain with PID Compensator
Exact Compensated Loop Gain

Construction of $\frac{T}{1+T}$
Closed-Loop Reference-to-Output

Reference-to-output response

Reference Step Response

$v_o(t)$

$i_L(t)$

$d(t)$

10 mV step (1.79 V to 1.8 V) in v_{ref}
Reference Step Response

- \(v_o(t) \)
- \(i_L(t) \)
- \(d(t) \)

10 mV step (1.79 V to 1.8 V) in \(v_{ref} \)

Note: duty-cycle command does not saturate, response correlates very well with theory based on linear small-signal models

20 \(\mu \)s/div

2 \(\mu \)s/div

Output Impedance

Synchronous buck open-loop output impedance

\[
Z_{out}(s) = \left(R_{esr} + \frac{1}{sC} \right) \parallel (R_L + sL)
\]

- \(L = 1 \ \mu \)H
- \(R_L = 30 \ \text{m\}O\)
- \(C = 200 \ \mu \)F
- \(R_{esr} = 0.8 \ \text{m\}O\)
Reactance Paper

Construction of $1/(1+T)$
Closed-Loop Z_{out}

$Z_{out, CL} = \frac{Z_{out}}{1 + T}$

Exact Z_{out}
Load Step Response

\(v_o(t) \)

\(i_L(t) \)

\(d(t) \)

2.5-5 A step-load transient

\(20 \, \mu s/div \)

\(2 \, \mu s/div \)

\(\Delta v \approx 15 \, mV \)

\(\approx 10 \, \mu s \) settling time
Chapter 9: Summary

1. Negative feedback causes the system output to closely follow the reference input, according to the gain $1/H(s)$. The influence on the output of disturbances and variation of gains in the forward path is reduced.

2. The loop gain $T(s)$ is equal to the products of the gains in the forward and feedback paths. The loop gain is a measure of how well the feedback system works; a large loop gain leads to better regulation of the output. The crossover frequency f_c is the frequency at which the loop gain T has unity magnitude, and is a measure of the bandwidth of the control system.

Chapter 9: Summary

3. The introduction of feedback causes the transfer functions from disturbances to the output to be multiplied by the factor $1/(1+T(s))$. At frequencies where T is large in magnitude (i.e., below the crossover frequency), this factor is approximately equal to $1/T(s)$. Hence, the influence of low-frequency disturbances on the output is reduced by a factor of $1/T(s)$. At frequencies where T is small in magnitude (i.e., above the crossover frequency), the factor is approximately equal to 1. The feedback loop then has no effect. Closed-loop disturbance-to-output transfer functions, such as the line-to-output transfer function or the output impedance, can easily be constructed using the algebra-on-the-graph method.

4. Stability can be assessed using the phase margin test. The phase of T is evaluated at the crossover frequency, and the stability of the important closed-loop quantities $T/(1+T)$ and $1/(1+T)$ is then deduced. Inadequate phase margin leads to ringing and overshoot in the system transient response, and peaking in the closed-loop transfer functions.
Chapter 9: Summary

5. Compensators are added in the forward paths of feedback loops to shape the loop gain, such that desired performance is obtained. Lead compensators, or PD controllers, are added to improve the phase margin and extend the control system bandwidth. PI controllers are used to increase the low-frequency loop gain, to improve the rejection of low-frequency disturbances and reduce the steady-state error.

6. Loop gains can be experimentally measured by use of voltage or current injection. This approach avoids the problem of establishing the correct quiescent operating conditions in the system, a common difficulty in systems having a large dc loop gain. An injection point must be found where interstage loading is not significant. Unstable loop gains can also be measured.