Implementing with SPST Switches

Step 0: Implement all switches as SPST

Non-trivial step

Now possible to have

\[X \text{ on } \rightarrow \text{Bar (short through \text{CAB})} \]

or

\[X \text{ off } \rightarrow \text{Bar (dead time)} \]

Used in discontinuous conduction mode (DCM) – Chapter 5

Buck converter

with SPDT switch:

\[V_x \quad \text{A on Bar} \]

\[V_x \quad \text{A off Bar} \]

with two SPST switches:

\[V_x \quad \text{A on Bar} \]

\[V_x \quad \text{A off Bar} \]

SPST Operating Quadrants

Step 7: Determine polarities of \(V(\text{off}) \) \(i(\text{on}) \) in the circuit

Single-quadrant switch

Current-bidirectional two-quadrant switch

Voltage-bidirectional two-quadrant switch

Four-quadrant switch

\[V_x \quad \text{on} \]

\[V_x \quad \text{off} \]

\[\text{Switch on-state voltage} \]

\[\text{Switch off-state voltage} \]

\[\text{Switch on-state voltage} \]

\[\text{Switch off-state voltage} \]

\[i_x \quad \text{on} \]

\[i_x \quad \text{off} \]

\[\text{Switch on-state current} \]

\[\text{Switch off-state current} \]

- Use ch. 7/3 techniques

\[\text{Noft, } i_{\text{on}} = f(V_x, R, D) \]

\[V_{\text{on}} = 20 \]

\[R_{\text{on}} = 12 \]

\[V_{\text{off}} = 0 \]

\[R_{\text{off}} = 1 \]
The Diode

- A passive switch
- Single-quadrant switch:
 - can conduct positive on-state current
 - can block negative off-state voltage
- provided that the intended on-state and off-state operating points lie on the diode i-v characteristic, then switch can be realized using a diode

Symbol: Ⅱ

instantaneous i-v characteristic

(Insulated Gate) Bipolar Junction Transistor

- An active switch, controlled by terminal C
- Single-quadrant switch:
 - can conduct positive on-state current
 - can block positive off-state voltage
- provided that the intended on-state and off-state operating points lie on the transistor i-v characteristic, then switch can be realized using a BJT or IGBT

Symbol: BJT

IGBT

instantaneous i-v characteristic
MOSFET

- Body shorted to source
- An active switch, controlled by terminal C
- Normally operated as single-quadrant switch:
- Can conduct positive on-state current (can also conduct negative current in some circumstances)
- Can block positive off-state voltage
- Provided that the intended on-state and off-state operating points lie on the MOSFET i-v characteristic, then switch can be realized using a MOSFET

Buck Converter: Switch Realization

\[\begin{align*}
 i(t) &= i_c(t) \\
 v(t) &= v_c(t) \\
 s(t) &= s_c(t)
\end{align*} \]

From previous analysis:

1. \(i_A(t) = I_c > 0 \) (\(s = 1 = \frac{V_s}{R} \))
2. \(v_B(t) = -V_s < 0 \)

\[\begin{align*}
 i_{on} &= \frac{V_s}{R} \\
 i_{off} &= 0
\end{align*} \]
Current Bidirectional Two-Quadrant

• Usually an active switch, controlled by terminal C
• Normally operated as two-quadrant switch:
 • can conduct positive or negative on-state current
 • can block positive off-state voltage
• provided that the intended on-state and off-state operating points lie on the composite i-v characteristic, then switch can be realized as shown

MOSFET Body Diode

Power MOSFET characteristics
Power MOSFET, and its integral body diode
Use of external diodes to prevent conduction of body diode

Fundamentals of Power Electronics 12
Chapter 4: Switch realization
Voltage-bidirectional Two-Quadrant

- Usually an active switch, controlled by terminal C
- Normally operated as two-quadrant switch:
 - can conduct positive on-state current
 - can block positive or negative off-state voltage
 - provided that the intended on-state and off-state operating points lie on the composite i-v characteristic, then switch can be realized as shown
- The SCR is such a device, without controlled turn-off

Four-Quadrant Switches

- BJT / series diode realization
- instantaneous i-v characteristic

Fundamentals of Power Electronics

Chapter 4: Switch realization
Synchronous Rectifiers

Replacement of diode with a backwards-connected MOSFET, to obtain reduced conduction loss

ideal switch conventional diode rectifier MOSFET as synchronous rectifier instantaneous i-v characteristic

4.2: Survey of Power Semiconductor Devices

- Power diodes
- Power MOSFETs
- Bipolar Junction Transistors (BJTs)
- Insulated Gate Bipolar Transistors (IGBTs)
- Thyristors (SCR, GTO, MCT)

- On resistance vs. breakdown voltage vs. switching times
- Minority carrier and majority carrier devices
Switching Nonidealities

[Diagram of electrical circuits and waveforms showing voltage and current changes over time.]