Physarum Computing

John Duggan
CS 594: Unconventional Computation
30 November 2018
Physarum polycephalum

- Multi-headed slime mold
- Responds to attractants and repellents
 - Attractant: food
 - Repellent: light
- Can survive long periods of time in unfavorable conditions
- Easy to cultivate and dispose of after experiments

Source: [1], Image: https://upload.wikimedia.org/wikipedia/commons/6/6d/Physarum_polycephalum_plasmodium.jpg
Lifecycle

- **Plasmodium (l)**
 - Vegetative state
 - When food source is exhausted, moves into phase (a)

- **Sclerotium (m)**
 - Survival state

Source: [1], Image from [1]
Plasmodium

- Extends tube-like structures (pseudopodia) over favorable terrain
- When food source is found, plasmodium concentrates on source
- When multiple food sources are found, pseudopodia form an optimized tube connecting sources

Source: [1]
Plasmodium Foraging

Video: https://www.youtube.com/watch?v=nxqIZjgKqb0
Physarum Computation

- **Examples to discuss**
 - Shortest path (Nakagaki et al, 2000)
 - AND, OR, NOT gates (Tsuda et al, 2004)
 - Robot controller (Tsuda et al, 2007)
 - Delaunay triangle approximation (Shirikawa et al, 2009)

- **Other examples**
 - Proximity graphs (Adamatzky, 2008)
 - Spanning trees (Adamatzky, 2007)
 - Primitive memory (Saigusa et al, 2008) and storage modification (Adamatzky, 2007)
 - Spatial logic and process algebra (Adamatzky, 2009)
 - Reversible logic gates (Schumann, 2017) [6]
 - Steiner Tree (Caleffi et al, 2014) [7]
 - This is an NP-hard problem!

Source: [1] unless otherwise noted
Shortest Path

- Place agar in maze to allow plasmodium to fill maze
- Place oat flakes at ends of maze
- Plasmodium will propagate to the two food sources
- Thin tube connecting the two sources will remain
 - Thin tube contains the shortest path through the maze!

Source: [2], Image from [2]
Shortest Path

Video: https://www.youtube.com/watch?v=czk4xgdhdY4
Shortest Path 2: Tokyo Drift

Video: https://www.youtube.com/watch?v=GwKuFREOgmo
Logic Gates

- Gradient contains attractant for plasmodium
- Plasmodium are repelled by other plasmodium
- Important note: the behaviors shown in the image are not guaranteed
 - AND and NOT gates had non-zero failure rate

Source: [3], Image from [3]
Robot Controller

- Conventional robotic systems have difficulty responding to dynamic environments
- Biological organisms can easily respond to such conditions
- Use plasmodium as controller for robot
 - Robot receives and sends light to the plasmodium
 - Plasmodium response used as control for robot’s movement

Source: [4], Images from [4]
Delaunay triangulation

- Given a set P of points (black points in image), provide a set of triangles such that no point is inside of any triangle’s circumcircle
 - Red points correspond to centers of circumcircles, connecting these produces a Voronoi tessellation
 - Circumcircles are shown in gray
- Useful in graphics for generating triangle meshes

Source: [5], Image: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Delaunay_circumcircles_centers.svg/1280px-Delaunay_circumcircles_centers.svg.png
Delaunay triangulation

- Similar process to shortest path
- Point set to triangulate are the food sources
- Red lines correspond to lines in the perfect triangulation that are not in the computed approximation

Source: [5], Image from [5]
Limitations

● Solutions to problems are generally *approximate*
 ○ Logic gates operated correctly only 76% of time
 ○ General-purpose, high-precision computation is not possible under these circumstances

● Computation is significantly slower than conventional computing
 ○ At the same time, it doesn’t require power to operate

Source: [3]
Conclusion

- *Physarum polycephalum* demonstrates complex foraging/migration behaviors
- These behaviors can be leveraged to perform computation
- Examples have demonstrated the feasibility of this approach for common problems such as shortest path, logic gate implementation, and triangulation
- Perhaps an extreme version of low-power electronics!

Image: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2016/ahandoutpict.jpg
References